60
Views
0
CrossRef citations to date
0
Altmetric
Review

In silico drug design strategies for discovering novel tuberculosis therapeutics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 471-491 | Received 08 Nov 2023, Accepted 12 Feb 2024, Published online: 19 Feb 2024

References

  • Primo LMDG, Roque-Borda CA, Carnero Canales CS, et al. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of mycobacterium tuberculosis. 2024Jan 1;323:121449.
  • Amaral TC, Glanzmann N, da Silva AD, et al. Synthesis, spectroscopic and structural characterizations and in vitro antimycobacterial activity of silver(I) complexes with sulfapyridine (SPY) and sulfamerazine (SM). J Mol Struct. 2024;1300:137234. doi: 10.1016/j.molstruc.2023.137234
  • World Health Organization. Global Tuberculosis Report. 2022.
  • Healy C, Gouzy A, Ehrt S, et al. Peptidoglycan Hydrolases RipA and Ami1 are critical for replication and persistence of mycobacterium tuberculosis in the host. MBio. 2020;11(2):11. doi: 10.1128/mBio.03315-19
  • World Health Organization. Global tuberculosis report 2023 [Internet]. Geneva. 2023; [cited 2023 Nov 6]. Available from: https://www.who.int/publications/i/item/9789240083851
  • Shaker B, Ahmad S, Lee J, et al. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851. doi: 10.1016/j.compbiomed.2021.104851
  • Yu D, Wang L, Wang Y. Recent advances in application of computer-aided drug design in anti-influenza a virus drug discovery. Int J Mol Sci. 2022;23(9):4738. doi: 10.3390/ijms23094738
  • Sona R, Kanmani S, Kumar SS, et al. Drug repositioning using computer-aided drug design (CADD). Curr Pharm Biotechnol. 2023:24. doi:10.2174/1389201024666230821103601
  • Bassani D, Moro S. Past, present, and future perspectives on computer-aided drug design methodologies. Molecules. 2023;28:3906. doi: 10.3390/molecules28093906
  • Geronikaki A, Dubey G, Petrou A, et al. Computer-aided drug design: an overview. In: Cheminf QSAR Mach Learn Appl Novel Drug Dev. Elsevier; 2023. p. 39–68. https://www.sciencedirect.com/science/article/abs/pii/B9780443186387000244
  • Wätzig H, Oltmann-Norden I, Steinicke F, et al. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des. 2015;29(9):847–865. doi: 10.1007/s10822-015-9851-6
  • Turzo SBA, Hantz ER, Lindert S. Applications of machine learning in computer-aided drug discovery. QRB Discov. 2022;3:e14.
  • Bruch EM, Petrella S, Bellinzoni M. Structure-based drug design for tuberculosis: challenges still ahead. Appl Sci. 2020;10(12):4248. doi: 10.3390/app10124248
  • Gautam V, Gaurav A, Masand N, et al. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol Divers. 2023;27(2):959–985. doi: 10.1007/s11030-022-10489-3
  • Reid M, Agbassi YJP, Arinaminpathy N, et al. Scientific advances and the end of tuberculosis: a report from the lancet commission on tuberculosis. Lancet. 2023;402(10411):1473–1498. doi: 10.1016/S0140-6736(23)01379-X
  • Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol. 2022;20(11):685–701. doi: 10.1038/s41579-022-00731-y
  • Silva APB, Roque-Borda CA, Carnero Canales CS, et al. Activity of bacteriophage d29 loaded on nanoliposomes against macrophages infected with mycobacterium tuberculosis. Diseases. 2023;11(4):150. doi: 10.3390/diseases11040150
  • Alsayed SSR, Gunosewoyo H. Tuberculosis: pathogenesis, current treatment regimens and new drug targets. Int J Mol Sci. 2023;24(6):5202. doi: 10.3390/ijms24065202
  • Hetta HF, Ahmed EA, Hemdan AG, et al. Modulation of rifampicin-induced hepatotoxicity using poly(lactic-co-glycolic acid) nanoparticles: a study on rat and cell culture models. Nanomedicine. 2020;15(14):1375–1390. doi: 10.2217/nnm-2020-0001
  • Fox GJ, Dobler CC, Marais BJ, et al. Preventive therapy for latent tuberculosis infection – the promise and the challenges. Inter J Infect Dis. 2017;56:68–76. doi: 10.1016/j.ijid.2016.11.006
  • Zhang Y, Yew W-W. Mechanisms of drug resistance in mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis. 2015;19(11):1276–1289. doi: 10.5588/ijtld.15.0389
  • Lei S, Gu R, Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Res. 2021;5(2):45–52. doi: 10.1016/j.livres.2021.02.001
  • Takayama K, Kilburn JO. Inhibition of synthesis of arabinogalactan by ethambutol in mycobacterium smegmatis. Antimicrob Agents Chemother. 1989;33(9):1493–1499. doi: 10.1128/AAC.33.9.1493
  • Reingewertz TH, Meyer T, McIntosh F, et al. Differential sensitivity of mycobacteria to isoniazid is related to differences in KatG-mediated enzymatic activation of the drug. Antimicrob Agents Chemother. 2020;64(2):64. doi: 10.1128/AAC.01899-19
  • Muhammad N, Mehboob S, Abbas M. Pyrazinamide induced hyperuricemia in the induction phase of anti-tuberculosis therapy. Pak J Med Health Sci. 2021;15(5):1136–1138. doi: 10.53350/pjmhs211551136
  • Hussain Z, Zhu J, Ma X. Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metab Dispos. 2021;49(8):679–682. doi: 10.1124/dmd.121.000389
  • Njire M, Tan Y, Mugweru J, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci. 2016;61(1):63–71. doi: 10.1016/j.advms.2015.09.007
  • Pang Y, Zhu D, Zheng H, et al. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis. 2017;17(1):711. doi: 10.1186/s12879-017-2761-6
  • Bandyopadhyay S, Banerjee S, Bandyopadhyay S, et al. A prospective evaluation of ocular toxicity in patients receiving ethambutol as anti-tubercular therapy. Sudanese J Ophthalmol. 2020;12(1):12. doi: 10.4103/sjopthal.sjopthal_4_20
  • Sun Q, Xiao T, Liu H, et al. Mutations within embCAB are associated with variable level of ethambutol resistance in mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother. 2018;62(1):62. doi: 10.1128/AAC.01279-17
  • Cohen K, Maartens G. A safety evaluation of bedaquiline for the treatment of multi-drug resistant tuberculosis. Expert Opin Drug Saf. 2019;18(10):875–882. doi: 10.1080/14740338.2019.1648429
