70
Views
0
CrossRef citations to date
0
Altmetric
Review

Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease

, &
Pages 603-616 | Received 26 Oct 2023, Accepted 21 Feb 2024, Published online: 26 Feb 2024

References

  • Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, et al. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci. 2023;16:1037641. doi: 10.3389/fncel.2022.1037641
  • Bellot-Saez A, Kékesi O, Morley JW, et al. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev. 2017;77:87–97. doi: 10.1016/j.neubiorev.2017.03.002
  • Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310(5745):113–116. doi: 10.1126/science.1116916
  • Santello M, Volterra A. Synaptic modulation by astrocytes via Ca2±dependent glutamate release. Neuroscience. 2009;158(1):253–259. doi: 10.1016/j.neuroscience.2008.03.039
  • Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42. doi: 10.1016/j.neuron.2017.07.030
  • Lia A, Di Spiezio A, Speggiorin M, et al. Two decades of astrocytes in neurovascular coupling. Front Netw Physiol. 2023;3:1162757. doi: 10.3389/fnetp.2023.1162757
  • Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532(7598):195–200. doi: 10.1038/nature17623
  • Schöll M, Carter SF, Westman E, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. 2015;5(1):16404. doi: 10.1038/srep16404
  • Allen SP, Hall B, Castelli LM, et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain. 2019;142(3):586–605. doi: 10.1093/brain/awy353
  • Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease: astrocytes in Alzheimer’s disease. J Neurosci Res. 2017;95(12):2430–2447. doi: 10.1002/jnr.24075
  • Kam T-I, Hinkle JT, Dawson TM, et al. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol Dis. 2020;144:105028. doi: 10.1016/j.nbd.2020.105028
  • Brandebura AN, Paumier A, Onur TS, et al. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci. 2023;24(1):23–39. doi: 10.1038/s41583-022-00641-1
  • Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res. 2021;1758:147291. doi: 10.1016/j.brainres.2021.147291
  • Schipper H, Bennett D, Liberman A, et al. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging. 2006;27(2):252–261. doi: 10.1016/j.neurobiolaging.2005.01.016
  • Al-Ghraiybah NF, Wang J, Alkhalifa AE, et al. Glial Cell-mediated neuroinflammation in Alzheimer’s disease. Int J Mol Sci. 2022;23(18):10572. doi: 10.3390/ijms231810572
  • Matias I, Morgado J, Gomes FCA. Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci. 2019;11:59.
  • Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol Clifton NJ. 2012;814:23–45.
  • Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 Stratum radiatum occupy separate anatomical domains. J Neurosci. 2002;22(1):183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002
  • Lundgaard I, Osório MJ, Kress BT, et al. White matter astrocytes in health and disease. Neuroscience. 2014;276:161–173. doi: 10.1016/j.neuroscience.2013.10.050
  • Adermark L, Lagström O, Loftén A, et al. Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling. Neuropsychopharmacol. 2022;47(8):1493–1502. doi: 10.1038/s41386-021-01232-x
  • Chai H, Diaz-Castro B, Shigetomi E, et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological and functional evidence. Neuron. 2017;95(3):531–549.e9. doi: 10.1016/j.neuron.2017.06.029
  • Degl’innocenti E, Dell’anno MT. Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization. Front Neuroanat. 2023;17:1130729.
  • Oberheim NA, Takano T, Han X, et al. UniquelY hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–3287. doi: 10.1523/JNEUROSCI.4707-08.2009
  • Li J, Pan L, Pembroke WG, et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun. 2021;12(1):3958. doi: 10.1038/s41467-021-24232-3
  • Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with Mouse. Neuron. 2016;89(1):37–53. doi: 10.1016/j.neuron.2015.11.013
  • Mahmoud S, Gharagozloo M, Simard C, et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8(2):184. doi: 10.3390/cells8020184
  • Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;51(6–7):333–355. doi: 10.1016/j.neuint.2007.03.012
  • Dong X, Wang Y, Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–387. doi: 10.1038/aps.2009.24
  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105. doi: 10.1016/S0301-0082(00)00067-8
  • Todd AC, Hardingham GE. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases. Int J Mol Sci. 2020;21(24):9607. doi: 10.3390/ijms21249607
  • Gröger A, Kolb R, Schäfer R, et al. Dopamine reduction in the substantia nigra of parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. In: Smeyne R, editor. PLoS one. 2014;9:e84081.
