352
Views
14
CrossRef citations to date
0
Altmetric
Review

New avenues for therapeutic discovery against West Nile virus

, , &
Pages 333-348 | Received 09 Sep 2019, Accepted 08 Jan 2020, Published online: 04 Feb 2020

References

  • Barzon L. Ongoing and emerging arbovirus threats in Europe. J Clin Virol. 2018;107:38–47.
  • Ulbert S, Magnusson SE. Technologies for the development of West Nile virus vaccines. Future Microbiol. 2014;9(10):1221–1232.
  • Ulbert S. West Nile virus vaccines - current situation and future directions. Hum Vaccin Immunother. 2019 Jul;10:1–6.
  • Biedenbender R, Bevilacqua J, Gregg AM, et al. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J Infect Dis. 2011;203(1):75–84.
  • Dayan GH, Bevilacqua J, Coleman D, et al. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥ 50 years of age. Vaccine. 2012;30(47):6564–6656.
  • Smith HL, Monath TP, Pazoles P, et al. Development of antigen-specific memory CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. J Infect Dis. 2011;203(4):513–522.
  • Durbin AP, Wright PF, Cox A, et al. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers. Vaccine. 2013;31(48):5772–5777.
  • Ledgerwood JE, Pierson TC, Hubka SA, et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis. 2011;203(10):1396–1404.
  • Woods CW, Sanchez AM, Swamy GK, et al. An observer blinded, randomized, placebo-controlled, phase I dose escalation trial to evaluate the safety and immunogenicity of an inactivated West Nile virus vaccine, hydrovax-001, in healthy adults. Vaccine. 2019;37(30):4222–4230.
  • Lieberman MM, Nerurkar VR, Luo H, et al. Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clin Vaccine Immunol. 2009;16(9):1332–1337.
  • Verstrepen BE, Oostermeijer H, Fagrouch Z, et al. Vaccine-induced protection of rhesus macaques against plasma viremia after intradermal infection with a European lineage 1 strain of West Nile virus. PLoS One. 2014;9(11):e112568.
  • Magnusson SE, Karlsson KH, Reimer JM, et al. Matrix-M™ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine. 2014;32(7):800–808.
  • De Filette M, Soehle S, Ulbert S, et al. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. PLoS One. 2014;9(2):e87837.
  • Van Hoeven N, Joshi SW, Nana GI, et al. A novel synthetic TLR-4 agonist adjuvant increases the protective response to a clinical-stage West Nile virus vaccine antigen in multiple formulations. PLoS One. 2016;11(2):e0149610.
  • Boldescu V, Behnam MAM, Vasilakis N. et al. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565–586.
  • Barzon L, Palù G. Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther. 2018;18(8):851–864.
  • Sinigaglia A, Riccetti S, Trevisan M, et al. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov. 2018;13(9):825–835.
  • Kalil AC, Devetten MP, Singh S, et al. Use of interferon-alpha in patients with West Nile encephalitis: report of 2 cases. Clin Infect Dis. 2005;40(5):764–766.
  • Morrey JD, Day CW, Julander JG, et al. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother. 2004;15(2):101–109.
  • Chowers MY, Lang R, Nassar F, et al. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis. 2001;7(4):675–678.
  • Hrnicek MJ, Mailliard ME. Acute West Nile virus in two patients receiving interferon and ribavirin for chronic hepatitis C. Am J Gastroenterol. 2004;99(5):957.
  • Barzon L, Trevisan M, Sinigaglia A, et al. Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett. 2016;363(18):fnw202.
  • Wilder-Smith A, Ooi EE, Horstick O, et al. Dengue. Lancet. 2019;393(10169):350–363.
  • McDonald E, Martin SW, Landry K, et al. West Nile virus and other domestic nationally notifiable arboviral diseases - United States, 2018. MMWR Morb Mortal Wkly Rep. 2019;68(31):673–678.
  • Haussig JM, Young JJ, Gossner CM, et al. Early start of the West Nile fever transmission season 2018 in Europe. Euro Surveill. 2018;23:32.