  • Worley MV, SJ E. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis. Pharmacother J Human Pharmacol Drug Ther. 2014;34(11):1187–1197. doi: 10.1002/phar.1482
  • Nguyen TVA, Anthony RM, Bañuls A-L, et al. Bedaquiline resistance: its emergence, mechanism, and prevention. Clinl Infect Dis. 2018;66(10):1625–1630. doi: 10.1093/cid/cix992
  • Kato H, Hagihara M, Asai N, et al. A systematic review and meta-analysis of myelosuppression in pediatric patients treated with linezolid for gram-positive bacterial infections. J Infect Chemother. 2021;27(8):1143–1150. doi: 10.1016/j.jiac.2021.03.003
  • Oehadian A, Santoso P, Menzies D, et al. Concise clinical review of hematologic toxicity of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis: role of mitochondria. Tuberc Respir Dis (Seoul). 2022;85(2):111–121. doi: 10.4046/trd.2021.0122
  • Srivastava S, Magombedze G, Koeuth T, et al. Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrob Agents Chemother. 2017;61(8):61. doi: 10.1128/AAC.00751-17
  • Tanneau L, Karlsson MO, Rosenkranz SL, et al. Assessing prolongation of the corrected QT interval with Bedaquiline and delamanid coadministration to predict the cardiac safety of simplified dosing regimens. Clin Pharmacol Ther. 2022;112(4):873–881. doi: 10.1002/cpt.2685
  • Blair HA, LJ S. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015;75(1):91–100. doi: 10.1007/s40265-014-0331-4
  • Nguyen TVA, Anthony RM, Cao TTH, et al. Delamanid resistance: update and clinical management. Clinl Infect Dis. 2020;71(12):3252–3259. doi: 10.1093/cid/ciaa755
  • Goff A, Cantillon D, Muraro Wildner L, et al. Multi-Omics technologies applied to tuberculosis drug discovery. Appl Sci. 2020;10(13):4629. doi: 10.3390/app10134629
  • Tiwari D, Martineau AR. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol. 2023;65:101672. doi: 10.1016/j.smim.2022.101672
  • Raslan MA, Raslan SA, Shehata EM, et al. Advances in the applications of bioinformatics and Chemoinformatics. Pharmaceuticals. 2023;16(7):1050. doi: 10.3390/ph16071050
  • Perveen S, Sharma R. Screening approaches and therapeutic targets: the two driving wheels of tuberculosis drug discovery. Biochem Pharmacol. 2022;197:114906. doi: 10.1016/j.bcp.2021.114906
  • Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules. 2023;13(6):999. doi: 10.3390/biom13060999
  • Ejalonibu MA, Ogundare SA, Elrashedy AA, et al. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci. 2021;22(24):13259. doi: 10.3390/ijms222413259
  • Mahajan G, Mande SC. Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to mycobacterium tuberculosis. BMC Bioinf. 2017;18(1):201. doi: 10.1186/s12859-017-1550-y
  • Velankar S, Burley SK, Kurisu G, et al. The Protein Data Bank Archive. Methods Mol Biol. 2021;2305:3–21.
  • Goodsell DS, Zardecki C, Di Costanzo L, et al. RCSB protein data bank: enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52–65. doi: 10.1002/pro.3730
  • Sunita, Singhvi N, Singh Y, et al. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis. Infect Genet Evol. 2020;83:104357. doi: 10.1016/j.meegid.2020.104357
  • Duvaud S, Gabella C, Lisacek F, et al. Expasy, the swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–W227. doi: 10.1093/nar/gkab225
  • Kingdon ADH, Alderwick LJ. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Comput Struct Biotechnol J. 2021;19:3708–3719. doi: 10.1016/j.csbj.2021.06.034
  • Gironda-Martínez A, Donckele EJ, Samain F, et al. DNA-Encoded chemical libraries: a comprehensive review with succesful stories and future challenges. ACS Pharmacol Transl Sci. 2021;4(4):1265–1279. doi: 10.1021/acsptsci.1c00118
  • Ruddigkeit L, Awale M, Reymond J-L. Expanding the fragrance chemical space for virtual screening. J Cheminform. 2014;6(1):27. doi: 10.1186/1758-2946-6-27
  • Galagan JE, Sisk P, Stolte C, et al. TB database 2010: overview and update. Tuberculosis. 2010;90(4):225–235. doi: 10.1016/j.tube.2010.03.010
  • Rosenthal A, Gabrielian A, Engle E, et al. The TB portals: an open-access, web-based platform for global drug-resistant-tuberculosis data sharing and analysis. J Clin Microbiol. 2017;55(11):3267–3282. doi: 10.1128/JCM.01013-17
  • Starks AM, Avilés E, Cirillo DM, et al. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform: figure 1. Clinl Infect Dis. 2015;61(suppl 3):S141–S146. doi: 10.1093/cid/civ610
  • Ekins S, Clark AM, Sarker M. TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. J Cheminform. 2013;5(1):13. doi: 10.1186/1758-2946-5-13
  • Kapopoulou A, Lew JM, Cole ST. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis. 2011;91(1):8–13. doi: 10.1016/j.tube.2010.09.006
  • Usmani SS, Kumar R, Kumar V, et al. AntiTbPdb: a knowledgebase of anti-tubercular peptides. Database. 2018;2018. doi: 10.1093/database/bay025
  • Velayati AA, Farnia P, Hoffner S. Drug-resistant mycobacterium tuberculosis: epidemiology and role of morphological alterations. J Glob Antimicrob Resist. 2018;12:192–196. doi: 10.1016/j.jgar.2017.10.006
  • Shleider Carnero CC, Marquez CJ, Furtado TA, et al. Advances in diagnostics and drug discovery against resistant and latent tuberculosis infection. Pharmaceutics. 2023;15(10):2409. doi: 10.3390/pharmaceutics15102409
  • Eka Pitaloka D A, Izzati A, Rafa Amirah S, et al. Bioinformatics analysis to uncover the potential drug targets responsible for mycobacterium tuberculosis peptidoglycan and lysine biosynthesis. Bioinform Biol Insights. 2023;17:117793222311717. doi: 10.1177/11779322231171774
  • Sreelatha S, Nagarajan U, Natarajan S. Protein targets in Mycobacterium tuberculosis and their inhibitors for therapeutic implications: a narrative review. Int j biol macromol. 2023;243:125022.
