62
Views
0
CrossRef citations to date
0
Altmetric
Review

Stroke genetics and how it Informs novel drug discovery

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 553-564 | Received 05 Dec 2023, Accepted 26 Feb 2024, Published online: 04 Mar 2024

References

  • Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
  • Feigin VL, Brainin M, Norrving B, et al., World stroke Organization (WSO): global Stroke fact sheet 2022 2022 [Internet]. [cited 2023 Nov 16]. Available from: https://journals.sagepub.com/doi/10.1177/17474930211065917
  • Melaika K, Sveikata L, Vilionskis A, et al. Prehospital stroke care, paramedic training needs, and hospital-directed feedback in Lithuania. Healthcare. 2022;10(10):1958. doi: 10.3390/healthcare10101958
  • Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke [Internet]. [cited 2023 Nov 16]. Available from: https://www.ahajournals.org/d oi/1 0.1161/01.str.24.1.35?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
  • Woo D, Sauerbeck LR, Kissela BM, et al. Genetic and environmental risk factors for intracerebral hemorrhage. Stroke. 2002;33(5):1190–1196. doi: 10.1161/01.STR.0000014774.88027.22
  • Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke. Stroke. 2014;45(12):3754–3832. doi: 10.1161/STR.0000000000000046
  • Bevan S, Traylor M, Adib-Samii P, et al. Genetic heritability of ischemic stroke and the contribution of Previously reported candidate gene and genomewide associations. Stroke. 2012;43(12):3161–3167. doi: 10.1161/STROKEAHA.112.665760
  • Traylor M, Persyn E, Tomppo L, et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021;20(5):351–361. doi: 10.1016/S1474-4422(21)00031-4
  • Devan WJ, Falcone GJ, Anderson CD, et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke. 2013;44(6):1578–1583. doi: 10.1161/STROKEAHA.111.000089
  • Chabriat H, Joutel A, Dichgans M, et al. Cadasil. Lancet Neurol. 2009;8(7):643–653. doi: 10.1016/S1474-4422(09)70127-9
  • Rutten JW, Haan J, Terwindt GM, et al. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn. 2014;14(5):593–603. doi: 10.1586/14737159.2014.922880
  • Tan RYY, Markus HS, Fuh J-L. CADASIL: migraine, encephalopathy, stroke and their inter-relationships. PLoS One. 2016;11(6):e0157613. doi: 10.1371/journal.pone.0157613
  • Adib-Samii P, Brice G, Martin RJ, et al. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype. Stroke. 2010;41(4):630–634. doi: 10.1161/STROKEAHA.109.568402
  • Fukutake T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis. 2011;20(2):85–93. doi: 10.1016/j.jstrokecerebrovasdis.2010.11.008
  • Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45(11):3447–3453. doi: 10.1161/STROKEAHA.114.004236
  • Verdura E, Hervé D, Scharrer E, et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain. 2015;138(8):2347–2358. doi: 10.1093/brain/awv155
  • Steffensen LB, Rasmussen LM. A role for collagen type IV in cardiovascular disease? Am J Physiol Heart Circ Physiol. 2018;315(3):H610–H625. doi: 10.1152/ajpheart.00070.2018
  • Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet. 2012;21(R1):R97–R110. doi: 10.1093/hmg/dds346
  • Zagaglia S, Selch C, Nisevic JR, et al. Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease. Neurology. 2018;91(22):e2078–e2088. doi: 10.1212/WNL.0000000000006567
  • Byers PH, Belmont J, Black J, et al. Diagnosis, natural history, and management in vascular Ehlers–Danlos syndrome. Am J Med Genet C Semin Med Genet. 2017;175:40–47. doi: 10.1002/ajmg.c.31553
  • Olubajo F, Kaliaperumal C, Choudhari KA. Vascular Ehlers-Danlos Syndrome: Literature review and surgical management of intracranial vascular complications. Clin Neurol Neurosur. 2020;193:105775. doi: 10.1016/j.clineuro.2020.105775
