131
Views
0
CrossRef citations to date
0
Altmetric
Review

C. elegans: a prominent platform for modeling and drug screening in neurological disorders

, , &
Pages 565-585 | Received 13 Nov 2023, Accepted 06 Mar 2024, Published online: 20 Mar 2024

References

  • Lai CH, Chou CY, Ch’ang LY, et al. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000 May;10(5):703–713.
  • Kim W, Underwood RS, Greenwald I, et al. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics. 2018 Oct;210(2):445–461.
  • Schmitt-Ney M. The FOXO’s advantages of being a family: considerations on function and evolution. Cells. 2020 Mar 24;9(3):787. doi: 10.3390/cells9030787
  • White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986 Dec 11;314(1165):1–340.
  • Altun ZF, Hall DH Nervous system, general description. WormAtlas. 2011. doi: 10.3908/wormatlas.1.18
  • Metaxakis A, Petratou D, Tavernarakis N. Multimodal sensory processing in Caenorhabditis elegans. Open Biol. 2018 Jun;8(6). doi: 10.1098/rsob.180049
  • Hall DH. The role of gap junctions in the C. elegans connectome. Neurosci Lett. 2019 Mar 16;695:12–18. doi: 10.1016/j.neulet.2017.09.002
  • Bargmann CI. Beyond the connectome: how neuromodulators shape neural circuits. BioEssays. 2012 Jun;34(6):458–465. doi: 10.1002/bies.201100185
  • De Rosa MJ, Veuthey T, Florman J, et al. The flight response impairs cytoprotective mechanisms by activating the insulin pathway. Nature. 2019 Sep;573(7772):135–138.
  • Randi F, Sharma AK, Dvali S, et al. Neural signal propagation atlas of Caenorhabditis elegans. Nature. 2023 Nov;623(7986):406–414.
  • Ripoll-Sánchez L, Watteyne J, Sun H, et al. The neuropeptidergic connectome of C. elegans. Neuron. 2023 Nov 2;111(22):3570–3589.e5. doi: 10.1016/j.neuron.2023.09.043
  • de Bono M, Maricq AV. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005;28(1):451–501. doi: 10.1146/annurev.neuro.27.070203.144259
  • Giles AC, Rose JK, Rankin CH Investigations of learning and memory in Caenorhabditis elegans. Int Rev Neurobiol. 2006;69:37–71.
  • Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell. 1993 Aug 13;74(3):515–527.
  • van Ham TJ, Thijssen KL, Breitling R, et al. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008 Mar 21;4(3):e1000027. doi: 10.1371/journal.pgen.1000027
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888
  • Sugimoto A High-throughput RNAi by soaking in Caenorhabtis elegans. In: Appasani K, editor. RNA Interference Technology: From Basic Science to Drug Development. Cambridge: Cambridge University Press; 2005. p. 419–432.
  • Zhang L, Ward JD, Cheng Z, et al. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development. 2015 Dec 15;142(24):4374–84. doi: 10.1242/dev.129635
  • Kurashina M, Mizumoto K. Targeting endogenous proteins for spatial and temporal knockdown using auxin-inducible degron in Caenorhabditis elegans. STAR Protoc. 2023 Mar 17;4(1):102028. doi: 10.1016/j.xpro.2022.102028
  • Nance J, Frokjaer-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics. 2019 Aug;212(4):959–990. doi: 10.1534/genetics.119.301506
  • Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genome. 2021 Jan 20;48(1):14–31.
  • Paix A, Folkmann A, Rasoloson D, et al. High efficiency, homology-directed genome editing in Caenorhabditis elegans Using CRISPR-Cas9 ribonucleoprotein complexes. Genetics. 2015 Sep;201(1):47–54.
  • Cook SJ, Jarrell TA, Brittin CA, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 2019 Jul;571(7763):63–71.