  • Li S, Hong S, Shepardson NE, et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788–801. doi: 10.1016/j.neuron.2009.05.012
  • Busche MA, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321(5896):1686–1689. doi: 10.1126/science.1162844
  • Nieweg K, Andreyeva A, van Stegen B, et al. Alzheimer’s disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death Dis. 2015;6:e1709–e1709. doi: 10.1038/cddis.2015.72
  • Rothstein JD, Patel S, Regan MR, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–77. doi: 10.1038/nature03180
  • Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, et al. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2015;36(7):2260–2271. doi: 10.1016/j.neurobiolaging.2015.04.005
  • Tikka T, Usenius T, Tenhunen M, et al. Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem. 2001;78(6):1409–1414. doi: 10.1046/j.1471-4159.2001.00543.x
  • Kong Q, Chang L-C, Takahashi K, et al. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest. 2014;124(3):1255–1267. doi: 10.1172/JCI66163
  • Zhang W, Xiao D, Mao Q, et al. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi: 10.1038/s41392-023-01486-5
  • Oksanen M, Lehtonen S, Jaronen M, et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci. 2019;76(14):2739–2760. doi: 10.1007/s00018-019-03111-7
  • Sun M, You H, Hu X, et al. Microglia–astrocyte interaction in neural development and neural pathogenesis. Cells. 2023;12(15):1942. doi: 10.3390/cells12151942
  • Matejuk A, Ransohoff RM. Crosstalk between astrocytes and microglia: an overview. Front Immunol. 2020;11:1416. doi: 10.3389/fimmu.2020.01416
  • Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct. 2017;222(5):2017–2029. doi: 10.1007/s00429-017-1383-5
  • Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 2016;37(9):608–620.
  • Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–934. doi: 10.1016/j.cell.2010.02.016
  • Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2
  • Shi Q, Chowdhury S, Ma R, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. 2017;9(392):eaaf6295. doi: 10.1126/scitranslmed.aaf6295
  • Verkhratsky A, Butt A. General pathophysiology of neuroglia. Glial physiol pathophysiol. Chichester (UK): John Wiley & Sons, Ltd; 2013. p. 431–451.
  • Hyvärinen T, Hagman S, Ristola M, et al. Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep. 2019;9(1):16944. doi: 10.1038/s41598-019-53414-9
  • Sheng WS, Hu S, Feng A, et al. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res. 2013;38(10):2148–2159. doi: 10.1007/s11064-013-1123-z
  • Choi SS, Lee HJ, Lim I, et al. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One. 2014;9(4):e92325. doi: 10.1371/journal.pone.0092325
  • Chen Y, Fang Z-M, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14(3):1–13. doi: 10.1038/s41419-023-05716-0
  • Janelidze S, Mattsson N, Stomrud E, et al. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology. 2018;91(9):e867–e877. doi: 10.1212/WNL.0000000000006082
  • Bai Y, Su X, Piao L, et al. Involvement of astrocytes and microRNA dysregulation in neurodegenerative diseases: from pathogenesis to therapeutic potential. Front Mol Neurosci. 2021;14:556215. doi: 10.3389/fnmol.2021.556215
  • Nassar A, Kodi T, Satarker S, et al. Astrocytic MicroRNAs and transcription factors in Alzheimer’s disease and therapeutic interventions. Cells. 2022;11(24):4111. doi: 10.3390/cells11244111
  • Zingale VD, Gugliandolo A, Mazzon E. MiR-155: an important regulator of neuroinflammation. Int J Mol Sci. 2021;23(1):90. doi: 10.3390/ijms23010090
  • Ma Y, Ye J, Zhao L, et al. MicroRNA-146a inhibition promotes total neurite outgrowth and suppresses cell apoptosis, inflammation, and STAT1/MYC pathway in PC12 and cortical neuron cellular Alzheimer’s disease models. Braz J Med Biol Res. 2021;54(5):e9665. doi: 10.1590/1414-431x20209665
  • Knott C, Wilkin GP, Stern G. Astrocytes and microglia in the substantia nigra and caudate-putamen in Parkinson’s disease. Parkinsonism Relat Disord. 1999;5(3):115–122. doi: 10.1016/S1353-8020(99)00022-X
  • Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci. 2017;40(6):358–370. doi: 10.1016/j.tins.2017.04.001
  • Song J-J, Oh S-M, Kwon O-C, et al. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson’s disease model. J Clin Invest. 2017;128(1):463–482. doi: 10.1172/JCI93924
  • Sonninen T-M, Hämäläinen RH, Koskuvi M, et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci Rep. 2020;10(1):14474. doi: 10.1038/s41598-020-71329-8
  • Kawamata T, Akiyama H, Yamada T, et al. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue Am J Pathol. 1992 140 3 :691–707.