  • Suthar MS, Diamond MS, Jr GM. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11(2):115–128.
  • Perera-Lecoin M, Meertens L, Carnec X, et al. Flavivirus entry receptors: an update. Viruses. 2013;6(1):69–88.
  • Neufeldt CJ, Cortese M, Acosta EG, et al. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol. 2018;16(3):125–142.
  • Bollati M1, Alvarez K, Assenberg R, et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res. 2010;87:125–148.
  • Nall TA, Chappell KJ, Stoermer MJ, et al. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem. 2004;279(47):48535–48542.
  • Chappell KJ, Stoermer MJ, Fairlie DP, et al. Insights to substrate binding and processing by West Nile virus NS3 protease through combined modeling, protease mutagenesis, and kinetic studies. J Biol Chem. 2006;281:38448–38458.
  • Malet H, Massé N, Selisko B, et al. The flavivirus polymerase as a target for drug discovery. Antiviral Res. 2008;80(1):23–35.
  • Nybakken GE, Nelson CA, Chen BR, et al. Crystal structure of the West Nile virus envelope glycoprotein. J Virol. 2006;80:11467–11474.
  • Modis Y, Ogata S, Clements D, et al. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004;427:313–319.
  • Oliveira ERA, Mohana-Borges R2, de Alencastro RB, et al. The flavivirus capsid protein: structure, function and perspectives towards drug design. Virus Res. 2017;227:115–123.
  • Li M, Johnson JR, Truong B, et al. Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol. 2019;4(6):985–995.
  • Gutsche I, Coulibaly F, Voss JE, et al. Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A. 2011;108(19):8003–8008.
  • Westaway EG, Goodman MR. Variation in distribution of the three flavivirus-specified glycoproteins detected by immunofluorescence in infected Vero cells. Arch Virol. 1987;94(3–4):215–228.
  • Westaway EG, Mackenzie JM, Kenney MT, et al. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol. 1997;71(9):6650–6661.
  • Chung KM, Liszewski MK, Nybakken G, et al. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A. 2006;103(50):19111–19116.
  • Patel S, Sinigaglia A, Barzon L, et al. Role of NS1 and TLR3 in pathogenesis and immunity of WNV. Viruses. 2019;11(7):E603.
  • Whiteman MC, Wicker JA, Kinney RM, et al. Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness. Vaccine. 2011;29(52):9702–9710.
  • Wilson JR, de Sessions PF, Leon MA, et al. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol. 2008;82(17):8262–8271.
  • Zhang HL, Ye HQ, Liu SQ, et al. West Nile virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. J Virol. 2017;91(18):e02396–16.
  • Youn S, Li T, McCune BT, et al. Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J Virol. 2012;86(13):7360–7371.
  • Luo D, Xu T, Watson RP, et al. Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. Embo J. 2008;27(23):3209–3219.
  • Sweeney NL, Hanson AM, Mukherjee S, et al. Benzothiazole and pyrrolone flavivirus inhibitors targeting the viral helicase. ACS Infect Dis. 2015;1(3):140–148.
  • Chung KY, Dong H, Chao AT, et al. Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2ʹ-O methyltransferase activity in dengue virus. Virology. 2010;402(1):52–60.
  • Dong H, Liu L, Zou G, et al. Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J Biol Chem. 2010;285(42):32586–32595.
  • Vernekar SK, Qiu L, Zhang J, et al. 5ʹ-Silylated 3ʹ-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile virus and dengue virus. J Med Chem. 2015;58(9):4016–4028.
  • Van Slyke GA, Ciota AT, Willsey GG, et al. Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo. Virology. 2012;427(1):18–24.
  • Deardorff ER, Fitzpatrick KA, Jerzak GV, et al. West Nile virus experimental evolution in vivo and the trade-off hypothesis. PLoS Pathog. 2011;7(11):e1002335.
  • Gack MU, Diamond MS. Innate immune escape by dengue and West Nile viruses. Curr Opin Virol. 2016;20:119–128.
  • Hoenen A, Liu W, Kochs G, et al. West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol. 2007;88(Pt 11):3013–3017.