  • Hammarlund M, Hobert O, Miller DM 3rd, et al. The CeNGEN project: the complete gene expression map of an entire nervous system. Neuron. 2018 Aug 8;99(3):430–433. doi: 10.1016/j.neuron.2018.07.042.
  • Davis P, Zarowiecki M, Arnaboldi V, et al. WormBase in 2022—data, processes, and tools for analyzing Caenorhabditis elegans. Genetics. 2022 Apr 4;220(4). doi: 10.1093/genetics/iyac003
  • WormBase version WS291 [internet]. [cited 2024 Feb 6]. Available from: https://wormbase.org/.
  • WormBook [Internet]. [cited 2024 Jun 2]. Available from: http://www.wormbook.org/.
  • Caenorhabditis Genetics Center (CGC) [Internet]. [cited 2024 Jun 2]. Available from: https://cgc.umn.edu/.
  • WormWeb [Internet]. [cited 2024 Jun 2]. Available from: http://www.wormweb.org/.
  • WormWiring: nematode connectomics [internet]. [cited 2024 Jun 2]. Available from: https://wormwiring.org/.
  • WormAtlas [Internet]. [cited 2024 Jun 2]. Available from: https://www.wormatlas.org/.
  • WormBuilder [Internet]. Available from: https://wormbuilder.org/.
  • Flibotte S, Edgley ML, Chaudhry I, et al. Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics. 2010;185(2):431–441. doi: 10.1534/genetics.110.116616
  • OpenWorm [Internet]. [cited 2024 Jun 2]. Available from: https://openworm.org/.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71.
  • Bargmann CI Genetic and cellular analysis of behavior in C. elegans. Annu Rev Neurosci. 1993;16:47–71. 1. doi: 10.1146/annurev.ne.16.030193.000403
  • Benard C, Hobert O Looking beyond development: maintaining nervous system architecture. Curr Top Dev Biol. 2009;87:175–194.
  • Bénard C, Doitsidou M Nervous system ageing. Berlin, Germany: Springer; 2016. p. 163–189.
  • Chen CH, Chen YC, Jiang HC, et al. Neuronal aging: learning from C. elegans. J Mol Signal. 2013 Dec 10;8(1):14. doi: 10.1186/1750-2187-8-14
  • Wirak GS, Florman J, Alkema MJ, et al. Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans. Elife. 2022 Jun 15;11:e721335.
  • Giunti S, Andersen N, Rayes D, et al. Drug discovery: insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect. 2021 Apr;9(2):e00721.
  • Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Models Mech. 2020 Oct 26;13(10). doi: 10.1242/dmm.046110
  • Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006 May;5(5):387–398. doi: 10.1038/nrd2031
  • Dickinson DJ, Goldstein B. CRISPR-Based methods for Caenorhabditis elegans Genome Engineering. Genetics. 2016 Mar;202(3):885–901. doi: 10.1534/genetics.115.182162
  • Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003 Jan 16;421(6920):231–7. doi: 10.1038/nature01278
  • Brignull HR, Morley JF, Garcia SM, et al. Modeling polyglutamine pathogenesis in C. elegans. Methods Enzymol. 2006;412:256–282.
