208
Views
0
CrossRef citations to date
0
Altmetric
Review

Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities

, , , &
Pages 493-506 | Received 27 Nov 2023, Accepted 12 Feb 2024, Published online: 26 Feb 2024

References

  • Marques L, Vale N. Salbutamol in the management of asthma: a review. Int J Mol Sci. 2022;23(22):14207. doi: 10.3390/ijms232214207
  • Harris DM, Martin LE, Harrison C, et al. The effect of oral and inhaled beclomethasone dipropionate on adrenal function. Clin Exp Allergy. 1973;3(3):243–248. doi: 10.1111/j.1365-2222.1973.tb01329.x
  • Ghumman M, Dhamecha D, Gonsalves A, et al. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm. 2021;164:1–12. doi: 10.1016/j.ejpb.2021.03.017
  • Wan Q, Zhang X, Zhou D, et al. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology. 2023;21(1):215. doi: 10.1186/s12951-023-01971-7
  • Collaborators G 2019 D and I, Vos T, SS L, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–1222.
  • Ruvuna L, Sood A. Epidemiology of chronic obstructive pulmonary disease. Clin Chest Med. 2020;41(3):315–327. doi: 10.1016/j.ccm.2020.05.002
  • Alter P, Kahnert K, Trudzinski FC, et al. Disease progression and age as factors underlying multimorbidity in patients with COPD: results from COSYCONET. Int J Chronic Obstr Pulm Dis. 2022;17:1703–1713. doi: 10.2147/COPD.S364812
  • Li H, Wang H, Sokulsky L, et al. Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation. J Allergy Clin Immunol. 2021;147(3):941–954. doi: 10.1016/j.jaci.2020.09.032
  • Montoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319–324. doi: 10.1038/s41586-018-0393-7
  • Mitamura Y, Reiger M, Kim J, et al. Spatial transcriptomics combined with single-cell RNA -sequencing unravels the complex inflammatory cell network in atopic dermatitis. Allergy. 2023;78(8):2215–2231. doi: 10.1111/all.15781
  • Wallrapp A, Riesenfeld SJ, Burkett PR, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549(7672):351–356. doi: 10.1038/nature24029
  • Movia D, Prina-Mello A. Preclinical development of orally inhaled drugs (OIDs)—are animal models predictive or shall we move towards in vitro non-animal models? Animals. 2020;10(8):1259. doi: 10.3390/ani10081259
  • Pharmaceutical Inhalation Aerosol Technology. 2019.
  • Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282(5397):2258–2261. doi: 10.1126/science.282.5397.2258
  • Dengler HS, Wu X, Peng I, et al. Lung-restricted inhibition of janus kinase 1 is effective in rodent models of asthma. Sci Transl Med. 2018;10(468):10. doi: 10.1126/scitranslmed.aao2151
  • Irvin CG, Bates JH. Measuring the lung function in the mouse: the challenge of size. Respir Res. 2003;4(1):1. doi: 10.1186/rr199
  • Basil MC, Morrisey EE. Lung regeneration: a tale of mice and men. Semin Cell Dev Biol. 2020;100:88–100. doi: 10.1016/j.semcdb.2019.11.006
  • Thurlbeck WM. The internal surface area of nonemphysematous Lungs1, 2. Am Rev Respir Dis. 2015;95:765–773.
  • Knust J, Ochs M, Gundersen HJG, et al. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec: Adv Integr Anat Evol Biol. 2009;292(1):113–122. doi: 10.1002/ar.20747
  • Zuo H, Han B, Poppinga WJ, et al. Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells. Br J Pharmacol. 2018;175(14):2988–3006. doi: 10.1111/bph.14347
  • Martorana PA, Beume R, Lucattelli M, et al. Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med. 2005;172(7):848–853. doi: 10.1164/rccm.200411-1549OC
  • Milara J, Armengot M, Bañuls P, et al. Roflumilast N‐oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol. 2012;166(8):2243–2262. doi: 10.1111/j.1476-5381.2012.01929.x
  • Mata M, Martinez I, Melero JA, et al. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS One. 2013;8(7):e69670. doi: 10.1371/journal.pone.0069670
  • Calzetta L, Page CP, Spina D, et al. Effect of the mixed phosphodiesterase 3/4 inhibitor RPL554 on human isolated bronchial smooth muscle tone. J Pharmacol Exp Ther. 2013;346(3):414–423. doi: 10.1124/jpet.113.204644
  • Zhu R, Chen H, Galanter J, et al. Phase I and scintigraphy studies to evaluate safety, tolerability, pharmacokinetics, and lung deposition of inhaled GDC‐0214 in healthy volunteers. Clin Transl Sci. 2022;15(5):1225–1237. doi: 10.1111/cts.13240
  • Cooper AE, Ferguson D, Grime K. Optimisation of DMPK by the inhaled route: challenges and approaches. Curr Drug Metab. 2012;13(4):457–473.
  • Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can Respir J. 2018;2018:1–11.
  • Olsson B, Kassinos SC. On the validation of generational lung deposition computer models using planar scintigraphic images: the case of Mimetikos Preludium. J Aerosol Med Pulm Drug Deliv. 2021;34(2):115–123. doi: 10.1089/jamp.2020.1620
  • Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol. 2001;51(4):289–299. doi: 10.1046/j.1365-2125.2001.01304.x
  • Newhouse MT, Hirst PH, Duddu SP, et al. Inhalation of a dry powder tobramycin PulmoSphere formulation in healthy volunteers. Chest. 2003;124(1):360–366. doi: 10.1378/chest.124.1.360
  • Longest PW, Bass K, Dutta R, et al. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv. 2019;16(1):7–26. doi: 10.1080/17425247.2019.1551875
  • Fleming JS, Epps BP, Conway JH, et al. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med. 2006;19(3):268–278. doi: 10.1089/jam.2006.19.268
  • Holsbeke CV, Backer JD, Vos W, et al. Use of functional respiratory imaging to characterize the effect of inhalation profile and particle size on lung deposition of inhaled corticosteroid/long-acting β2-agonists delivered via a pressurized metered-dose inhaler. Ther Adv Respir Dis. 2018;12:1753466618760948. doi: 10.1177/1753466618760948
  • Oldham MJ. Challenges in validating CFD-Derived inhaled aerosol deposition predictions. Inhal Toxicol. 2006;18(10):781–786. doi: 10.1080/08958370600748752
  • Tian G, Hindle M, Lee S, et al. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharm Res. 2015;32(10):3170–3187. doi: 10.1007/s11095-015-1695-1
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74. doi: 10.1038/nrd2153
  • Stone KC, Mercer RR, Gehr P, et al. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol. 1992;6(2):235–243. doi: 10.1165/ajrcmb/6.2.235
  • Enlo-Scott Z, Bäckström E, Mudway I, et al. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol. 2021;17(5):611–625. doi: 10.1080/17425255.2021.1908262
  • Wellaway CR, Baldwin IR, Bamborough P, et al. Investigation of Janus Kinase (JAK) inhibitors for lung delivery and the importance of aldehyde oxidase metabolism. J Med Chem. 2022;65(1):633–664. doi: 10.1021/acs.jmedchem.1c01765
  • Sadiq MW, Holz O, Ellinghusen BD, et al. Lung pharmacokinetics of inhaled and systemic drugs: a clinical evaluation. Br J Pharmacol. 2021;178(22):4440–4451. doi: 10.1111/bph.15621
  • Sou T, Kukavica-Ibrulj I, Soukarieh F, et al. Model-based drug development in pulmonary delivery: pharmacokinetic analysis of novel drug candidates for treatment of Pseudomonas aeruginosa lung infection. J Pharm Sci. 2019;108(1):630–640. doi: 10.1016/j.xphs.2018.09.017
  • Begg M, Wilson R, Hamblin JN, et al. Relationship between pharmacokinetics and pharmacodynamic responses in healthy smokers informs a once daily dosing regimen for nemiralisib. J Pharmacol Exp Ther. 2019;369(3):337–344. doi: 10.1124/jpet.118.255109
  • Rodvold KA, Hope WW, Boyd SE. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017;36:114–123. doi: 10.1016/j.coph.2017.09.019
  • Pl H, Rp B. Report of ERS task force: guidelines for measurement of acellular components and standardization of BAL. Eur Respir J. 1999;14(2):245–248. doi: 10.1034/j.1399-3003.1999.14b01.x
  • Forbes B, Asgharian B, Dailey LA, et al. Challenges in inhaled product development and opportunities for open innovation. Adv Drug Deliv Rev. 2011;63(1–2):69–87. doi: 10.1016/j.addr.2010.11.004
  • Leaker B, Nicholson G, Ali F, et al. Bronchoabsorption; a novel bronchoscopic technique to improve biomarker sampling of the airway. Respir Res. 2015;16(1):102. doi: 10.1186/s12931-015-0268-5
  • Jones RM, Neef N. Interpretation and prediction of inhaled drug particle accumulation in the lung and its associated toxicity. Xenobiotica. 2012;42(1):86–93. doi: 10.3109/00498254.2011.632827
  • Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–939. doi: 10.1038/nrd3287
  • Keemink J, Cantrill C, Riboulet W, et al. Estimating unbound Drug concentrations in simulated human lung fluid: relevance to lung Antibiotic PKPD. Mol Pharm. 2023;20(7):3578–3588. doi: 10.1021/acs.molpharmaceut.3c00208
  • Begg M, Edwards CD, Hamblin JN, et al. Translation of inhaled drug optimization strategies into clinical pharmacokinetics and pharmacodynamics using GSK2292767A, a novel inhaled phosphoinositide 3-kinase δ inhibitor. J Pharmacol Exp Ther. 2019;369(3):443–453. doi: 10.1124/jpet.119.257311
  • Perry MWD, Björhall K, Bonn B, et al. Design and synthesis of soluble and cell-permeable PI3Kδ inhibitors for long-acting inhaled administration. J Med Chem. 2017;60(12):5057–5071. doi: 10.1021/acs.jmedchem.7b00401
  • Nilsson M, Rhedin M, Hendrickx R, et al. Characterization of selective and potent JAK1 inhibitors intended for the inhaled treatment of asthma. Drug Des Dev Ther. 2022;16:2901–2917. doi: 10.2147/DDDT.S354291
  • Hendrickx R, Bergström EL, Janzén DLI, et al. Translational model to predict pulmonary pharmacokinetics and efficacy in man for inhaled bronchodilators. CPT: Pharmacomet Syst Pharmacol. 2018;7(3):147–157. doi: 10.1002/psp4.12270
  • Ericsson T, Fridén M, Kärrman-Mårdh C, et al. Benchmarking of human dose prediction for inhaled medicines from preclinical in vivo data. Pharm Res. 2017;34(12):2557–2567. doi: 10.1007/s11095-017-2218-z
  • Jones H, Rowland‐Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT: Pharmacomet Syst Pharmacol. 2013;2(8):1–12. doi: 10.1038/psp.2013.41
  • Gaohua L, Wedagedera J, Small B, et al. Development of a multicompartment permeability‐limited lung PBPK model and its application in predicting pulmonary pharmacokinetics of antituberculosis drugs. CPT: Pharmacomet Syst Pharmacol. 2015;4(10):605–613. doi: 10.1002/psp4.12034
  • Ladumor MK, Unadkat JD. Predicting regional respiratory tissue and systemic concentrations of orally inhaled drugs through a novel PBPK model. Drug Metab Dispos. 2022;50(5):DMD-AR-2021–000789. doi: 10.1124/dmd.121.000789
  • Bäckman P, Arora S, Couet W, et al. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci. 2018;113:41–52. doi: 10.1016/j.ejps.2017.10.030
  • Caniga M, Cabal A, Mehta K, et al. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using mometasone to support human dose predictions. J Aerosol Med Pulm Drug Deliv. 2016;29(4):362–377. doi: 10.1089/jamp.2015.1253
  • Miller NA, Graves RH, Edwards CD, et al. Physiologically based pharmacokinetic modelling of inhaled nemiralisib: mechanistic components for pulmonary absorption, systemic distribution, and oral absorption. Clin Pharmacokinet. 2022;61(2):281–293. doi: 10.1007/s40262-021-01066-2
  • Boger E, Fridén M. Physiologically based pharmacokinetic/pharmacodynamic modeling accurately predicts the better bronchodilatory effect of inhaled versus oral salbutamol dosage forms. J Aerosol Med Pulm Drug Deliv. 2019;32(1):1–12. doi: 10.1089/jamp.2017.1436
  • Hassoun M, Malmlöf M, Scheibelhofer O, et al. Use of PBPK modeling to evaluate the performance of DissolvIt, a biorelevant dissolution assay for orally inhaled drug products. Mol Pharm. 2019;16(3):1245–1254. doi: 10.1021/acs.molpharmaceut.8b01200
  • Bäckman P, Cabal A, Clark A, et al. iBCS: 2. Mechanistic modeling of pulmonary availability of inhaled drugs versus critical product attributes. Mol Pharm. 2022;19(7):2040–2047. doi: 10.1021/acs.molpharmaceut.2c00112
  • Eriksson J, Thörn H, Lennernäs H, et al. Pulmonary drug absorption and systemic exposure in human: predictions using physiologically based biopharmaceutics modeling. Eur J Pharm Biopharm. 2020;156:191–202. doi: 10.1016/j.ejpb.2020.09.004