  • Szretter KJ, Daniels BP, Cho H, et al. 2ʹ-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8(5):e1002698.
  • Chen S, Wu Z, Wang M, et al. Innate immune evasion mediated by Flaviviridae non-structural proteins. Viruses. 2017;9(10):291.
  • Avirutnan P, Fuchs A, Hauhart RE, et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med. 2010;207(4):793–806.
  • Glasner DR, Puerta-Guardo H, Beatty PR, et al. The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu Rev Virol. 2018;5(1):227–253.
  • Wang C, Puerta-Guardo H, Biering SB, et al. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog. 2019;15(7):e1007938.
  • Puerta-Guardo H, Glasner DR, Espinosa DA, et al. Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 2019;26(6):1598–1613.e8.
  • Liu WJ, Chen HB, Wang XJ, et al. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol. 2004;78(22):12225–12235.
  • Liu WJ, Wang XJ, Clark DC, et al. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol. 2006;80(5):2396–2404.
  • Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007;2:229–239.
  • Laurent-Rolle M, Boer EF, Lubick KJ, et al. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol. 2010;84(7):3503–3515.
  • Samuel GH, Adelman ZN, Myles KM. Antiviral immunity and virus-mediated antagonism in disease vector mosquitoes. Trends Microbiol. 2018;26(5):447–461.
  • Roby JA, Pijlman GP, Wilusz J, et al. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014;6(2):404–427.
  • Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579–591.
  • Manokaran G, Finol E, Wang C, et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science. 2015;350(6257):217–221.
  • Schuessler A, Funk A, Lazear HM, et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol. 2012;86(10):5708–5718.
  • Martins AS, Carvalho FA, Faustino AF, et al. West Nile virus capsid protein interacts with biologically relevant host lipid systems. Front Cell Infect Microbiol. 2019;9:8.
  • Faustino AF, Guerra GM, Huber RG, et al. Understanding dengue virus capsid protein disordered N-Terminus and pep14–23-based inhibition. ACS Chem Biol. 2015;10(2):517–526.
  • Martins IC, Gomes-Neto F, Faustino AF, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J. 2012;444(3):405–415.
  • Byrd CM, Dai D, Grosenbach DW, et al. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother. 2013;57(1):15–25.
  • Scaturro P, Trist IM, Paul D, et al. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol. 2014;88(19):11540–11555.
  • Kampmann T, Yennamalli R, Campbell P, et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res. 2009;84(3):234–241.
  • de Wispelaere M, Lian W, Potisopon S, et al. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem Biol. 2018;25(89):1006–1016.
  • Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, et al. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and Dengue virus. Front Microbiol. 2017;8:1314.
  • Lee E, Pavy M, Young N, et al. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res. 2006;69(1):31–38.
  • Engle MJ, Diamond MS. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J Virol. 2003;77(24):12941–12949.
  • Makhoul B, Braun E, Herskovitz M, et al. Hyperimmune gammaglobulin for the treatment of West Nile virus encephalitis. Isr Med Assoc J. 2009;11(3):151–153.
  • Morelli MC, Sambri V, Grazi GL, et al. Absence of neuroinvasive disease in a liver transplant recipient who acquired West Nile virus (WNV) infection from the organ donor and who received WNV antibodies prophylactically. Clin Infect Dis. 2010;51(4):e34–37.
  • Center for Disease Control and Prevention (CDC). West Nile virus disease therapeutics. Review of the literature for healthcare providers. Revised February; 2018 3 [cited 2019 Sept 8]. Available from: https://www.cdc.gov/westnile/resources/pdfs/WNV-therapeutics-summary-P.pdf
  • Sun H, Chen Q, Lai H. Development of antibody therapeutics against flaviviruses. Int J Mol Sci. 2017;19(1):E54.
  • Gnann JW Jr, Agrawal A, Hart J, et al. Lack of efficacy of high-titered immunoglobulin in patients with West Nile virus central nervous system disease. Emerg Infect Dis. 2019;25(11):2064–2073.
  • Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med. 2008;10:e12.
  • Rey FA, Stiasny K, Vaney MC, et al. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 2018;19(2):206–224.