  • Abraham G, Rutten-Jacobs L, Inouye M. Risk prediction using polygenic risk scores for prevention of stroke and other cardiovascular diseases. Stroke. 2021;52(9):2983–2991. doi: 10.1161/STROKEAHA.120.032619
  • Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41(8):876–878. doi: 10.1038/ng.417
  • Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64(4):402–409. doi: 10.1002/ana.21480
  • Traylor M, Mäkelä K-M, Kilarski LL, et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet. 2014;10(7):e1004469. doi: 10.1371/journal.pgen.1004469
  • Cai H, Cai B, Liu Z, et al. Genetic correlations and causal inferences in ischemic stroke. J Neurol. 2020;267(7):1980–1990. doi: 10.1007/s00415-020-09786-4
  • Biffi A, Anderson CD, Jagiella JM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10(8):702–709. doi: 10.1016/S1474-4422(11)70148-X
  • Chung J, Marini S, Pera J, et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain. 2019;142(10):3176–3189. doi: 10.1093/brain/awz233
  • Kumar A, Chauhan G, Sharma S, et al. Association of SUMOylation pathway genes with stroke in a genome-wide association study in India. Neurology. 2021;97(4):e345–e356. doi: 10.1212/WNL.0000000000012258
  • Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–537.
  • Holliday EG, Maguire JM, Evans T-J, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–1151. doi: 10.1038/ng.2397
  • von Berg J, van der Laan SW, McArdle PF, et al. Alternate approach to stroke phenotyping identifies a genetic risk locus for small vessel stroke. Eur J Hum Genet EJHG. 2020;28:963–972. doi: 10.1038/s41431-020-0580-5
  • Debette S, Kamatani Y, Metso TM, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015;47(1):78–83. doi: 10.1038/ng.3154
  • Cheng Y-C, Stanne TM, Giese A-K, et al. Genome-wide association analysis of young-onset stroke identifies a locus on chromosome 10q25 near HABP2. Stroke. 2016;47(2):307–316. doi: 10.1161/STROKEAHA.115.011328
  • Keene KL, Hyacinth HI, Bis JC, et al. Genome-wide association study meta-analysis of stroke in 22 000 individuals of African descent identifies novel associations with stroke. Stroke. 2020;51(8):2454–2463. doi: 10.1161/STROKEAHA.120.029123
  • Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med. 2009;360(17):1718–1728. doi: 10.1056/NEJMoa0900094
  • Pulit SL, McArdle PF, Wong Q, et al. Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2016;15(2):174–184. doi: 10.1016/S1474-4422(15)00338-5
  • Rubattu S, Stanzione R, Di Angelantonio E, et al. Atrial natriuretic peptide gene polymorphisms and risk of ischemic stroke in humans. Stroke. 2004;35(4):814–818. doi: 10.1161/01.STR.0000119381.52589.AB
  • Rubattu S, Di Castro S, Schulz H, et al. Ndufc2 gene inhibition is associated with mitochondrial dysfunction and increased stroke susceptibility in an animal Model of complex human disease. J Am Heart Assoc. 2016;5(2):e002701. doi: 10.1161/JAHA.115.002701
  • Malik R, Rannikmäe K, Traylor M, et al. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann Neurol. 2018;84(6):934–939. doi: 10.1002/ana.25369
  • Carty CL, Keene KL, Cheng Y-C, et al. Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African Americans. Stroke. 2015;46(8):2063–2068. doi: 10.1161/STROKEAHA.115.009044
  • Ekkert A, Šliachtenko A, J G, et al. Ischemic stroke genetics: what is new and how to apply it in clinical practice? Genes (Basel). 2021 Dec 24;13(1):48. doi: 10.3390/genes13010048
  • Debette S, Markus HS. Stroke genetics: discovery, insight into mechanisms, and clinical perspectives. Circ Res. 2022;130:1095–1111.