  • Yang L, Feuchtinger A, Möller W, et al. Three-dimensional quantitative Co-mapping of pulmonary morphology and nanoparticle distribution with cellular resolution in nondissected murine lungs. ACS Nano. 2019;13:1029–1041. doi: 10.1021/acsnano.8b07524
  • Gradl R, Dierolf M, Yang L, et al. Visualizing treatment delivery and deposition in mouse lungs using in vivo x-ray imaging. J Control Release. 2019;307:282–291. doi: 10.1016/j.jconrel.2019.06.035
  • Phillips JE, Zhang X, Johnston JA. Dry powder and nebulized aerosol inhalation of pharmaceuticals delivered to mice using a nose-only exposure system. J Vis Exp : JoVE. 2017;122:55454. doi: 10.3791/55454-v
  • Egger C, Cannet C, Gérard C, et al. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One. 2013;8(5):e63432. doi: 10.1371/journal.pone.0063432
  • Rao GVS, Tinkle S, Weissman D, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Heal Part A. 2003;66(15–16):1441–1452. doi: 10.1080/15287390306417
  • Lakatos HF, Burgess HA, Thatcher TH, et al. Oropharyngeal aspiration of asilica suspension produces asuperior model of silicosis in the mouse when compared to intratracheal instillation. Exp Lung Res. 2006;32(5):181–199. doi: 10.1080/01902140600817465
  • Barbayianni I, Ninou I, Tzouvelekis A, et al. Bleomycin revisited: a direct comparison of the intratracheal micro-spraying and the oropharyngeal aspiration routes of bleomycin administration in mice. Front Med. 2018;5:269. doi: 10.3389/fmed.2018.00269
  • Vooght VD, Vanoirbeek JAJ, Haenen S, et al. Oropharyngeal aspiration: an alternative route for challenging in a mouse model of chemical-induced asthma. Toxicology. 2009;259(1–2):84–89. doi: 10.1016/j.tox.2009.02.007
  • Foster WM, Walters DM, Longphre M, et al. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol. 2001;90(3):1111–1118. doi: 10.1152/jappl.2001.90.3.1111
  • Allen IC. 2014. The utilization of oropharyngeal intratracheal pamp administration and bronchoalveolar lavage to evaluate the host immune response in mice. J Vis Exp. (86). doi: 10.3791/51391-v
  • Miller MA, Stabenow JM, Parvathareddy J, et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One. 2012;7(2):e31359. doi: 10.1371/journal.pone.0031359
  • Robinson MK, Babcock LS, Horn PA, et al. Specific antibody responses to subtilisin Carlsberg (Alcalase) in mice: development of an intranasal exposure model. Fundam Appl Toxicol. 1996;34(1):15–24. doi: 10.1006/faat.1996.0171
  • Cossío U, Gómez-Vallejo V, Flores M, et al. Preclinical evaluation of aerosol administration systems using positron emission tomography. Eur J Pharm Biopharm. 2018;130:59–65. doi: 10.1016/j.ejpb.2018.05.037
  • Nadithe V, Rahamatalla M, Finlay WH, et al. Evaluation of nose‐only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs. J Pharm Sci. 2003;92(5):1066–1076. doi: 10.1002/jps.10379
  • Ehrmann S, Schmid O, Darquenne C, et al. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv. 2020;17(4):463–478. doi: 10.1080/17425247.2020.1730807
  • Southam DS, Dolovich M, O’Byrne PM, et al. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol. 2002;282(4):L833–L839. doi: 10.1152/ajplung.00173.2001
  • Duret C, Wauthoz N, Merlos R, et al. In vitro and in vivo evaluation of a dry powder endotracheal insufflator device for use in dose-dependent preclinical studies in mice. Eur J Pharm Biopharm. 2012;81(3):627–634. doi: 10.1016/j.ejpb.2012.04.004
  • Fioni A, Selg E, Cenacchi V, et al. Investigation of lung pharmacokinetic of the novel PDE4 inhibitor CHF6001 in preclinical models: evaluation of the PreciseInhale technology. J Aerosol Med Pulm Drug Deliv. 2018;31(1):61–70. doi: 10.1089/jamp.2017.1369
  • Pangeni R, Hassan AAM, Farkas D, et al. New air-jet dry powder insufflator for high-efficiency aerosol delivery to rats. Mol Pharm. 2023;20(4):2207–2216. doi: 10.1021/acs.molpharmaceut.3c00007