  • Sinigaglia A, Pacenti M, Martello T, et al. West Nile virus infection in individuals with pre-existing Usutu virus immunity, northern Italy, 2018. Euro Surveill. 2019;24(21):1900261.
  • Pierson TC, Xu Q, Nelson S, et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe. 2007;1(2):135–145.
  • Chabierski S, Makert GR, Kerzhner A, et al. Antibody responses in humans infected with newly emerging strains of West Nile virus in Europe. PLoS One. 2013;8(6):e66507.
  • Oliphant T, Engle M, Nybakken GE, et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med. 2005 May;11(5):522–530.
  • Morrey JD, Siddharthan V, Olsen AL, et al. Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis. 2006;194(9):1300–1308.
  • Smeraski CA, Siddharthan V, Morrey JD. Treatment of spatial memory impairment in hamsters infected with West Nile virus using a humanized monoclonal antibody MGAWN1. Antiviral Res. 2011;91(1):43–49.
  • Lai H, Engle M, Fuchs A, et al. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A. 2010;107(6):2419–2424.
  • He J, Lai H, Engle M, et al. Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS One. 2014;9(3):e93541.
  • Goo L, Debbink K, Kose N. et al. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat Microbiol. 2019;4(1):71–77.
  • Beigel JH, Nordstrom JL, Pillemer SR, et al. Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus. Antimicrob Agents Chemother. 2010;54(6):2431–2436.
  • Morrey JD, Siddharthan V, Olsen AL, et al. Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model. Antimicrob Agents Chemother. 2007;51(7):2396–2402.
  • [cited 2019 Sep 5]. Available from: http://clinicaltrials.gov/ct2/show/NCT00927953?term=west±nile&rank=1
  • Ezgimen M, Lai H, Mueller NH, et al. Characterization of the 8-hydroxyquinoline scaffold for inhibitors of West Nile virus serine protease. Antivir Res. 2012;94:18e24.
  • Balasubramanian A, Manzano M, Teramoto T, et al. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antiviral Res. 2016;134:6–16.
  • Yao Y, Huo T, Lin YL, et al. Discovery, x-ray crystallography and antiviral activity of allosteric inhibitors of flavivirus NS2B-NS3 protease. J Am Chem Soc. 2019;141(17):6832–6836.
  • Li Z, Sakamuru S, Huang R. et al. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res. 2018;150:217–225.
  • Brecher M, Li Z, Liu B. et al. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog. 2017;13(5):e1006411.
  • Behnam MA, Graf D, Bartenschlager R, et al. Discovery of nanomolar Dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J Med Chem. 2015;58(23):9354–9370.
  • Jia F, Zou G, Fan J, et al. Identification of palmatine as an inhibitor of West Nile virus. Arch Virol. 2010;155(8):1325–1329.
  • Gao Y, Samanta S, Cui T, et al. Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 1,3,4,5-tetrasubstituted 1H-pyrrol-2(5H)-one scaffold. ChemMedChem. 2013;8:1554–1560.
  • Li Z, Brecher M, Zhang J, et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017;27:1046–1064.
  • Nitsche C, Passioura T, Varava P, et al. De novo discovery of nonstandard macrocyclic peptides as noncompetitive inhibitors of the Zika virus NS2B-NS3 protease. ACS Med Chem Lett. 2019;10(2):168–174.
  • Martinez AA, Espinosa BA, Adamek RN, et al. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem. 2018;157:1202–1213.
  • Shiryaev SA, Ratnikov BI, Chekanov AV, et al. Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J. 2006;393(Pt 2):503–511.
  • Stoermer MJ, Chappell KJ, Liebscher S, et al. Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J Med Chem. 2008;51(18):5714–5721.
  • Schüller A, Yin Z, Brian Chia CS, et al. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antiviral Res. 2011;92(1):96–101.
  • Lim HA, Joy J, Hill J. San Brian Chia C. Novel agmatine and agmatine-like peptidomimetic inhibitors of the West Nile virus NS2B/NS3 serine protease. Eur J Med Chem. 2011;46(7):3130–3134.