  • Yemini E, Lin A, Nejatbakhsh A, et al. NeuroPAL: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell. 2021 Jan 7;184(1):272–288.e11. doi: 10.1016/j.cell.2020.12.012
  • Midkiff D, San-Miguel A. Microfluidic technologies for high throughput screening through sorting and On-Chip Culture of C. elegans. Molecules. 2019 Nov 25;24(23):4292. doi: 10.3390/molecules24234292
  • Cornaglia M, Lehnert T, Gijs MAM Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Lab Chip. 2017;17(22):3736–3759. doi: 10.1039/C7LC00509A
  • Agotegaray M, Blanco MG, Campelo A, et al. β-cyclodextrin coating: improving biocompatibility of magnetic nanocomposites for biomedical applications. J Mater Sci. 2020 Jan 30;31(2):22. doi: 10.1007/s10856-020-6361-4
  • Therrien M, Rouleau GA, Dion PA, et al. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One. 2013;8(12):e83450. doi: 10.1371/journal.pone.0083450
  • Angeles-Albores D, Lee R, Chan J, et al. Two new functions in the WormBase Enrichment Suite. MicroPubl Biol. 2018 Mar 27;2018. doi: 10.17912/W25Q2N
  • Carretero M, Solis GM, Petrascheck MC. C. elegans as Model for drug discovery. Curr Top Med Chem. 2017;17(18):2067–2076. doi: 10.2174/1568026617666170131114401
  • Koopman M, Güngördü L, Seinstra RI, et al. Neuronal overexpression of hTDP-43 in Caenorhabditis elegans impairs different neuronally controlled behaviors and decreases fecundity. MicroPubl Biol. 2023;2023.
  • APA, Diagnostic and statistical manual of mental disorders: dSM-5™. 5th. American Psychiatric Publishing, Inc.: Arlington (VA US);2013. ( Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed.).
  • Mullin AP, Gokhale A, Moreno-De-Luca A, et al. Neurodevelopmental disorders: mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl Psychiatry. 2013 Dec 3;3(12):e329. doi: 10.1038/tp.2013.108
  • Bessa C, Maciel P, Rodrigues AJ. Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders. Mol Neurobiol. 2013 Dec;48(3):465–489. doi: 10.1007/s12035-013-8434-6
  • Parenti I, Rabaneda LG, Schoen H, et al. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020 Aug;43(8):608–621.
  • Wang T, Hoekzema K, Vecchio D, et al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 2020 Oct 1;11(1):4932. doi: 10.1038/s41467-020-18723-y
  • Rylaarsdam L, Guemez-Gamboa A. Genetic causes and modifiers of autism spectrum disorder. Front Cell Neurosci. 2019;13:385. doi: 10.3389/fncel.2019.00385
  • Post KL, Belmadani M, Ganguly P, et al. Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun. 2020 Apr 29;11(1):2073. doi: 10.1038/s41467-020-15943-0
  • Rawsthorne H, Calahorro F, Holden-Dye L, et al. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One. 2021;16(5):e0243121. doi: 10.1371/journal.pone.0243121
  • Hirota T, King BH. Autism spectrum disorder: a review. JAMA. 2023 Jan 10;329(2):157–168. doi: 10.1001/jama.2022.23661
  • Park HR, Lee JM, Moon HE, et al. A short review on the Current understanding of autism spectrum disorders. Exp Neurobiol. 2016 Feb;25(1):1–13.
  • Khoja S, Haile MT, Chen LY. Advances in neurexin studies and the emerging role of neurexin-2 in autism spectrum disorder. Front Mol Neurosci. 2023;16:1125087. doi: 10.3389/fnmol.2023.1125087
  • Kim HG, Kishikawa S, Higgins AW, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008 Jan;82(1):199–207.
  • Leblond CS, Nava C, Polge A, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014 Sep;10(9):e1004580.
  • Ylisaukko-Oja T, Rehnström K, Auranen M, et al. Analysis of four neuroligin genes as candidates for autism. Eur J Hum Genet. 2005 Dec;13(12):1285–1292.
  • Calahorro F, Alejandre E, Ruiz-Rubio M. Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. J Vis Exp. 2009 Dec;11(34):e1616.
  • Schmeisser K, Fardghassemi Y, Parker JA. A rapid chemical-genetic screen utilizing impaired movement phenotypes in C. elegans: input into genetics of neurodevelopmental disorders. Exp Neurol. 2017 Jul;293:101–114. doi: 10.1016/j.expneurol.2017.03.022
  • Schmeisser K, Parker JA. Worms on the spectrum – C. elegans models in autism research. Exp Neurol. 2017 Apr 20;299:199–206. doi: 10.1016/j.expneurol.2017.04.007
  • Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol. 2012 Oct;22(5):873–9. doi: 10.1016/j.conb.2012.05.004
  • Varga EA, Pastore M, Prior T, et al. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009 Feb;11(2):111–7.