  • Mittal P, Sinha R, Kumar A, et al. Focusing on DNA repair and damage tolerance mechanisms in mycobacterium tuberculosis: an emerging therapeutic theme. Curr Top Med Chem. 2020;20(5):390–408. doi: 10.2174/1568026620666200110114322
  • Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022;20(12):750–766. doi: 10.1038/s41579-022-00763-4
  • Umare MD, Khedekar PB, Chikhale RV. Mycobacterial membrane protein large 3 (MmpL3) Inhibitors: a promising approach to combat tuberculosis. ChemMedchem. 2021;16(20):3136–3148. doi: 10.1002/cmdc.202100359
  • Sammartino JC, Morici M, Stelitano G, et al. Functional investigation of the antitubercular drug target decaprenylphosphoryl-β-D-ribofuranose-2-epimerase DprE1/DprE2 complex. Biochem Biophys Res Commun. 2022;607:49–53. doi: 10.1016/j.bbrc.2022.03.091
  • Bon C, Cabantous S, Julien S, et al. Solution structure of the type I polyketide synthase Pks13 from mycobacterium tuberculosis. BMC Biol. 2022;20(1):147. doi: 10.1186/s12915-022-01337-9
  • Prasad MS, Bhole RP, Khedekar PB, et al. Mycobacterium enoyl acyl carrier protein reductase (InhA): a key target for antitubercular drug discovery. Bioorg Chem. 2021;115:105242. doi: 10.1016/j.bioorg.2021.105242
  • Kermani AA, Roy R, Gopalasingam C, et al. Crystal structure of the TreS: Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria. J Biol Chem. 2019;294(18):7348–7359. doi: 10.1074/jbc.RA118.004297
  • Fahrig-Kamarauskait≑ J, Würth-Roderer K, Thorbjørnsrud HV, et al. Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance. J Biol Chem. 2020;295:17514–17534. doi: 10.1074/jbc.RA120.014924
  • Schumann NC, Lee KJ, Thompson AP, et al. Inhibition of mycobacterium tuberculosis dethiobiotin synthase (mt DTBS): toward next-generation antituberculosis agents. ACS Chem Biol. 2021;16(11):2339–2347. doi: 10.1021/acschembio.1c00491
  • MYu R, Balanda AO, Yatsyshyna AP, et al. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci Rep. 2021;11(1):7162. doi: 10.1038/s41598-021-86562-y
  • Ahn W-C, Aroli S, Kim J-H, et al. Covalent binding of uracil DNA glycosylase UdgX to abasic DNA upon uracil excision. Nat Chem Biol. 2019;15(6):607–614. doi: 10.1038/s41589-019-0289-3
  • de Wet TJ, Warner DF, Mizrahi V, et al. Harnessing biological insight to accelerate tuberculosis drug discovery. Acc Chem Res. 2019;52(8):2340–2348. doi: 10.1021/acs.accounts.9b00275
  • Tomasi FG, Schweber JTP, Kimura S, et al. Peptidyl tRNA hydrolase is required for robust prolyl-tRNA turnover in mycobacterium tuberculosis. MBio. 2023;14(1):14. doi: 10.1128/mbio.03469-22
  • Alsulaimany FA, Almukadi H, Zabermawi NMO, et al. Identification of novel mycobacterium tuberculosis leucyl-tRNA synthetase inhibitor using a knowledge-based computational screening approach. J King Saud Univ Sci. 2022;34(4):102032. doi: 10.1016/j.jksus.2022.102032
  • Singh N, Chauhan A, Kumar R, et al. Biochemical and functional characterization of Mycobacterium tuberculosis ketol-acid reductoisomerase. Microbiology (NY). 2021;167(9):167. doi: 10.1099/mic.0.001087
  • Gupta P, Thomas SE, Zaidan SA, et al. A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of mycobacterium tuberculosis. Comput Struct Biotechnol J. 2021;19:3491–3506. doi: 10.1016/j.csbj.2021.06.006
  • Jian Y, Merceron R, De Munck S, et al. Endeavors towards transformation of M. tuberculosis thymidylate kinase (MtbTMPK) inhibitors into potential antimycobacterial agents. Eur J Med Chem. 2020;206:112659. doi: 10.1016/j.ejmech.2020.112659
  • Antil M, Gupta V. Lessons learnt and the way forward for drug development against isocitrate lyase from mycobacterium tuberculosis. Protein Pept Lett. 2022;29(12):1031–1041. doi: 10.2174/0929866529666221006121831
  • de M CA, Roth CD, Ducati RG, et al. 8-mercaptoguanine-based inhibitors of mycobacterium tuberculosis dihydroneopterin aldolase: synthesis, in vitro inhibition and docking studies. J Enzym Inhib Med Chem. 2021;36(1):847–855. doi: 10.1080/14756366.2021.1900157
  • Ruddraraju KV, Aggarwal D, Zhang Z-Y. Therapeutic targeting of protein tyrosine phosphatases from mycobacterium tuberculosis. Microorganisms. 2020;9(1):14. doi: 10.3390/microorganisms9010014
  • Thapa J, Chizimu JY, Kitamura S, et al. Characterization of DNA gyrase activity and elucidation of the impact of amino acid substitution in GyrA on fluoroquinolone resistance in mycobacterium avium. Microbiol Spectr. 2023;11(3):11. doi: 10.1128/spectrum.05088-22
  • Thongdee P, Hanwarinroj C, Pakamwong B, et al. Virtual screening identifies novel and potent inhibitors of mycobacterium tuberculosis PknB with antibacterial activity. J Chem Inf Model. 2022;62(24):6508–6518. doi: 10.1021/acs.jcim.2c00531
  • Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res. 2020;220:68–97.
  • Brogi S, Ramalho TC, Kuca K, et al. Editorial: in silico methods for drug design and discovery. Front Chem. 2020;8:8. doi: 10.3389/fchem.2020.00612
  • Torres PHM, Sodero ACR, Jofily P, et al. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):4574. doi: 10.3390/ijms20184574
  • Tao X, Huang Y, Wang C, et al. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol. 2020;55(1):33–45. doi: 10.1111/ijfs.14325
  • Crampon K, Giorkallos A, Deldossi M, et al. Machine-learning methods for ligand–protein molecular docking. Drug Discov Today. 2022;27(1):151–164. doi: 10.1016/j.drudis.2021.09.007
  • Jakhar R, Dangi M, Khichi A, et al. Relevance of molecular docking studies in drug designing. Curr Bioinform. 2020;15(4):270–278. doi: 10.2174/1574893615666191219094216
  • Zhang Y, Zhang H, Chen Y, et al. Screening and identification of a novel anti-tuberculosis compound that targets deoxyuridine 5′-triphosphate nucleotidohydrolase. Front Microbiol. 2021;12:12. doi: 10.3389/fmicb.2021.757914
  • Xia M-Y, Cai Y-X, Chen J-X, et al. Synthesis, antimycobacterial evaluation, and molecular docking study of 1,2,4-triazole derivatives. J Enzym Inhib Med Chem. 2023;38(1):38. doi: 10.1080/14756366.2023.2229070
  • Wen Y, Lun S, Jiao Y, et al. Structure-directed identification of pyridine-2-methylamine derivatives as MmpL3 inhibitors for use as antitubercular agents. Eur J Med Chem. 2023;255:115351. doi: 10.1016/j.ejmech.2023.115351
  • Wang X, Yang R, Liu S, et al. IMB-XMA0038, a new inhibitor targeting aspartate-semialdehyde dehydrogenase of Mycobacterium tuberculosis. Emerg Microbes Infect. 2021;10(1):2291–2299. doi: 10.1080/22221751.2021.2006578
  • Wang P, Batt SM, Wang B, et al. Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities. J Med Chem. 2021;64(9):6241–6261. doi: 10.1021/acs.jmedchem.1c00263
  • Wang X, Zhao W, Wang B, et al. Identification of inhibitors targeting polyketide synthase 13 of mycobacterium tuberculosis as antituberculosis drug leads. Bioorg Chem. 2021;114:105110. doi: 10.1016/j.bioorg.2021.105110