  • Zecchi R, Trevisani M, Pittelli M, et al. Impact of drug administration route on drug delivery and distribution into the lung: an imaging mass spectrometry approach. Eur J Mass Spectrom (Chichester). 2013;19(6):475–482. doi: 10.1255/ejms.1254
  • Revelli DA, Boylan JA, Gherardini FC. A non-invasive intratracheal inoculation method for the study of pulmonary melioidosis. Front Cell Infect Microbiol. 2012;2:164. doi: 10.3389/fcimb.2012.00164
  • Gutbier B, Kube SM, Reppe K, et al. RNAi-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice. Pulm Pharmacol Ther. 2010;23(4):334–344. doi: 10.1016/j.pupt.2010.03.007
  • Tonnis WF, Bagerman M, Weij M, et al. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals. Eur J Pharm Biopharm. 2014;88(3):1056–1063. doi: 10.1016/j.ejpb.2014.10.011
  • Wallace J, Jackson GR, Kaluzhny Y, et al. Evaluation of in vitro rat and human airway epithelial models for acute inhalation toxicity testing. Toxicol Sci. 2023;194(2):178–190. doi: 10.1093/toxsci/kfad058
  • Keane-Myers AM, Gause WC, Finkelman FD, et al. Development of murine allergic asthma is dependent upon B7-2 costimulation. J Immunol. 1998;160(2):1036–1043. doi: 10.4049/jimmunol.160.2.1036
  • Nilsson M, Berggren K, Berglund S, et al. Discovery of the potent and selective inhaled janus kinase 1 inhibitor AZD4604 and its preclinical characterization. J Med Chem. 2023;66(19):13400–13415. doi: 10.1021/acs.jmedchem.3c00554
  • Heida R, Hagedoorn P, van MM, et al. Performance testing of a homemade aerosol generator for pulmonary administration of dry powder formulations to mice. Pharmaceutics. 2023;15(7):1847. doi: 10.3390/pharmaceutics15071847
  • Gerde P, Ewing P, Låstbom L, et al. A novel method to aerosolize powder for short inhalation exposures at high concentrations: isolated rat lungs exposed to respirable diesel soot. Inhal Toxicol. 2004;16(1):45–52. doi: 10.1080/08958370490258381
  • Rau JL. The inhalation of drugs: advantages and problems. Respir Care. 2005;50(3):367–382.
  • Stein SW, Thiel CG. The history of therapeutic aerosols: a chronological review. J Aerosol Med Pulm D. 2017;30(1):20–41. doi: 10.1089/jamp.2016.1297
  • Hou S, Wu J, Li X, et al. Practical, regulatory and clinical considerations for development of inhalation drug products. Asian J Pharm Sci. 2015;10(6):490–500. doi: 10.1016/j.ajps.2015.08.008
  • Tarara TE, Miller DP, Weers AE, et al. Formulation of dry powders for inhalation comprising high doses of a poorly soluble hydrophobic drug. Front Drug Deliv. 2022;2:862336. doi: 10.3389/fddev.2022.862336
  • Claus S, Weiler C, Schiewe J, et al. How can we bring high drug doses to the lung? Eur J Pharm Biopharm. 2014;86(1):1–6. doi: 10.1016/j.ejpb.2013.11.005
  • Strong P, Ito K, Murray J, et al. Current approaches to the discovery of novel inhaled medicines. Drug Discov Today. 2018;23(10):1705–1717. doi: 10.1016/j.drudis.2018.05.017
  • Pasqua E, Hamblin N, Edwards C, et al. Developing inhaled drugs for respiratory diseases: a medicinal chemistry perspective. Drug Discov Today. 2022;27(1):134–150. doi: 10.1016/j.drudis.2021.09.005
  • Samy KE, Gampe C. Medicinal chemistry strategies to extend duration of action of inhaled drugs for intracellular targets. Bioorg Med Chem Lett. 2022;62:128627. doi: 10.1016/j.bmcl.2022.128627
  • Disse B, Speck GA, Rominger KL, et al. Tiotropium (SPIRIVA™): Mechanistical considerations and clinical profile in obstructive lung disease. Life Sci. 1999;64(6–7):457–464. doi: 10.1016/S0024-3205(98)00588-8
  • Millan DS, Bunnage ME, Burrows JL, et al. Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J Med Chem. 2011;54(22):7797–7814. doi: 10.1021/jm200677b