  • Christensen R, de la Torre-Ubieta L, Bonni A, et al. A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development. 2011 Dec;138(23):5257–67.
  • Fukuyama M, Rougvie AE, Rothman JH. C. Elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol. 2006 Apr 18;16(8):773–779. doi: 10.1016/j.cub.2006.02.073
  • McDiarmid Troy A, Belmadani M, Liang J, et al. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc Nat Acad Sci. 2020 Jan 07;117(1):656–667. doi: 10.1073/pnas.1912049116
  • López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039
  • Roussos A, Kitopoulou K, Borbolis F, et al. Caenorhabditis elegans as a Model system to study human neurodegenerative disorders. Biomolecules. 2023 Mar 5;13(3):478. doi: 10.3390/biom13030478
  • Huang C, Wagner-Valladolid S, Stephens AD, et al. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. Elife. 2019 May 3;8. doi: 10.7554/eLife.43059
  • Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014;5:279. doi: 10.3389/fgene.2014.00279
  • Zaninello M, Palikaras K, Naon D, et al. Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat Commun. 2020 Aug 12;11(1):4029. doi: 10.1038/s41467-020-17821-1
  • Babu V, Hofmann K, Schumacher BAC. A C. elegans homolog of the Cockayne syndrome complementation group a gene. DNA Repair. 2014 Dec;24:57–62. doi: 10.1016/j.dnarep.2014.09.011
  • Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012 Mar 16;148(6):1204–22. doi: 10.1016/j.cell.2012.02.040
  • Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb 21;349(6311):704–6. doi: 10.1038/349704a0
  • Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med. 1996 Aug;2(8):864–870.
  • Alvarez J, Alvarez-Illera P, Santo-Domingo J, et al. Modeling Alzheimer’s Disease in Caenorhabditis elegans. Biomed. 2022 Jan 26;10(2):288. doi: 10.3390/biomedicines10020288
  • Ewald CY, Raps DA, Li C. APL-1, the Alzheimer’s Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics. 2012 Jun;191(2):493–507. doi: 10.1534/genetics.112.138768
  • Yi B, Sahn JJ, Ardestani PM, et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J Neurochem. 2017 Feb;140(4):561–575.
  • Sarasija S, Laboy JT, Ashkavand Z, et al. Presenilin mutations deregulate mitochondrial Ca(2+) homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans. Elife. 2018 Jul 10;7. doi: 10.7554/eLife.33052
  • Wentzell J, Kretzschmar D. Alzheimer’s disease and tauopathy studies in flies and worms. Neurobiol Dis. 2010 Oct;40(1):21–8. doi: 10.1016/j.nbd.2010.03.007
  • Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9368–72. doi: 10.1073/pnas.92.20.9368
  • Dosanjh LE, Brown MK, Rao G, et al. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimer’s dis: JAD. 2010;19(2):681–690. doi: 10.3233/JAD-2010-1267
  • Wu Y, Wu Z, Butko P, et al. Amyloid-beta-induced pathological behaviors are suppressed by ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci. 2006 Dec 13;26(50):13102–13113. doi: 10.1523/JNEUROSCI.3448-06.2006
  • Sinnige T, Ciryam P, Casford S, et al. Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS One. 2019;14(5):e0217746. doi: 10.1371/journal.pone.0217746
  • Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019 Mar;22(3):401–412.
  • Brandt R, Gergou A, Wacker I, et al. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009 Jan;30(1):22–33.