  • Tyagi R, Srivastava M, Singh B, et al. Identification and validation of potent mycobacterial proteasome inhibitor from Enamine library. J Biomol Struct Dyn. 2022;40(19):8644–8654. doi: 10.1080/07391102.2021.1914173
  • Singh K, Sharma A, Upadhyay TK, et al. Structure-based in silico and in vitro analysis reveals asiatic acid as novel potential inhibitor of mycobacterium tuberculosis maltosyl transferase. Curr Comput Aided Drug Des. 2022;18(3):213–227. doi: 10.2174/1573409918666220623105908
  • Shukla S, Nishanth Rao R, Bhuktar H, et al. Wang resin catalysed sonochemical synthesis of pyrazolo[4,3-d]pyrimidinones and 2,3-dihydroquinazolin-4(1H)-ones: identification of chorismate mutase inhibitors having effects on mycobacterium tuberculosis cell viability. Bioorg Chem. 2023;134:106452. doi: 10.1016/j.bioorg.2023.106452
  • Sharma D, Sharma S, Sinha N, et al. Novel benzoic thiazolidin-4-one derivatives targeting DevR/DosR dormancy regulator of Mycobacterium tuberculosis. J Mol Struct. 2022;1254:132278. doi: 10.1016/j.molstruc.2021.132278
  • El Sawy MA, Elshatanofy MM, El Kilany Y, et al. Novel hybrid 1,2,4- and 1,2,3-triazoles targeting mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA): design, synthesis, and molecular docking. Int J Mol Sci. 2022;23(9):4706. doi: 10.3390/ijms23094706
  • Sangepu VR, Jain KK, Bhoomireddy RD, et al. One-pot sonochemical synthesis and in silico/in vitro antitubercular evaluation of 1-methyl-3-propyl-1H-pyrazole containing polynuclear fused N-heteroarenes. J Mol Struct. 2023;1278:134909. doi: 10.1016/j.molstruc.2023.134909
  • Gawad J, Bonde C. Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives as novel antitubercular agents: future DprE1 inhibitors. Chem Cent J. 2018;12(1):138. doi: 10.1186/s13065-018-0515-1
  • Raj P, Selvam K, Roy K, et al. Identification of a new and diverse set of Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) inhibitors using structure-based virtual screening: Experimental validation and molecular dynamics studies. Bioorg Med Chem Lett. 2022;76:129008. doi: 10.1016/j.bmcl.2022.129008
  • Puranik NV, Swami S, Misar AV, et al. The first synthesis of podocarflavone a and its analogs and evaluation of their antimycobacterial potential against mycobacterium tuberculosis with the support of virtual screening. Nat Prod Res. 2022;36(15):3879–3886. doi: 10.1080/14786419.2021.1893317
  • Phanumartwiwath A, Kesornpun C, Sureram S, et al. Antitubercular and antibacterial activities of isoxazolines derived from natural products: isoxazolines as inhibitors of mycobacterium tuberculosis InhA. InhA J Chem Res. 2021;45(11–12):1003–1015. doi: 10.1177/17475198211047801
  • Patel T, Chauhan N, Bhatt VD, et al. Design and synthesis of novel imidazolidine-2,4-dione derivatives as InhA inhibitors: Spectral characterization, computational, and biological studies. Mater Today Proc. 2022;57:217–223. doi: 10.1016/j.matpr.2022.02.364
  • Pallabothula VSK, Kerda M, Juhás M, et al. Adenosine-mimicking derivatives of 3-aminopyrazine-2-carboxamide: towards inhibitors of prolyl-tRNA synthetase with antimycobacterial activity. Biomolecules. 2022;12(11):1561. doi: 10.3390/biom12111561
  • Liu T, Chen J, Fan C, et al. Crystal structure, DFT calculation, molecular docking, in vitro biological activity evaluation and in silico drug-likeness prediction of (E)-N-(4-bromophenyl)-4-(2-(2-hydroxybenzylidene) hydrazine-1-carbonyl) benzenesulfonamide. J Mol Struct. 2023;1284:135319. doi: 10.1016/j.molstruc.2023.135319
  • Lin X, Kurz JL, Patel KM, et al. Discovery of a pyrimidinedione derivative with potent inhibitory activity against mycobacterium tuberculosis ketol–acid reductoisomerase. Chem Eur J. 2021;27(9):3130–3141. doi: 10.1002/chem.202004665
  • Kumar A, Rajappan R, Kini SG, et al. E-Pharmacophore model-guided design of potential DprE1 inhibitors: synthesis, in vitro antitubercular assay and molecular modelling studies. Chem Papers. 2021;75(10):5571–5585. doi: 10.1007/s11696-021-01743-3
  • Kulabaş N, Türe A, Bozdeveci A, et al. Novel fluoroquinolones containing 2‐arylamino‐2‐oxoethyl fragment: design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. J Heterocycl Chem. 2022;59(5):909–926. doi: 10.1002/jhet.4430
  • Khurana H, Srivastava M, Chaudhary D, et al. Identification of diphenyl furan derivatives via high throughput and computational studies as ArgA inhibitors of mycobacterium tuberculosis. Int j biol macromol. 2021;193:1845–1858. doi: 10.1016/j.ijbiomac.2021.11.017
  • Kapp E, Calitz H, Streicher EM, et al. Discovery and biological evaluation of an adamantyl-amide derivative with likely MmpL3 inhibitory activity. Tuberculosis. 2023;141:102350. doi: 10.1016/j.tube.2023.102350
  • James JP, Mathew JB, Ishwar BK, et al. Design and synthesis of novel pyrimidine analogs as anti-tubercular agents targeting thymidine kinase domain. J Microb Biotech Food Sci. 2021;11(2):e1744. doi: 10.15414/jmbfs.1744
  • Jagatap VR, Ahmad I, Sriram D, et al. Isoflavonoid and furanochromone natural products as potential DNA gyrase inhibitors: computational, spectral, and antimycobacterial studies. ACS Omega. 2023;8(18):16228–16240. doi: 10.1021/acsomega.3c00684
  • Duan C, Jiang Q, Jiang X, et al. Discovery of a novel inhibitor structure of mycobacterium tuberculosis Isocitrate Lyase. Molecules. 2022;27(8):2447. doi: 10.3390/molecules27082447
  • Dhivya LS, Sarvesh S, AS S. Inhibition of mycobacterium tuberculosis InhA (enoyl-acyl carrier protein reductase) by synthetic Chalcones: a molecular modelling analysis and in-vitro evidence. J Biomol Struct Dyn. 2023;41(12):5399–5417. doi: 10.1080/07391102.2022.2086922
  • Deshpande A, Dhawale S, Bari S, et al. Design, synthesis and biological investigation of some novel quinazolin-4(3H)-one tethered 1, 3, 4-thiadiazole-thiol motifs as direct enoyl acyl carrier protein reductase inhibitors. J Pharm Res Int. 2021;617–632. doi: 10.9734/jpri/2021/v33i47A33052
  • Chetty S, Armstrong T, Sharma Kharkwal S, et al. New InhA inhibitors based on expanded triclosan and di-triclosan analogues to develop a new treatment for tuberculosis. Pharmaceuticals. 2021;14(4):361. doi: 10.3390/ph14040361
  • Chen D, Liu L, Lu Y, et al. Identification of fusarielin M as a novel inhibitor of mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). Bioorg Chem. 2021;106:104495. doi: 10.1016/j.bioorg.2020.104495
  • Abdelaziz OA, Othman DIA, Abdel-Aziz MM, et al. Novel diaryl ether derivatives as InhA inhibitors: design, synthesis and antimycobacterial activity. Bioorg Chem. 2022;129:106125. doi: 10.1016/j.bioorg.2022.106125
  • Huang H, Zhang G, Zhou Y, et al. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem. 2018;6:6. doi: 10.3389/fchem.2018.00138
  • Ruiz-Moreno AJ, Domling A, Velasco-Velázquez MA. Reverse docking for the identification of molecular targets of anticancer compounds. Methods Mol Biol. 2021;2174:31–43.