  • Endo F, Komine O, Fujimori-Tonou N, et al. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep. 2015;11(4):592–604. doi: 10.1016/j.celrep.2015.03.053
  • Baofeng F, Amponsah AE, Guo R, et al. Autophagy-mediated inflammatory cytokine secretion in sporadic ALS patient iPSC-derived astrocytes. Oxid Med Cell Longev. 2022;2022:6483582. doi: 10.1155/2022/6483582
  • Guttenplan KA, Weigel MK, Adler DI, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun. 2020;11(1):3753. doi: 10.1038/s41467-020-17514-9
  • Yun SP, Kam T-I, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–938. doi: 10.1038/s41591-018-0051-5
  • Park J-S, Kam T-I, Lee S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):78. doi: 10.1186/s40478-021-01180-z
  • Nakano-Kobayashi A, Canela A, Yoshihara T, et al. Astrocyte-targeting therapy rescues cognitive impairment caused by neuroinflammation via the Nrf2 pathway. Proc Natl Acad Sci. 2023;120(33):e2303809120. doi: 10.1073/pnas.2303809120
  • Colombo E, Pascente R, Triolo D, et al. LaquinimoD modulates human astrocyte function and dampens astrocyte-induced neurotoxicity during inflammation. Molecules. 2020;25(22):5403. doi: 10.3390/molecules25225403
  • Ruffini F, Rossi S, Bergamaschi A, et al. Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. Mult Scler J. 2013;19(8):1084–1094. doi: 10.1177/1352458512469698
  • Gentile A, Musella A, De Vito F, et al. Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation. 2018;15(1):5. doi: 10.1186/s12974-017-1048-6
  • Chistyakov DV, Nikolskaya AI, Goriainov SV, et al. Inhibitor of hyaluronic acid synthesis 4-methylumbelliferone as an anti-inflammatory modulator of LPS-Mediated astrocyte responses. Int J Mol Sci. 2020;21(21):8203. doi: 10.3390/ijms21218203
  • Wang Y, Lv M, Zhao W. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev. 2023;91:102035. doi: 10.1016/j.arr.2023.102035
  • Tang J-J, Huang L-F, Deng J-L, et al. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer’s disease mice model. Redox Biol. 2022;50:102229. doi: 10.1016/j.redox.2022.102229
  • Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. doi: 10.1016/j.redox.2018.01.008
  • Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010. doi: 10.1155/2012/428010
  • Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167. doi: 10.1016/j.molcel.2012.09.025
  • Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421. doi: 10.1038/nrm3801
  • Dickinson BC, Peltier J, Stone D, et al. Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol. 2011;7(2):106–112. doi: 10.1038/nchembio.497
  • Gauron C, Meda F, Dupont E, et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev Biol. 2016;414(2):133–141. doi: 10.1016/j.ydbio.2016.05.004
  • Supplie LM, Düking T, Campbell G, et al. Respiration-deficient astrocytes survive as glycolytic cells in vivo. J Neurosci Off J Soc Neurosci. 2017;37(16):4231–4242. doi: 10.1523/JNEUROSCI.0756-16.2017
  • Almeida A, Jimenez-Blasco D, Bolaños JP, et al. Cross-talk between energy and redox metabolism in astrocyte-neuron functional cooperation. Essays Biochem. 2023;67(1):17–26. doi: 10.1042/EBC20220075
  • Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–738. doi: 10.1016/j.cmet.2011.08.016
  • Abramov AY, Canevari L, Duchen MR. β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–575. doi: 10.1523/JNEUROSCI.4042-03.2004
  • Oksanen M, Petersen AJ, Naumenko N, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Rep. 2017;9(6):1885–1897. doi: 10.1016/j.stemcr.2017.10.016
  • Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376–385. doi: 10.3969/j.issn.1673-5374.2012.05.009
  • Chavarría C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533(1–2):25–32. doi: 10.1016/j.abb.2013.02.009