  • Hammamy MZ, Haase C, Hammami M, et al. Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease. ChemMedChem. 2013;8(2):231–241.
  • Pinkham AM, Yu Z, Cowan JA. Attenuation of West Nile virus NS2B/NS3 protease by amino terminal copper and nickel binding (ATCUN) peptides. J Med Chem. 2018;61(3):980–988.
  • Oliveira AFCDS, APM DS, de Oliveira AS, et al. Zirconium catalyzed synthesis of 2-arylidene indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease. Eur J Med Chem. 2018;149:98–109.
  • O’Rourke A, Kremb S, Duggan BM, et al. Identification of a 3-alkylpyridinium compound from the red sea sponge Amphimedon chloros with in vitro inhibitory activity against the West Nile virus NS3 protease. Molecules. 2018;23(6):E1472.
  • Kouretova J, Hammamy MZ, Epp A, et al. Effects of NS2B-NS3 protease and furin inhibition on West Nile and dengue virus replication. J Enzyme Inhib Med Chem. 2017;32(1):712–721.
  • Skoreński M, Milewska A, Pyrć K, et al. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. J Enzyme Inhib Med Chem. 2019;34(1):8–14.
  • Li K, Frankowski KJ, Belon CA, et al. Optimization of potent hepatitis C virus NS3 helicase inhibitors isolated from the yellow dyes thioflavine S and primuline. J Med Chem. 2012;55:3319–3330.
  • Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67:1884–1894.
  • Wang P, Li LF, Wang QY, et al. Anti-dengue-virus activity and structure-activity relationship studies of lycorine derivatives. ChemMedChem. 2014;9(7):1522–1533.
  • Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4B, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol. 2015;25:205–223.
  • Zou G, Puig-Basagoiti F, Zhang B, et al. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology. 2009;384(1):242–252.
  • Chen H, Liu L, Jones SA, et al. Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Res. 2013;97(3):232–239.
  • Brecher M, Chen H, Li Z. et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect Dis. 2015;1(8):340–349.
  • Stahla-Beek HJ, April DG, Saeedi BJ. et al. Identification of a novel antiviral inhibitor of the flavivirus guanylyltansferase enzyme. J Virol. 2012;86(16):8730:8739.
  • Bullard KM, Gullberg RC, Soltani E, et al. Murine efficacy and pharmacokinetic evaluation of the flaviviral NS5 capping enzyme 2-thioxothiazolidin-4-one inhibitor BG-323. PLos One. 2015;10(6):e0130083.
  • Jordan I, Briese T, Fischer N, et al. Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. J Infect Dis. 2000;182(4):1214–1217.
  • Eyer L, Fojtíková M, Nencka R. et al. Viral RNA-dependent RNA polymerase inhibitor 7-deaza-2ʹ-C-methyladenosine prevents death in a mouse model of West Nile virus infection. Antimicrob Agents Chemother. 2019;63(3):e02093–18.
  • Morrey JD, Taro BS, Siddharthan V. et al. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection on rodents. Antiviral Res. 2008;80(3):377–379.
  • Eyer L, Zouharová D, Širmarová J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res. 2017;142:63–67.
  • Nelson J, Roe K, Orillo B, et al. Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection. Antiviral Res. 2015;122:39–45.
  • Cannalire R, Tarantino D, Piorkowski G, et al. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res. 2019;167:6–12.
  • Tarantino D, Cannalire R, Mastrangelo E, et al. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res. 2016;134:226–235.
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100:446–454.
  • Mentré F, Taburet A-M, Guedj J, et al. Dose regimen of favipiravir for Ebola virus disease. Lancet Infect Dis. 2015;15:150–151.
  • Segura Guerrero NA, Sharma S, Neyts J, et al. Favipiravir inhibits in vitro Usutu virus replication and delays disease progression in an infection model in mice. Antiviral Res. 2018;160:137–142.
  • Abdelnabi R, Morais ATS, Leyssen P, et al. Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase. J Virol. 2017;91(12):e00487–17.