  • Padmini T, Bhikshapathi D, Suresh K, et al. Novel aminopyrazole tagged hydrazones as anti-tubercular agents: synthesis and molecular docking studies. Med Chem (Los Angeles). 2021;17(4):344–351. doi: 10.2174/1573406416666200514084747
  • Atıcı R K, Şd D, Gündüz MG, et al. Urea derivatives carrying a thiophenylthiazole moiety: design, synthesis, and evaluation of antitubercular and InhA inhibitory activities. Drug Dev Res. 2022;83(6):1292–1304. doi: 10.1002/ddr.21958
  • Reddy BRS, Babu KS, Mulakayala N, et al. Synthesis of novel 5-oxo-1,2,4-oxadiazole derivatives as antitubercular agents and their molecular docking study toward enoyl reductase (InhA) enzyme. ChemistrySelect. 2023;8(4). doi: 10.1002/slct.202204093
  • Sekhara Reddy B R, Reddy Gajulapalli V P, Madhu Rekha E, et al. Design, synthesis, and in vitro biological evaluation of dehydroaripiprazole derivatives as antituberculosis agents and molecular docking study. Results Chem. 2022;4:100295. doi: 10.1016/j.rechem.2022.100295
  • Nandurkar Y, Bhoye MR, Maliwal D, et al. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine derivatives as potential antifungal and antitubercular agents. Eur J Med Chem. 2023;258:258. doi: 10.1016/j.ejmech.2023.115548
  • Nandikolla A, Srinivasarao S, Khetmalis YM, et al. Design, synthesis and biological evaluation of novel 1,2,3-triazole analogues of imidazo-[1,2-a]-pyridine-3-carboxamide against mycobacterium tuberculosis. Toxicol In Vitro. 2021;74:105137. doi: 10.1016/j.tiv.2021.105137
  • Shinoj Kumar PP, Krishnaswamy G, Desai NR, et al. Highly facile, regio- and stereoselective synthesis of spiropyrrolidine-5-aza-2-oxindole derivatives through multicomponent 1,3-dipolar cycloaddition reaction and their in-vitro and in-silico biological studies. ChemistrySelect. 2021;6(35):9407–9414. doi: 10.1002/slct.202102118
  • Pradeep Kumar CB, Prathibha BS, Prasad KNN, et al. Click synthesis of 1,2,3-triazole based imidazoles: Antitubercular evaluation, molecular docking and HSA binding studies. Bioorg Med Chem Lett. 2021;36:127810. doi: 10.1016/j.bmcl.2021.127810
  • Emam AM, Dahal A, Singh SS, et al. Quinazoline-tethered hydrazone: a versatile scaffold toward dual anti-TB and EGFR inhibition activities in NSCLC. Arch Pharm (Weinheim). 2021;354(12). doi: 10.1002/ardp.202100281
  • Kumar CBP, Raghu MS, Prasad KNN, et al. Investigation of biological activity of 2,3-disubstituted quinazolin-4(1 H)-ones against Mycobacterium tuberculosis and DNA via docking, spectroscopy and DFT studies. New J Chem. 2021;45(1):403–414. doi: 10.1039/D0NJ03800H
  • Desai NC, Somani HC, Mehta HK, et al. Microwave-assisted organic synthesis, antimycobacterial activity, structure–activity relationship and molecular docking studies of some novel indole-oxadiazole hybrids. SAR QSAR Environ Res. 2022;33(2):89–109. doi: 10.1080/1062936X.2022.2032333
  • Desai NC, Bhatt K, Monapara J, et al. Conventional and microwave-assisted synthesis, antitubercular activity, and molecular docking studies of pyrazole and oxadiazole hybrids. ACS Omega. 2021;6(42):28270–28284. doi: 10.1021/acsomega.1c04411
  • Chundawat NS, Shanbhag GS, Chauhan NPS. Chemical synthesis and molecular modeling of novel substituted N-1,3-benzoxazol-2yl benzene sulfonamides as inhibitors of inhA enzyme and mycobacterium tuberculosis growth. J Iran Chem Soc. 2021;18(4):903–920. doi: 10.1007/s13738-020-02080-0
  • Ganesan MS, Raja KK, Murugesan S, et al. Quinoline-Proline, Triazole Hybrids: Design, Synthesis, Antituberculosis, Molecular Docking, and ADMET Studies. J Heterocycl Chem. 2021;58(4):952–968. doi: 10.1002/jhet.4229
  • Babu NR, Raju RS, Alavala RR, et al. Design, synthesis, anti-tubercular evaluation and teratogenicity studies of furanyl Pyrazolo[3,4-b] quinoline-5-ones. Russ J Bioorg Chem. 2023;49(1):127–138. doi: 10.1134/S1068162023010053
  • Koçak Aslan E, Krishna VS, Armaković SJ, et al. Linking azoles to isoniazid via hydrazone bridge: Synthesis, crystal structure determination, antitubercular evaluation and computational studies. J Mol Liq. 2022;354:118873. doi: 10.1016/j.molliq.2022.118873
  • Manjunatha B, Bodke YD, Nagaraja O, et al. Coumarin-benzothiazole based azo dyes: synthesis, characterization, computational, photophysical and biological studies. J Mol Struct. 2021;1246:131170. doi: 10.1016/j.molstruc.2021.131170
  • Kumbar SS, Shettar A, Joshi SD, et al. Design, synthesis, molecular docking and biological activity studies of novel coumarino-azetidinones. J Mol Struct. 2021;1231:130016. doi: 10.1016/j.molstruc.2021.130016
  • Akki M, Reddy DS, Katagi KS, et al. Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studies. J Mol Struct. 2022;1266:133452. doi: 10.1016/j.molstruc.2022.133452
  • Akki M, Reddy DS, Katagi KS, et al. Coumarin Hydrazone Oxime Scaffolds as Potent Anti-tubercular Agents: Synthesis, X-ray crystal and Molecular Docking Studies. ChemistrySelect. 2022;7(46). doi: 10.1002/slct.202203260
  • Ahmad I, Pawara RH, Girase RT, et al. Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega. 2022;7(25):21820–21844. doi: 10.1021/acsomega.2c01981
  • Acharya P, Ramana MMV, Upadhyay M, et al. Unveiling the Anti-tubercular Properties of Biscoumarins, through Biological Evaluation and Docking Studies. Lett Drug Des Discov. 2020;18(1):57–66. doi: 10.2174/1570180817999200724173656
  • Roopa DL, Shyamsunder K, Karunakar P, et al. Naphtho[2,1-b]furan derived triazole-pyrimidines as highly potential InhA and cytochrome c peroxidase inhibitors: synthesis, DFT calculations, drug-likeness profile, molecular docking and dynamic studies. J Mol Struct. 2023;1287:135685. doi: 10.1016/j.molstruc.2023.135685
  • Sahana S, Vijayakumar GR, Sivakumar R, et al. Synthesis, docking study and in-vitro evaluation of anti-tuberculosis activity of tri substituted imidazoles containing Quinoline Moiety. J Korean Chem Soc. 2022;66:194–201.