  • Kraemer BC, Zhang B, Leverenz JB, et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9980–5. doi: 10.1073/pnas.1533448100
  • Krieg M, Stühmer J, Cueva JG, et al. Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. Elife. 2017 Jan 18;6. doi: 10.7554/eLife.20172
  • Pir GJ, Choudhary B, Mandelkow E, et al. Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans tauopathy model. Mol Neurodegener. 2016 Apr 27;11(1):33. doi: 10.1186/s13024-016-0096-1
  • Imanikia S, Özbey NP, Krueger C, et al. Neuronal XBP-1 Activates Intestinal Lysosomes to Improve Proteostasis in C. elegans. Curr Biol. 2019 Jul 22;29(14):2322–2338.e7. doi: 10.1016/j.cub.2019.06.031
  • Palikaras K, Achanta K, Choi S, et al. Alteration of mitochondrial homeostasis is an early event in a C. elegans model of human tauopathy. Aging. 2021 Nov 9;13(21):23876–23894. doi: 10.18632/aging.203683
  • Benbow SJ, Strovas TJ, Darvas M, et al. Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Hum Mol Genet. 2020 Feb 1;29(3):495–505. doi: 10.1093/hmg/ddz319
  • Wang C, Saar V, Leung KL, et al. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans. Neurobiol Dis. 2018 Jan;109(Pt A):88–101.
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991 Oct;114(5):2283–301. doi: 10.1093/brain/114.5.2283
  • Spillantini MG, Schmidt ML, Lee VM, et al. α-synuclein in Lewy bodies. Nature. 1997 Aug 28;388(6645):839–840. doi: 10.1038/42166
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003 Sep 11;39(6):889–909. doi: 10.1016/S0896-6273(03)00568-3
  • Blesa J, Phani S, Jackson-Lewis V, et al. Classic and new animal models of Parkinson’s disease. J Biomed And Biotech. 2012;2012:845618. doi: 10.1155/2012/845618
  • Harrington AJ, Knight AL, Caldwell GA, et al. Caenorhabditis elegans as a model system for identifying effectors of α-synuclein misfolding and dopaminergic cell death associated with Parkinson’s disease. Methods. 2011 Mar;53(3):220–5.
  • Palikaras K, SenGupta T, Nilsen H, et al. Assessment of dopaminergic neuron degeneration in a C. elegans model of Parkinson’s disease. STAR Protocols. 2022 Jun 17;3(2):101264. doi: 10.1016/j.xpro.2022.101264
  • Kuwahara T, Koyama A, Gengyo-Ando K, et al. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem. 2006 Jan 6;281(1):334–340. doi: 10.1074/jbc.M504860200
  • Cooper JF, Dues DJ, Spielbauer KK, et al. Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C. elegans models. NPJ Parkinson’s dis. 2015;1(1):15022. doi: 10.1038/npjparkd.2015.22
  • Lakso M, Vartiainen S, Moilanen AM, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem. 2003 Jul;86(1):165–172.
  • Hamamichi S, Rivas RN, Knight AL, et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):728–33. doi: 10.1073/pnas.0711018105
  • Poirier MA, Jiang H, Ross CA A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum Mol Genet. 2005;14(6):765–774. doi: 10.1093/hmg/ddi071
  • Martin JB, Gusella JF. Huntingtons disease. N Engl J Med. 1986 Nov 13;315(20):1267–1276. doi: 10.1056/NEJM198611133152006
  • Lee AL, Ung HM, Sands LP, et al. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles. PLoS One. 2017;12(3):e0173644. doi: 10.1371/journal.pone.0173644
  • Morley JF, Brignull HR, Weyers JJ, et al. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10417–10422. doi: 10.1073/pnas.152161099.