  • Escribano-Romero E, Jiménez de Oya N, Domingo E. et al. Extinction of West Nile virus by favipiravir through lethal mutagenesis. Antimicrob Agents Chemother. 2017;61(11):e01400–17.
  • Eyer L, Šmídková M, Nencka R, et al. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Res. 2016;133:119–129.
  • Eyer L, Nencka R, Huvarová I, et al. Nucleoside inhibitors of Zika virus. J Infect Dis. 2016;214:707–711.
  • Prochnow H, Rox K, Birudukota NVS, et al. Labyrinthopeptins exert broad-spectrum antiviral activity through lipid binding-mediated virolysis. J Virol. 2020;94(2). pii: e01471-19. doi: 10.1128/JVI.01471-19.
  • Boriskin YS, Leneva IA, Pécheur EI, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008;15(10):997–1005.
  • Pécheur EI, Borisevich V, Halfmann P, et al. The Synthetic antiviral drug arbidol inhibits globally prevalent viruses. J Virol. 2016;90(6):3086–3092.
  • Haviernik J, Štefánik M, Fojtíková M, et al. Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne Flaviviruses. Viruses. 2018;10(4):184.
  • Leneva IA, Russell RJ, Boriskin YS, et al. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009;81(2):132–140.
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.
  • Beloor J, Maes N, Ullah I, et al. Small Interfering RNA-mediated control of virus replication in the CNS is therapeutic and enables naturali to West Nile virus. Cell Host Microbe. 2018;23(4):549–556.e3.
  • Krishnan MN, Garcia-Blanco MA. Targeting host factors to treat West Nile and dengue viral infections. Viruses. 2014;6(2):683–708.
  • Shoji-Kawata S, Sumpter R, Leveno M. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–206.
  • Medigeshi GR, Kumar R, Dhamija E, et al. N-Desmethylclozapine, Fluoxetine, and Salmeterol inhibit postentry stages of the Dengue virus life cycle. Antimicrob Agents Chemother. 2016;60(11):6709–6718.
  • Pattabhi S, Wilkins CR, Dong R. et al. Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J Virol. 2015;90(5):2372–2387.
  • Rausch K, Hackett BA, Weinbren NL, et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 2017;18(3):804–815.
  • Varghese FS, Rausalu K, Hakanen M, et al. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob Agents Chemother. 2017;61(3):e02227–16.
  • Hackett BA, Dittmar M, Segrist E. et al. Sirtuin inhibitors are broadly antiviral against arboviruses. MBio. 2019;10(4):e01446–19.
  • Medin CL, Fitzgerald KA, Rothman AL. Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol. 2005;79:11053–11061.
  • De Maio FA, Risso G, Iglesias NG, et al. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 2016;12:e1005841.
  • Fraser JE, Watanabe S, Wang C, et al. A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection. J Infect Dis. 2014;210:1780–1791.
  • Wagstaff KM, Sivakumaran H, Heaton SM, et al. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and Dengue virus. Biochem J. 2012;443(3):851–856.
  • Lopez-Denman AJ, Russo A, Wagstaff KM, et al. Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection. Cell Microbiol. 2018;20:e12848.
  • Yang SNY, Atkinson SC, Fraser JE. et al. Novel flavivirus antiviral that targets the host nuclear transport importin α/β1 heterodimer. Cells. 2019;8(3):E281.
  • Qing M, Zou G, Wang QY, et al. Characterization of dengue virus resistance to Brequinar in cell Culture. Antimicrob Agents Chemother. 2010;54(9):3686–3695.
  • Luthra P, Naidoo J, Pietzsch CA, et al. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Res. 2018;158:288–302.
  • Valiente-Echeverría F, Hermoso MA, Soto-Rifo R. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol. 2015;25:286−299.
  • Chahar HS, Chen S, Manjunath N. P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology. 2013;436:1−7.
  • Brai A, Martelli F, Riva V. et al. DDX3X helicase inhibitors as a new strategy to fight the West Nile virus infection. J Med Chem. 2019;62:2333−2347.
  • Brai A, Fazi R, Tintori C, et al. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc Natl Acad Sci USA. 2016;113:5388−5393.