  • Sethiya A, Joshi D, Manhas A, et al. Glycerol based carbon sulfonic acid catalyzed synthesis, in silico studies and in vitro biological evaluation of isonicotinohydrazide derivatives as potent antimicrobial and anti-tubercular agents. Heliyon. 2023;9(2):e13226. doi: 10.1016/j.heliyon.2023.e13226
  • Al-Soliemy AM, Sabour R, Farghaly TA. Pyrazoles and fused pyrimidines: synthesis, structure elucidation, antitubercular activity and molecular docking study. Med Chem (Los Angeles). 2021;18(2):181–198. doi: 10.2174/1573406417666210324131951
  • Subhedar DD, Shaikh MH, Nagargoje AA, et al. Amide-linked monocarbonyl curcumin Analogues: efficient synthesis, antitubercular activity and molecular docking study. Polycycl Aromat Compd. 2022;42(5):2655–2671. doi: 10.1080/10406638.2020.1852288
  • Sukanya SH, Venkatesh T, Aditya Rao SJ, et al. An efficient p-TSA catalyzed synthesis of some new substituted-(5-hydroxy-3-phenylisoxazol-4-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione/3,3-dimethyl-2H-xanthen-1(9H)-one scaffolds and evaluation of their pharmacological and computation. J Mol Struct. 2022;1267(1267):133587. doi: 10.1016/j.molstruc.2022.133587
  • Turkmen Y, Yagiz Erdemir G, Yuksel Mayda P, et al. Synthesis, anti-TB activities, and molecular docking studies of 4-(1,2,3-triazoyl)arylmethanone derivatives. J Biochem Mol Toxicol. 2022;36(4):1–12. doi: 10.1002/jbt.22998
  • Venkatesh T, Bodke YD, Manjunatha B, et al. Synthesis, antitubercular activity and molecular docking study of substituted [1,3]dioxino[4,5-d]pyrimidine derivatives via facile CAN catalyzed Biginelli reaction. Nucleos Nucleot Nucl. 2021;40(11):1037–1049. doi: 10.1080/15257770.2021.1972310
  • Venugopala KN, Deb PK, Pillay M, et al. 4-aryl-1,4-dihydropyridines as potential enoyl-acyl carrier protein reductase inhibitors: antitubercular activity and molecular docking study. Curr Top Med Chem. 2020;21(4):295–306. doi: 10.2174/1568026620666201102121606
  • Zala MJ, Vora JJ, Khedkar VM. Synthesis and molecular docking study of arylsulfanyl pyrazolylpyrazoline derivatives as antitubercular agents. Russ J Org Chem. 2021;57(12):2054–2062. doi: 10.1134/S107042802112023X
  • Zala MJ, Vora JJ, Khedkar VM. Synthesis, Characterization, Antitubercular Activity, and Molecular Docking Studies of Pyrazolylpyrazoline-Clubbed Triazole and Tetrazole Hybrids. ACS Omega. 2023;8(23):20262–20271. doi: 10.1021/acsomega.2c07267
  • Zampieri D, Fortuna S, Romano M, et al. Synthesis, biological evaluation and computational studies of new hydrazide derivatives containing 1,3,4-oxadiazole as antitubercular Agents. Int J Mol Sci. 2022;23(23):23. doi: 10.3390/ijms232315295
  • Aziz HA, Moustafa GAI, Abuo-Rahma GEDA, et al. Synthesis and antimicrobial evaluation of new nitric oxide-donating fluoroquinolone/oxime hybrids. Arch Pharm (Weinheim). 2020;354(1):e2000180. doi: 10.1002/ardp.202000180
  • Karunanidhi S, Chandrasekaran B, Karpoormath R, et al. Novel thiomorpholine tethered isatin hydrazones as potential inhibitors of resistant mycobacterium tuberculosis. Bioorg Chem. 2021;115:105133. doi: 10.1016/j.bioorg.2021.105133
  • Kushwaha B, Kushwaha ND, Priya M, et al. Novel fluorophenyl tethered thiazole and chalcone analogues as potential anti-tubercular agents: design, synthesis, biological and in silico evaluations. J Mol Struct. 2023;1276:134791. doi: 10.1016/j.molstruc.2022.134791
  • Quimque MTJ, Go AD, Lim JAK, et al. Mycobacterium tuberculosis inhibitors based on arylated quinoline carboxylic acid backbones with anti-mtb gyrase activity. Int J Mol Sci. 2023;24(14):11632. doi: 10.3390/ijms241411632
  • Shinde SR, Inamdar SN, Obakachi VA, et al. Discovery of oxazole-dehydrozingerone based hybrid molecules as potential anti-tubercular agents and their docking for mtb DNA gyrase. Results Chem. 2022;4:100374. doi: 10.1016/j.rechem.2022.100374
  • Ajmal K, Pujar GV, SA K, et al. New benzothiazinone linked 1, 2, 4-triazoles: design, synthesis, characterization, and evaluation of antitubercular activity. J Appl Pharm Sci. 2021;11:029–038.
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, et al. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021;36(1):384–392. doi: 10.1080/14756366.2020.1868450
  • Hebbar NU, Patil AR, Gudimani P, et al. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. J Mol Struct. 2022;1269:133795. doi: 10.1016/j.molstruc.2022.133795
  • Imran M. Ethionamide and prothionamide based coumarinyl-thiazole derivatives: synthesis, antitubercular activity, toxicity investigations and molecular docking studies. Pharm Chem J. 2022;56(9):1215–1225. doi: 10.1007/s11094-022-02782-0
  • Sahoo SK, Ahmad MN, Kaul G, et al. Synthesis and evaluation of triazole congeners of nitro-benzothiazinones potentially active against drug resistant mycobacterium tuberculosis demonstrating bactericidal efficacy. RSC Med Chem. 2022;13(5):585–593. doi: 10.1039/D1MD00387A
  • Angelova VT, Pencheva T, Buyukliev R, et al. Antimycobacterial activity, in silico ADME evaluation, and docking study of novel thiazolidinedione and imidazolidinone conjugates. Russ J Bioorg Chem. 2021;47(1):122–133. doi: 10.1134/S1068162021010027
  • Balasubramaniyan M, Vinayagam V, Philip Jacob Kizhakedathil M, et al. In silico, in vitro antimicrobial and antimycobacterial evaluation of newly synthesized 2r, 6c-diaryl-3t-methylpiperidin-4-one arylsulphonylhydrazones. Bioorg Chem. 2022;128:106033. doi: 10.1016/j.bioorg.2022.106033
  • Faazil S, Malik MS, Ahmed SA, et al. New quinoline-thiolactone conjugates as potential antitubercular and antibacterial agents. J Mol Struct. 2023;1271:134099. doi: 10.1016/j.molstruc.2022.134099
  • Maganti LHB, Ramesh D, Vijayakumar BG, et al. Acetylene containing 2-(2-hydrazinyl)thiazole derivatives: design, synthesis, and in vitro and in silico evaluation of antimycobacterial activity against mycobacterium tuberculosis. RSC Adv. 2022;12(14):8771–8782. doi: 10.1039/D2RA00928E
  • Matsa R, Makam P, Sethi G, et al. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. RSC Adv. 2022;12(29):18333–18346. doi: 10.1039/D2RA02163C
  • Shingare R, Patil Y, Sangshetti J, et al. Docking simulations and primary assessment of newly synthesized benzene sulfonamide pyrazole oxadiazole derivatives as potential antimicrobial and antitubercular agents. Polycycl Aromat Compd. 2023;43(2):1799–1811. doi: 10.1080/10406638.2022.2036771
  • Alsayed SSR, Lun S, Bailey AW, et al. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of mycobacterium tuberculosis and paediatric brain tumour cells. RSC Adv. 2021;11(26):15497–15511. doi: 10.1039/D0RA10728J