  • Hodara R, Norris EH, Giasson BI, et al. Functional consequences of α-synuclein tyrosine nitration. J Biol Chem. 2004;279(46):47746–47753. doi: 10.1074/jbc.M408906200
  • Oakley AE, Collingwood JF, Dobson J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology. 2007;68(21):1820–1825. doi: 10.1212/01.wnl.0000262033.01945.9a
  • Gille G, Reichmann H. Iron-dependent functions of mitochondria—relation to neurodegeneration. J Neural Transm Vienna Austria. 1996;2011(3):349–359. doi: 10.1007/s00702-010-0503-7
  • Sharma S, Sharma N, Saini A, et al. Carbenoxolone reverses the amyloid beta 1–42 oligomer–induced oxidative damage and anxiety-related behavior in rats. Neurotox Res. 2019;35(3):654–667. doi: 10.1007/s12640-018-9975-2
  • Oksanen M, Hyötyläinen I, Trontti K, et al. NF‐E2‐related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin‐1 mutated Alzheimer’s disease astrocytes. Glia. 2020;68(3):589–599. doi: 10.1002/glia.23741
  • Pöyhönen S, Er S, Domanskyi A, et al. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol. 2019;10:486. doi: 10.3389/fphys.2019.00486
  • Gao L, Zhang Y, Sterling K, et al. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener. 2022;11(1):4. doi: 10.1186/s40035-022-00279-0
  • Elliott E, Atlas R, Lange A, et al. Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 kinase signalling mechanism. Eur J Neurosci. 2005;22(5):1081–1089. doi: 10.1111/j.1460-9568.2005.04290.x
  • Du F, Li R, Huang Y, et al. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci. 2005;22(10):2422–2430. doi: 10.1111/j.1460-9568.2005.04438.x
  • Ohta K, Kuno S, Mizuta I, et al. Effects of dopamine agonists bromocriptine, pergolide, cabergoline, and SKF-38393 on GDNF, NGF, and BDNF synthesis in cultured mouse astrocytes. Life Sci. 2003;73(5):617–626. doi: 10.1016/S0024-3205(03)00321-7
  • Yuan Z, Li D, Feng P, et al. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson’s disease. Eur J Pharmacol. 2017;812:82–90. doi: 10.1016/j.ejphar.2017.06.029
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi: 10.1186/s12987-020-00230-3
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–1596. doi: 10.1038/nm.3407
  • Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939–1958. doi: 10.1002/glia.22575
  • Birch AM. The contribution of astrocytes to Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1316–1320. doi: 10.1042/BST20140171
  • Merlini M, Meyer EP, Ulmann-Schuler A, et al. Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol (Berl). 2011;122(3):293–311. doi: 10.1007/s00401-011-0834-y
  • Kortekaas R, Leenders KL, Van Oostrom JCH, et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–179. doi: 10.1002/ana.20369
  • Carvey PM, Zhao CH, Hendey B, et al. 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur J Neurosci. 2005;22(5):1158–1168. doi: 10.1111/j.1460-9568.2005.04281.x
  • Steinruecke M, Lonergan RM, Selvaraj BT, et al. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: proposed mechanisms and clinical implications. J Cereb Blood Flow Metab. 2023;43(5):642–654. doi: 10.1177/0271678X231153281
  • Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2001;21(10):1133–1145. doi: 10.1097/00004647-200110000-00001
  • Alberini CM, Cruz E, Descalzi G, et al. Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia. 2018;66(6):1244–1262. doi: 10.1002/glia.23250
  • Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23(13):5928–5935. doi: 10.1523/JNEUROSCI.23-13-05928.2003
  • Newman LA, Korol DL, Gold PE. Lactate produced by Glycogenolysis in astrocytes regulates memory processing. In: Brann D, editor. PLoS one. 2011;6:e28427.
  • Yan L-J, Xiao M, Chen R, et al. Metabolic dysfunction of Astrocyte: an initiating factor in beta-amyloid pathology? Aging Neurodegener. 2013;1(1):7–14.