  • Blázquez AB, Martín-Acebes MA, Saiz JC. Inhibition of West Nile virus multiplication in cell culture by anti-Parkinsonian drugs. Front Microbiol. 2016;7:296.
  • Blázquez AB, Vázquez-Calvo Á, Martín-Acebes MA, et al. Pharmacological inhibition of protein kinase C reduces West Nile virus replication. Viruses. 2018;10(2):E91.
  • Marceau CD, Puschnik AS, Majzoub K, et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature. 2016;535(7610):159–163.
  • Richardson RB, Ohlson MB, Eitson JL, et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol. 2018;3(11):1214–1223.
  • Puschnik AS, Marceau CD, Ooi YS, et al. A small-molecule oligosaccharyltransferase inhibitor with pan-flaviviral activity. Cell Rep. 2017;21(11):3032–3039.
  • Chang J, Wang L, Ma D. et al. Novel imino sugar derivatives demonstrate potent antiviral activity against Flaviviruses. Antimicrob Agents Chemother. 2009;53(4):1501–1508.
  • Sayce AC, Alonzi DS, Killingbeck SS, et al. Iminosugars inhibit Dengue virus production via inhibition of ER alpha-glucosidases–not glycolipid processing enzymes. PLoS Negl Trop Dis. 2016;10(3):e0004524.
  • Rathore AP, Paradkar PN, Watanabe S, et al. Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model. Antiviral Res. 2011;92(3):453–460.
  • Watanabe S, Chan KW, Dow G, et al. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: the search for a window for potential therapeutic efficacy. Antiviral Res. 2016;127:10–19.
  • Watanabe S, Rathore AP, Sung C, et al. Dose- and schedule-dependent protective efficacy of celgosivir in a lethal mouse model for dengue virus infection informs dosing regimen for a proof of concept clinical trial. Antiviral Res. 2012;96(1):32–35.
  • Low JG, Sung C, Wijaya L, et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis. 2014;14(8):706–715.
  • Ivanova T, Hardes K, Kallis S, et al. Optimization of substrate-analogue furin inhibitors. ChemMedChem. 2017;12(23):1953–1968.
  • Backus KM, Correia BE, Lum KM, et al. Proteome-wide covalent ligand discovery in native biological systems. Nature. 2016;534(7608):570–574.
  • de Wispelaere M, Carocci M, Liang Y, et al. Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res. 2017;139:171–179.
  • Merino-Ramos T, Jiménez de Oya N, Saiz JC, et al. Antiviral activity of nordihydroguaiaretic acid and its derivative tetra-o-methyl nordihydroguaiaretic acid against West Nile virus and Zika virus. Antimicrob Agents Chemother. 2017;61(8):e00376–17.
  • Jiménez de Oya N, Esler WP, Huard K. et al. Targeting host metabolism by inhibition of acetyl- coenzyme a carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect. 2019;8(1):624–636.
  • Soto-Acosta R, Bautista-Carbajal P, Syed GH, et al. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antiviral Res. 2014;109:132–140.
  • Merino-Ramos T, Vázquez-Calvo Á, Casas J, et al. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme A carboxylase impairs West Nile virus replication. Antimicrob Agents Chemother. 2015;60(1):307–315.
  • Wichit S, Hamel R, Bernard E, et al. Imipramine inhibits Chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking. Sci Rep. 2017;7(1):3145.
  • Cheng F, Ramos da Silva S, Huang IC, et al. Suppression of Zika virus infection and replication in endothelial cells and astrocytes by PKA inhibitor PKI 14-22. J Virol. 2018;92(4):e02019–17.
  • Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, et al. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathog. 2017;13(4):e1006257.
  • Jiménez de Oya N, Blázquez AB, Casas J, et al. Direct activation of adenosine monophosphate-activated protein kinase (AMPK) by PF-06409577 inhibits flavivirus infection through modification of host cell lipid metabolism. Antimicrob Agents Chemother. 2018;62(7):e00360–18.
  • Barzon L, Pacenti M, Ulbert S, et al. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther. 2015 Mar;13(3):32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.