  • KA B, Vaghela PV, SD V, et al. Indole-2-carboxamides as New Anti-Mycobacterial Agents: Design, Synthesis, Biological Evaluation and Molecular Modeling against mmpL3. ChemistrySelect. 2022;7(26):e202201813. doi: 10.1002/slct.202201813
  • Bhattarai P, Hegde P, Li W, et al. Structural determinants of indole-2-carboxamides: identification of lead acetamides with pan antimycobacterial activity. J Med Chem. 2023;66(1):170–187. doi: 10.1021/acs.jmedchem.2c00352
  • Hiwarale DP, Chandane WB, Deshmukh SM, et al. Green synthesis, antimycobacterial evaluation and molecular docking studies of novel 2,3-dihydro-1H-pyrazol-4-ylnaphthalene-1,4-diones. J Mol Struct. 2023;1286:135556. doi: 10.1016/j.molstruc.2023.135556
  • Linhares LA, dos Santos Peixoto A, Correia de Sousa L de A, et al. In vitro bioevaluation and docking study of dihydrosphingosine and ethambutol analogues against sensitive and multi-drug resistant mycobacterium tuberculosis. Eur J Med Chem. 2023;258:115579. doi: 10.1016/j.ejmech.2023.115579
  • Semenya D, Touitou M, Masci D, et al. Tapping into the antitubercular potential of 2,5-dimethylpyrroles: a structure-activity relationship interrogation. Eur J Med Chem. 2022;237:114404. doi: 10.1016/j.ejmech.2022.114404
  • Veena K, Raghu MS, Yogesh Kumar K, et al. Design and synthesis of novel benzimidazole linked thiazole derivatives as promising inhibitors of drug-resistant tuberculosis. J Mol Struct. 2022;1269:133822. doi: 10.1016/j.molstruc.2022.133822
  • Azmi MN, Hasmaruddin NS, Mat ANA, et al. Synthesis, characterization, anti-mycobacterial activity and in silico study of new 2,5-disubstituted-1,3,4-oxadiazole derivatives. Trop Biomed. 2022;39(3):467–475. doi: 10.47665/tb.39.3.019
  • Chitti S, Van Calster K, Cappoen D, et al. Design, synthesis and biological evaluation of benzo-[d]-imidazo-[2,1-b]-thiazole and imidazo-[2,1-b]-thiazole carboxamide triazole derivatives as antimycobacterial agents. RSC Adv. 2022;12(35):22385–22401. doi: 10.1039/D2RA03318F
  • Prathyusha J, Deepti CA. Synthesis, Antimicrobial, and Antitubercular Activities of Novel N-Pyrazolylbenzamide Derivatives. Rasayan J Chem. 2022;15(4):2407–2416. doi: 10.31788/RJC.2022.1547092
  • Gaikwad NB, Nirmale K, Sahoo SK, et al. Design, synthesis, in silico, and in vitro evaluation of 3-phenylpyrazole acetamide derivatives as antimycobacterial agents. Arch Pharm (Weinheim). 2021;354(5):1–20. doi: 10.1002/ardp.202000349
  • Kayukova L, Vologzhanina A, Praliyev K, et al. Boulton-katritzky rearrangement of 5-substituted phenyl-3-[2-(morpholin-1-yl)ethyl]-1,2,4-oxadiazoles as a synthetic path to spiropyrazoline benzoates and chloride with antitubercular properties. Molecules. 2021;26(4):1–16. doi: 10.3390/molecules26040967
  • Moussa AY, Sobhy HA, Eldahshan OA, et al. Caspicaiene: a new kaurene diterpene with anti-tubercular activity from an Aspergillus endophytic isolate in Gleditsia caspia desf. Nat Prod Res. 2021;35(24):5653–5664. doi: 10.1080/14786419.2020.1824222
  • Mundhe P, Kidwai S, Saini SM, et al. Design, synthesis, characterization, and anti-tubercular activity of novel ethyl-3-benzoyl-6, 8-difluoroindolizine-1-carboxylate analogues: molecular target identification and molecular docking studies. J Mol Struct. 2023;1284:135359. doi: 10.1016/j.molstruc.2023.135359
  • Patil NP, Alegaon SG, Parchure PS, et al. Inverse molecular docking and evaluation of antitubercular activities of some quinoline based heterocyclic compounds. Chem Afr. 2023;6(1):367–373. doi: 10.1007/s42250-022-00516-z
  • Qureshi KA, Azam F, Fatmi MQ, et al. In vitro and in silico evaluations of actinomycin X2 and actinomycin D as potent anti-tuberculosis agents. PeerJ. 2023;11:1–22. doi: 10.7717/peerj.14502
  • Trawally M, Demir-Yazıcı K, Dingiş-Birgül Sİ, et al. Mandelic acid-based spirothiazolidinones targeting M. tuberculosis: synthesis, in vitro and in silico investigations. Bioorg Chem. 2022;121:105688. doi: 10.1016/j.bioorg.2022.105688
  • Trawally M, Demir-Yazıcı K, İpek Dingiş-Birgül S, et al. Dithiocarbamates and dithiocarbonates containing 6-nitrosaccharin scaffold: synthesis, antimycobacterial activity and in silico target prediction using ensemble docking-based reverse virtual screening. J Mol Struct. 2023;1277:134818. doi: 10.1016/j.molstruc.2022.134818
  • Deb PK, Al-Shar’i NA, Venugopala KN, et al. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem. 2021;36(1):869–884. doi: 10.1080/14756366.2021.1900162
  • Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18(1):81–101. doi: 10.1128/CMR.18.1.81-101.2005
  • Yao J, Rock CO. Resistance mechanisms and the future of bacterial enoyl-acyl carrier protein reductase (FabI) antibiotics. Cold Spring Harb Perspect Med. 2016;6(3):1–11. doi: 10.1101/cshperspect.a027045
  • Othman DIA, Hamdi A, Abdel-Aziz MM, et al. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis. Bioorg Chem. 2022;124:105809. doi: 10.1016/j.bioorg.2022.105809
  • Venugopala KN, Chandrashekharappa S, Deb PK, et al. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J Enzyme Inhib Med Chem. 2021;36(1):1471–1486. doi: 10.1080/14756366.2021.1919889
  • Zhou W, Yang B, Zou Y, et al. Screening of compounds for anti-tuberculosis activity, and in vitro and in vivo evaluation of potential candidates. Front Microbiol. 2021;12:1–12. doi: 10.3389/fmicb.2021.658637
  • Zhu Y, Huang WE, Yang Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect Drug Resist. 2022;15:735–746. doi: 10.2147/IDR.S345574
  • Bravo A, Moreno-Blanco A, Espinosa M. One earth: the equilibrium between the human and the bacterial worlds. Int J Mol Sci. 2023;24(20):15047. doi: 10.3390/ijms242015047
  • Chollet A, Maveyraud L, Lherbet C, et al. An overview on crystal structures of InhA protein: apo-form, in complex with its natural ligands and inhibitors. Eur J Med Chem. 2018;146:318–343. doi: 10.1016/j.ejmech.2018.01.047
  • Holas O, Ondrejcek P, Dolezal M. Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors as potential antituberculotics: Development in the past decade. J Enzyme Inhib Med Chem. 2015;30(4):629–648. doi: 10.3109/14756366.2014.959512
  • Parikh S, Moynihan DP, Xiao G, et al. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from mycobacterium tuberculosis. Biochemistry. 1999;38(41):13623–13634. doi: 10.1021/bi990529c
  • Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019):862–865. doi: 10.1038/nature03197
  • Singh A, Somvanshi P, Grover A. Drug repurposing against arabinosyl transferase (EmbC) of mycobacterium tuberculosis: essential dynamics and free energy minima based binding mechanics analysis. Gene. 2019;693:114–126. doi: 10.1016/j.gene.2019.01.029
  • Van Hilten N, Chevillard F, Kolb P. Virtual compound libraries in computer-assisted drug discovery. J Chem Inf Model. 2019;59(2):644–651.