  • Adib-Samii P, Brice G, Martin RJ, et al. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke. 2010;41(4):630–634. doi: 10.1161/STROKEAHA.109.568402
  • Peters N, Holtmannspotter M, Opherk C, et al. Brain volume changes in CADASIL: A serial MRI study in pure subcortical ischemic vascular disease. Neurology. 2006;66(10):1517–1522. doi: 10.1212/01.wnl.0000216271.96364.50
  • Singhal S, Bevan S, Barrick T, et al. The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain J Neurol. 2004;127(9):2031–2038. doi: 10.1093/brain/awh223
  • Mancuso M, Arnold M, Bersano A, et al. Monogenic cerebral small-vessel diseases: diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur J Neurol. 2020;27(6):909–927. doi: 10.1111/ene.14183
  • Rutten JW, Dauwerse HG, Gravesteijn G, et al. Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol. 2016;3(11):844–853. doi: 10.1002/acn3.344
  • Ayrignac X, Carra-Dalliere C, Menjot de Champfleur N, et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain J Neurol. 2015;138(2):284–292. doi: 10.1093/brain/awu353
  • Yoon CW, Kim Y-E, Seo SW, et al. NOTCH3 variants in patients with subcortical vascular cognitive impairment: a comparison with typical CADASIL patients. Neurobiol Aging. 2015;36(8):.e2443.1–.e2443.7. doi: 10.1016/j.neurobiolaging.2015.04.009
  • Tan R, Traylor M, Rutten-Jacobs L, et al. New insights into mechanisms of small vessel disease stroke from genetics. Clin Sci. 2017;131(7):515–531. doi: 10.1042/CS20160825
  • Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. doi: 10.1016/S1474-4422(10)70104-6
  • Georgakis MK, Gill D, Webb AJS, et al. Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology. 2020;95(4):e353–e361. doi: 10.1212/WNL.0000000000009814
  • Mishra A, Malik R, Hachiya T, et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611:115–123.
  • Traylor M, Zhang CR, Adib-Samii P, et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology. 2016;86(2):146–153. doi: 10.1212/WNL.0000000000002263
  • Harshfield EL, Sims MC, Traylor M, et al. The role of haematological traits in risk of ischaemic stroke and its subtypes. Brain. 2020;143(1):210–221. doi: 10.1093/brain/awz362
  • Persyn E, Hanscombe KB, Howson JMM, et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat Commun. 2020;11(1):2175. doi: 10.1038/s41467-020-15932-3
  • Krishnan K, Nguyen TN, Appleton JP, et al. Antiplatelet resistance: a review of concepts, mechanisms, and implications for management in acute ischemic stroke and transient ischemic attack. Stroke Vasc Interv Neurol. 2023;3(3):e000576. doi: 10.1161/SVIN.122.000576
  • Gorelick PB, Farooq MU. Advances in our understanding of “resistance” to antiplatelet agents for prevention of ischemic stroke. Stroke Res Treat. 2013;2013:727842. doi: 10.1155/2013/727842
  • Li H-Q, Cai W-J, Hou X-H, et al. Genome-wide association study of cerebral microbleeds on MRI. Neurotox Res. 2020;37(1):146–155. doi: 10.1007/s12640-019-00073-3
  • Wang Y, Zhao X, Lin J, et al. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA. 2016;316(1):70–78. doi: 10.1001/jama.2016.8662
  • Scott S, Sangkuhl K, Gardner E, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011;90(2):328–332. doi: 10.1038/clpt.2011.132
  • Dawson J, Merwick Á, Webb A, et al. European stroke organisation expedited recommendation for the use of short-term dual antiplatelet therapy early after minor stroke and high-risk TIA. Eur Stroke J. 2021;6(2):CLXXXVII–CXCI. doi: 10.1177/23969873211000877
  • Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American heart association/American stroke association. Stroke. 2021;52:e364–e467. doi: 10.1161/STR.0000000000000375
  • Wang Y, Meng X, Wang A, et al. Ticagrelor versus Clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med. 2021;385(27):2520–2530. doi: 10.1056/NEJMoa2111749