  • Jones P, Storer RI, Sabnis YA, et al. Design and synthesis of a pan-janus kinase inhibitor clinical candidate (PF-06263276) suitable for inhaled and topical delivery for the treatment of inflammatory diseases of the lungs and skin. J Med Chem. 2017;60(2):767–786. doi: 10.1021/acs.jmedchem.6b01634
  • Xie J, Poda GI, Hu Y, et al. Aminopyridinecarboxamide-based inhaled IKK-2 inhibitors for asthma and COPD: structure–activity relationship. Bioorgan Med Chem. 2011;19(3):1242–1255. doi: 10.1016/j.bmc.2010.12.027
  • Bach J, Eastwood P, González J, et al. Identification of 2‑Imidazopyridine and 2‑Aminopyridone purinones as potent pan-janus kinase (JAK) inhibitors for the inhaled treatment of respiratory diseases. J Med Chem. 2019;62(20):9045–9060. doi: 10.1021/acs.jmedchem.9b00533
  • Perry MWD, Björhall K, Bold P, et al. Discovery of AZD8154, a dual PI3Kγδ inhibitor for the treatment of asthma. J Med Chem. 2021;64(12):8053–8075. doi: 10.1021/acs.jmedchem.1c00434
  • Down K, Amour A, Baldwin IR, et al. Optimization of novel indazoles as highly potent and selective inhibitors of phosphoinositide 3-kinase δ for the treatment of respiratory disease. J Med Chem. 2015;58(18):7381–7399. doi: 10.1021/acs.jmedchem.5b00767
  • Tronde A, Nordén B, Marchner H, et al. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure–absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci. 2003;92(6):1216–1233. doi: 10.1002/jps.10386
  • Erra M, Taltavull J, Bernal FJ, et al. Discovery of a novel inhaled PI3Kδ inhibitor for the treatment of respiratory diseases. J Med Chem. 2018;61(21):9551–9567. doi: 10.1021/acs.jmedchem.8b00873
  • Savi CD, Cox RJ, Warner DJ, et al. Efficacious inhaled PDE4 inhibitors with low emetic potential and long duration of action for the treatment of COPD. J Med Chem. 2014;57(11):4661–4676. doi: 10.1021/jm5001216
  • Shaw DE, Baig F, Bruce I, et al. Optimization of platelet-derived growth factor receptor (PDGFR) inhibitors for duration of action, as an inhaled therapy for lung remodeling in pulmonary arterial hypertension. J Med Chem. 2016;59:7901–7914. doi: 10.1021/acs.jmedchem.6b00703
  • Smith DA, Beaumont K, Maurer TS, et al. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–5698. doi: 10.1021/acs.jmedchem.5b00201
  • Matera MG, Calzetta L, Ora J, et al. Pharmacokinetic/Pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv. 2021;18(7):891–906. doi: 10.1080/17425247.2021.1873271
  • Tepper JS, Kuehl PJ, Cracknell S, et al. Symposium summary. Int J Toxicol. 2016;35(4):376–392. doi: 10.1177/1091581815624080
  • Alexander DJ, Collins CJ, Coombs DW, et al. Association of inhalation toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol. 2008;20(13):1179–1189. doi: 10.1080/08958370802207318
  • Wolff RK, Dorato MA. Toxicologic testing of inhaled pharmaceutical aerosols. Crit Rev Toxicol. 1993;23(4):343–369. doi: 10.3109/10408449309104076
  • Owen K. Regulatory toxicology considerations for the development of inhaled pharmaceuticals. Drug Chem Toxicol. 2013;36(1):109–118. doi: 10.3109/01480545.2011.648327
  • Biddiscombe MF, Usmani OS. Is there room for further innovation in inhaled therapy for airways disease? Breathe. 2018;14(3):216–224. doi: 10.1183/20734735.020318
  • Artzy-Schnirman A, Hobi N, Schneider-Daum N, et al. Advanced in vitro lung-on-chip platforms for inhalation assays: from prospect to pipeline. Eur J Pharm Biopharm. 2019;144:11–17. doi: 10.1016/j.ejpb.2019.09.006
  • Kim JW, Jeong MH, Kim GE, et al. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett. 2021;356:100–109. doi: 10.1016/j.toxlet.2021.12.007
  • Welch J, Wallace J, Lansley AB, et al. Evaluation of the toxicity of sodium dodecyl sulphate (SDS) in the MucilAirTM human airway model in vitro. Regul Toxicol Pharmacol. 2021;125:105022. doi: 10.1016/j.yrtph.2021.105022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.