  • Konttinen H, Gureviciene I, Oksanen M, et al. PPARβ/δ-agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia. 2019;67(1):146. doi: 10.1002/glia.23534
  • Mena MA, García de Yébenes J. Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist. 2008;14(6):544–560. doi: 10.1177/1073858408322839
  • Bellucci A, Collo G, Sarnico I, et al. Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D 2 /D 3 receptor activation. J Neurochem. 2008;106(2):560–577. doi: 10.1111/j.1471-4159.2008.05406.x
  • Jiang P, Gan M, Ebrahim AS, et al. Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites. Neurobiol Aging. 2013;34(5):1504–1515. doi: 10.1016/j.neurobiolaging.2012.11.001
  • Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59. doi: 10.1016/j.neuron.2006.09.018
  • Blasco H, Corcia P, Pradat P-F, et al. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res. 2013;12(8):3746–3754. doi: 10.1021/pr400376e
  • Patin F, Baranek T, Vourc’h P, et al. Combined metabolomics and transcriptomics approaches to assess the IL-6 blockade as a therapeutic of ALS: deleterious alteration of lipid metabolism. Neurotherapeutics. 2016;13(4):905–917. doi: 10.1007/s13311-016-0461-3
  • Blasco H, Veyrat-Durebex C, Bocca C, et al. Lipidomics reveals cerebrospinal-fluid signatures of ALS. Sci Rep. 2017;7(1):17652. doi: 10.1038/s41598-017-17389-9
  • Reiner DJ, Mietlicki-Baase EG, McGrath LE, et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci. 2016;36(12):3531–3540. doi: 10.1523/JNEUROSCI.3579-15.2016
  • Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. doi: 10.1016/S0140-6736(17)31585-4
  • Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–2736. doi: 10.1172/JCI68295
  • Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–580. doi: 10.1002/ana.410300410
  • Mauch DH, Nägler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294(5545):1354–1357. doi: 10.1126/science.294.5545.1354
  • Liu C-C, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263
  • Chung W-S, Verghese PB, Chakraborty C, et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci U S A. 2016;113(36):10186–10191. doi: 10.1073/pnas.1609896113
  • Gomez‐Arboledas A, Davila JC, Sanchez‐Mejias E, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia. 2018;66:637–653. doi: 10.1002/glia.23270
  • Goenaga J, Araque A, Kofuji P, et al. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci. 2023;15:1138577. doi: 10.3389/fnsyn.2023.1138577
  • Araque A, Martı́n ED, Perea G, et al. Synaptically released acetylcholine evokes Ca 2+ elevations in astrocytes in hippocampal slices. J Neurosci. 2002;22(7):2443–2450. doi: 10.1523/JNEUROSCI.22-07-02443.2002
  • Kang J, Jiang L, Goldman SA, et al. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci. 1998;1(8):683–692. doi: 10.1038/3684
  • Porter JT, McCarthy KD. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci. 1996;16(16):5073–5081. doi: 10.1523/JNEUROSCI.16-16-05073.1996
  • Araque A, Carmignoto G, Haydon PG, et al. Gliotransmitters travel in time and space. Neuron. 2014;81(4):728–739. doi: 10.1016/j.neuron.2014.02.007
  • Kuchibhotla KV, Lattarulo CR, Hyman BT, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science. 2009;323(5918):1211–1215. doi: 10.1126/science.1169096
  • Takano T, Han X, Deane R, et al. Two-photon imaging of astrocytic Ca 2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci. 2007;1097(1):40–50. doi: 10.1196/annals.1379.004
  • Shah D, Gsell W, Wahis J, et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. Cell Rep. 2022;40(8):111280. doi: 10.1016/j.celrep.2022.111280
  • Ibáñez I, Bartolomé-Martín D, Piniella D, et al. Activity dependent internalization of the glutamate transporter GLT-1 requires calcium entry through the NCX sodium/calcium exchanger. Neurochem Int. 2019;123:125–132. doi: 10.1016/j.neuint.2018.03.012
  • Lam HA, Wu N, Cely I, et al. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein. J Neurosci Res. 2011;89(7):1091–1102. doi: 10.1002/jnr.22611
  • Corkrum M, Covelo A, Lines J, et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron. 2020;105(6):1036–1047.e5. doi: 10.1016/j.neuron.2019.12.026
  • Xin W, Schuebel KE, Jair K-W, et al. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2019;44(2):344–355. doi: 10.1038/s41386-018-0151-4
  • Haustein MD, Kracun S, Lu X-H, et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron. 2014;82(2):413–429. doi: 10.1016/j.neuron.2014.02.041
  • Heithoff BP, George KK, Phares AN, et al. Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain. Glia. 2021;69(2):436–472. doi: 10.1002/glia.23908

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.