  • Swen JJ, van der WC, Manson LE, et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet. 2023;401(10374):347–356. doi: 10.1016/S0140-6736(22)01841-4
  • Lewis ACF, Green RC. Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues. Genome Med. 2021;13(1):14. doi: 10.1186/s13073-021-00829-7
  • Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–2358. doi: 10.1056/NEJMoa1605086
  • Abraham G, Malik R, Yonova-Doing E, et al. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat Commun. 2019;10(1):5819. doi: 10.1038/s41467-019-13848-1
  • Malik R, Bevan S, Nalls M, et al. Multilocus genetic risk score associates with ischemic stroke in case–control and prospective cohort studies. Stroke J Cereb Circ. 2014;45(2):394–402. doi: 10.1161/STROKEAHA.113.002938
  • Marston NA, Patel PN, Kamanu FK, et al. Clinical application of a Novel Genetic risk score for ischemic stroke in patients with cardiometabolic disease. Circulation. 2021;143(5):470–478. doi: 10.1161/CIRCULATIONAHA.120.051927
  • Giese A-K, Schirmer MD, Donahue KL, et al. Design and rationale for examining neuroimaging genetics in ischemic stroke: the MRI-GENIE study. Neurol Genet. 2017;3(5):e180. doi: 10.1212/NXG.0000000000000180
  • Wu R, Liu H, Li H, et al. Deep learning based on susceptibility-weighted MR sequence for detecting cerebral microbleeds and classifying cerebral small vessel disease. Biomed Eng Online. 2023;22(1):99. doi: 10.1186/s12938-023-01164-1
  • Bhagat R, Marini S, Romero JR. Genetic considerations in cerebral small vessel diseases. Front Neurol. 2023;14:1080168. doi: 10.3389/fneur.2023.1080168
  • Atwood LD, Wolf PA, Heard-Costa NL, et al. Genetic variation in white matter hyperintensity volume in the framingham study. Stroke. 2004;35(7):1609–1613. doi: 10.1161/01.STR.0000129643.77045.10
  • Carmelli D, DeCarli C, Swan GE, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–1181. doi: 10.1161/01.STR.29.6.1177
  • Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–696. doi: 10.1016/S1474-4422(19)30079-1
  • Granata A. Functional genomics in stroke: current and future applications of iPscs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord. 2023;23(1):223. doi: 10.1186/s12872-023-03227-6
  • Li W, Shao C, Zhou H, et al. Multi-omics research strategies in ischemic stroke: a multidimensional perspective. Ageing Res Rev. 2022;81:101730. doi: 10.1016/j.arr.2022.101730
  • García-Berrocoso T, Penalba A, Boada C, et al. From brain to blood: new biomarkers for ischemic stroke prognosis. J Proteomics. 2013;94:138–148. doi: 10.1016/j.jprot.2013.09.005
  • Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–D617. doi: 10.1093/nar/gkx1089
  • Montaner J, Ramiro L, Simats A, et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol. 2020;16(5):247–264. doi: 10.1038/s41582-020-0350-6
  • Cisek K, Krochmal M, Klein J, et al. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant. 2016;31(12):2003–2011. doi: 10.1093/ndt/gfv364
  • Chauhan G, Arnold CR, Chu AY, et al. Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2016;15(7):695–707. doi: 10.1016/S1474-4422(16)00102-2
  • Asare Y, Campbell-James TA, Bokov Y, et al. Histone deacetylase 9 activates IKK to regulate atherosclerotic plaque vulnerability. Circ Res. 2020;127(6):811–823. doi: 10.1161/CIRCRESAHA.120.316743
  • Dhande IS, Kneedler SC, Zhu Y, et al. Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes Immun. 2020;21(3):182–192. doi: 10.1038/s41435-020-0097-5
  • Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–3454. doi: 10.2147/DDDT.S56071
  • Wang Y, Cai Y. Obtaining human ischemic stroke gene expression biomarkers from animal models: a cross-species validation study. Sci Rep. 2016;6(1):29693. doi: 10.1038/srep29693
  • Rust R. Ischemic stroke-related gene expression profiles across species: a meta-analysis. J Inflamm. 2023;20:21.