  • Aubry A, Mark Fisher L, Jarlier V, et al. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from mycobacterium tuberculosis. Biochem Biophys Res Commun. 2006;348(1):158–165. doi: 10.1016/j.bbrc.2006.07.017
  • Bush NG, Evans-Roberts K, Maxwell A, et al. Macromolecules DNA Topoisomerases. EcoSal Plus. 2015;6(2):1–34. doi: 10.1128/ecosalplus.esp-0010-2014
  • Maruri F, Sterling TR, Kaiga AW, et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. 2012;67(4):819–831. doi: 10.1093/jac/dkr566
  • Pakamwong B, Thongdee P, Kamsri B, et al. Identification of Potent DNA Gyrase Inhibitors Active against Mycobacterium tuberculosis. J Chem Inf Model. 2022;62(7):1680–1690. doi: 10.1021/acs.jcim.1c01390
  • Walburger A, Koul A, Ferrari G, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science (1979). 2004;304:1800–1804. doi: 10.1126/science.1099384
  • Arica-Sosa A, Alcántara R, Jiménez-Avalos G, et al. Identifying RO9021 as a potential inhibitor of PknG from mycobacterium tuberculosis: combinative computational and in vitro studies. ACS Omega. 2022;7(23):20204–20218. doi: 10.1021/acsomega.2c02093
  • Kalia NP, Hasenoehrl EJ, Rahman NBA, et al. Exploiting the synthetic lethality between terminal respiratory oxidases to kill mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci USA. 2017;114(28):7426–7431. doi: 10.1073/pnas.1706139114
  • Zhou Y, Shao M, Wang W, et al. Discovery of 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as new cytochrome bd oxidase inhibitors for tuberculosis therapy. Eur J Med Chem. 2023;245:114896. doi: 10.1016/j.ejmech.2022.114896
  • Vadija R, Mustyala KK, Malkhed V, et al. Identification of small molecular inhibitors for efflux protein Rv2688c of Mycobacterium tuberculosis. Biotechnol Appl Biochem. 2018;65(4):608–621. doi: 10.1002/bab.1647
  • Kaur G, Pandey B, Kumar A, et al. Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn. 2019;37(5):1254–1269. doi: 10.1080/07391102.2018.1454852
  • Madhavaram M, Nampally V, Gangadhari S, et al. High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of mycobacterium tuberculosis H37Rv. J Recept Signal Transduct. 2019;39(4):312–320. doi: 10.1080/10799893.2019.1660895
  • Kumar P, Saumya KU, Giri R. Identification of peptidomimetic compounds as potential inhibitors against MurA enzyme of Mycobacterium tuberculosis. J Biomol Struct Dyn. 2020;38(17):4997–5013. doi: 10.1080/07391102.2019.1696231
  • Sabe VT, Tolufashe GF, Ibeji CU, et al. Identification of potent L,D-transpeptidase 5 inhibitors for Mycobacterium tuberculosis as potential anti-TB leads: virtual screening and molecular dynamics simulations. J Mol Model. 2019;25(11):1–16. doi: 10.1007/s00894-019-4196-z
  • Shanmuga Priya VG, Swaminathan P, Muddapur UM, et al. Peptide similarity search based and virtual screening based strategies to identify small molecules to inhibit CarD–RNAP interaction in M. tuberculosis. Int J Pept Res Ther. 2019;25(2):697–709. doi: 10.1007/s10989-018-9716-7
  • Nagpal P, Jamal S, Singh H, et al. Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis. Sci Rep. 2020;10(1):1–11. doi: 10.1038/s41598-020-61132-w
  • Cazzaniga G, Mori M, Meneghetti F, et al. Virtual screening and crystallographic studies reveal an unexpected γ-lactone derivative active against MptpB as a potential antitubercular agent. Eur J Med Chem. 2022;234:114235. doi: 10.1016/j.ejmech.2022.114235
  • He J, Li C, Hu W, et al. Identification of selective mtbDHFR inhibitors by virtual screening and experimental approaches. Chem Biol Drug Des. 2022;100(6):1005–1016. doi: 10.1111/cbdd.14018
  • Mathpal D, Masand M, Thomas A, et al. Pharmacophore modeling, docking and the integrated use of a ligand- and structure-based virtual screening approach for novel DNA gyrase inhibitors: synthetic and biological evaluation studies. RSC Adv. 2021;11(55):34462–34478. doi: 10.1039/D1RA05630A
  • Naz S, Farooq U, Khan S, et al. Pharmacophore model-based virtual screening, docking, biological evaluation and molecular dynamics simulations for inhibitors discovery against α-tryptophan synthase from mycobacterium tuberculosis. J Biomol Struct Dyn. 2021;39(2):610–620. doi: 10.1080/07391102.2020.1715259
  • Tripathy S, Sahu SK, Azam MA, et al. Identification of antimycobacterial agent using in silico virtual screening, ADME prediction, docking, and molecular dynamics simulations approach. Curr Comput Aided Drug Des. 2020;17(6):806–816. doi: 10.2174/1573409916999200730182308
  • Varon A, Santos P H, Lopez-Vallejo F, et al. Novel scaffolds targeting Mycobacterium tuberculosis plasma membrane Ca2+ transporter CtpF by structure-based strategy. Bioorg Chem. 2023;138:106648. doi: 10.1016/j.bioorg.2023.106648
  • Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med Res Rev. 2021;41(3):1427–1473. doi: 10.1002/med.21764
  • Cerchia C, Lavecchia A. New avenues in artificial-intelligence-assisted drug discovery. Drug Discov Today. 2023;28(4):103516.
  • Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. doi: 10.3390/ijms24032026
  • Dara S, Dhamercherla S, Jadav SS, et al. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947–1999. doi: 10.1007/s10462-021-10058-4
  • Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. doi: 10.1016/j.drudis.2020.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.