  • Götz J, Wieters F, Fritz VJ, et al. Temporal and spatial gene expression profile of stroke recovery genes in mice. Genes (Basel). 2023;14(2):454. doi: 10.3390/genes14020454
  • Clapp N, Amour A, Rowan WC, et al. Organ-on-chip applications in drug discovery: an end user perspective. Biochem Soc Trans. 2021;49(4):1881–1890. doi: 10.1042/BST20210840
  • Liang Y, Yoon J-Y. In situ sensors for blood-brain barrier (BBB) on a chip. Sens Actuators Rep. 2021;3:100031. doi: 10.1016/j.snr.2021.100031
  • Abdelsayed M, Kort EJ, Jovinge S, et al. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat Rev Cardiol. 2022;19(11):751–764. doi: 10.1038/s41569-022-00717-6
  • Acosta JN, Szejko N, Falcone GJ. Mendelian randomization in stroke: a powerful approach to causal inference and drug target validation. Front Genet [Internet]. 2021 [cited 2024 Jan 17];12. doi: 10.3389/fgene.2021.683082
  • Georgakis MK, Gill D. Mendelian randomization studies in stroke: exploration of risk factors and drug targets with human genetic data. Stroke. 2021;52:2992–3003.
  • Gill D, Georgakis MK, Walker VM, et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 2021;6:16. doi: 10.12688/wellcomeopenres.16544.1
  • Sakaue S, Okada Y.GREP: genome for REPositioning drugs. Bioinformatics. 2019;35(19):3821–3823. doi: 10.1093/bioinformatics/btz166
  • Chong M, Sjaarda J, Pigeyre M, et al. Novel drug targets for ischemic stroke identified through Mendelian randomization analysis of the blood proteome. Circulation. 2019;140(10):819–830. doi: 10.1161/CIRCULATIONAHA.119.040180
  • Dichgans M, Pulit SL, Rosand J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol. 2019;18(6):587–599. doi: 10.1016/S1474-4422(19)30043-2
  • Hankey GJ. B vitamins for stroke prevention. Stroke Vasc Neurol. 2018;3(2):51–58. doi: 10.1136/svn-2018-000156
  • Georgakis MK, Gill D, Rannikmäe K, et al. Genetically determined levels of circulating cytokines and risk of stroke. Circulation. 2019;139(2):256–268. doi: 10.1161/CIRCULATIONAHA.118.035905
  • Bousser M-G, Amarenco P, Chamorro A, et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet. 2011;377(9782):2013–2022. doi: 10.1016/S0140-6736(11)60600-4
  • Chavda V, Madhwani K. Coding and non-coding nucleotides’: The future of stroke gene therapeutics. Genomics. 2021;113:1291–1307. doi: 10.1016/j.ygeno.2021.03.003
  • Zhang X, Hamblin M, Yin K-J. Noncoding RNAs and stroke. Neuroscientist. 2018;25(1):22–26. doi: 10.1177/1073858418769556
  • Li Y, Liu Y, Wang Z, et al. MicroRNA: not far from clinical application in ischemic stroke. Int Sch Res Not. 2013;2013:1–7. doi: 10.1155/2013/858945
  • Kadir RRA, Alwjwaj M, Bayraktutan U. MicroRNA: an emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell Mol Neurobiol. 2022;42:1301–1319.
  • Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 2011;43(10):521–528. doi: 10.1152/physiolgenomics.00158.2010
  • Tiedt S, Prestel M, Malik R, et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res. 2017;121(8):970–980. doi: 10.1161/CIRCRESAHA.117.311572
  • Leung LY, Chan CPY, Leung YK, et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta Int J Clin Chem. 2014;433:139–144. doi: 10.1016/j.cca.2014.03.007
  • Toor SM, Aldous EK, Parray A, et al. Circulating MicroRNA profiling identifies distinct MicroRNA signatures in acute ischemic stroke and transient ischemic attack patients. Int J Mol Sci. 2022;24(1):108. doi: 10.3390/ijms24010108
  • Chen L-T, Jiang C-Y. MicroRNA expression profiles identify biomarker for differentiating the embolic stroke from thrombotic stroke. Biomed Res Int. 2018;2018:1–6. doi: 10.1155/2018/4514178
  • Martinez B, Peplow PV. Blood microRnas as potential diagnostic and prognostic markers in cerebral ischemic injury. Neural Regen Res. 2016;11(9):1375–1378. doi: 10.4103/1673-5374.191196
  • Schoemaker D, Arboleda-Velasquez JF. Notch3 signaling and aggregation as targets for the treatment of CADASIL and other NOTCH3-associated small-vessel diseases. Am J Pathol. 2021;191(11):1856–1870. doi: 10.1016/j.ajpath.2021.03.015
  • Joutel A, Haddad I, Ratelade J, et al. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab. 2016;36(1):143–157. doi: 10.1038/jcbfm.2015.62
  • Arboleda-Velasquez JF, Manent J, Lee JH, et al. Hypomorphic notch 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A. 2011;108(21):E128–135. doi: 10.1073/pnas.1101964108
  • Baron-Menguy C, Domenga-Denier V, Ghezali L, et al. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertens Dallas Tex 1979. 2017;69(1):60–70. doi: 10.1161/HYPERTENSIONAHA.116.08015
  • Martin AR, Kanai M, Kamatani Y, et al. Current clinical use of polygenic scores will risk exacerbating health disparities. Nat Genet. 2019;51(4):584–591. doi: 10.1038/s41588-019-0379-x
  • Woo D, Anderson CD, Maguire J, et al. Top research priorities for stroke genetics. Lancet Neurol. 2018;17(8):663–665. doi: 10.1016/S1474-4422(18)30243-6
  • Psaty BM, O’Donnell CJ, Gudnason V, et al. Cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium: design of prospective meta-analyses of Genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet. 2009;2(1):73–80. doi: 10.1161/CIRCGENETICS.108.829747
  • Black M, Wang W, Wang W. Ischemic stroke: from next generation sequencing and GWAS to community genomics? Omics J Integr Biol. 2015;19(8):451–460. doi: 10.1089/omi.2015.0083
  • NHLBI trans-omics for precision medicine.About TOPMed. Available from: https://topmed.nhlbi.nih.gov/
  • Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–518. doi: 10.1038/s41586-019-1310-4
  • Lau A, H-C S. Turning genome-wide association study findings into opportunities for drug repositioning. Comput Struct Biotechnol J. 2020;18:1639–1650. doi: 10.1016/j.csbj.2020.06.015
  • Reay WR, Cairns MJ. Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet. 2021;22(10):658–671. doi: 10.1038/s41576-021-00387-z
  • Namba S, Konuma T, Wu K-H, et al. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2022;2(10):100190. doi: 10.1016/j.xgen.2022.100190
  • Acosta JN, Brown SC, Falcone GJ. Genetic underpinnings of recovery after stroke: an opportunity for gene discovery, risk stratification, and precision medicine. Genome Med. 2019;11(1):58. doi: 10.1186/s13073-019-0671-5
  • Young AI, Benonisdottir S, Przeworski M, et al. Deconstructing the sources of genotype-phenotype associations in humans. Science. 2019;365(6460):1396–1400. doi: 10.1126/science.aax3710

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.