  • Brignull HR, Moore FE, Tang SJ, et al. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci. 2006 Jul 19;26(29):7597–606. doi: 10.1523/JNEUROSCI.0990-06.2006
  • Faber PW, Alter JR, MacDonald ME, et al. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):179–84. doi: 10.1073/pnas.96.1.179
  • Mohri-Shiomi A, Garsin DA. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J Biol Chem. 2008 Jan 4;283(1):194–201. doi: 10.1074/jbc.M707956200
  • Bates EA, Victor M, Jones AK, et al. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci. 2006 Mar 8;26(10):2830–8. doi: 10.1523/JNEUROSCI.3344-05.2006
  • Jeong H, Then F, Melia TJ Jr., et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell. 2009 Apr 3;137(1):60–72. doi: 10.1016/j.cell.2009.03.018
  • Varma H, Voisine C, DeMarco CT, et al. Selective inhibitors of death in mutant huntingtin cells. Nat Chem Biol. 2007 Feb;3(2):99–100.
  • Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy. 2007 Nov;3(6):597–599. doi: 10.4161/auto.4989
  • Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy. 2007 Jan;3(1):21–5. doi: 10.4161/auto.3528
  • Parker JA, Metzler M, Georgiou J, et al. Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci. 2007 Oct 10;27(41):11056–64. doi: 10.1523/JNEUROSCI.1941-07.2007
  • Ung H, Hall R, Kikis E. Chemical mutagenesis of Caenorhabditis elegans uncovers genetic modifiers of huntingtin protein aggregation. MicroPubl Biol. 2020 Jan 2;2020. doi: 10.17912/micropub.biology.000202
  • Gomez-Escribano AP, Bono-Yague J, Garcia-Gimeno MA, et al. Synergistic activation of AMPK prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacol Res. 2020 Nov;161:105105. doi: 10.1016/j.phrs.2020.105105
  • Hegde RN, Chiki A, Petricca L, et al. TBK1 phosphorylates mutant huntingtin and suppresses its aggregation and toxicity in Huntington’s disease models. EMBO J. 2020 Sep 1;39(17):e104671. doi: 10.15252/embj.2020104671
  • Machiela E, Rudich PD, Traa A, et al. Targeting mitochondrial network disorganization is protective in C. elegans models of Huntington’s disease. Aging Dis. 2021 Oct;12(7):1753–1772.
  • Traa A, Machiela E, Rudich PD, et al. Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation. Int J Mol Sci. 2021 Dec 14;22(24):13447. doi: 10.3390/ijms222413447
  • Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol. 2011 Oct 11;7(11):639–649. doi: 10.1038/nrneurol.2011.153
  • Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019 Oct;32(5):771–776. doi: 10.1097/WCO.0000000000000730
  • Sonobe Y, Aburas J, Krishnan G, et al. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun. 2021 Oct 15;12(1):6025. doi: 10.1038/s41467-021-26303-x
  • Yang Q, Jiao B, Shen L. The development of C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia disorders. Front Genet. 2020;11:562758. doi: 10.3389/fgene.2020.562758
  • Al-Chalabi A, Jones A, Troakes C, et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 2012 Sep;124(3):339–52.
  • Oeda T, Shimohama S, Kitagawa N, et al. Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet. 2001 Sep 15;10(19):2013–2023. doi: 10.1093/hmg/10.19.2013
  • Wang J, Farr GW, Hall DH, et al. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet. 2009 Jan;5(1):e1000350.
  • Baskoylu SN, Yersak J, O’Hern P, et al. Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet. 2018 Oct;14(10):e1007682.
  • Xu H, Jia C, Cheng C, et al. Activation of autophagy attenuates motor deficits and extends lifespan in a C. elegans model of ALS. Free Radic Biol Med. 2022 Mar;181:52–61. doi: 10.1016/j.freeradbiomed.2022.01.030
  • Aksoy YA, Deng W, Stoddart J, et al. “STRESSED OUT”: the role of FUS and TDP-43 in amyotrophic lateral sclerosis. Int J Biochem Cell Biol. 2020 Sep;126:105821. doi: 10.1016/j.biocel.2020.105821
  • Dormann D, Rodde R, Edbauer D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010 Aug 18;29(16):2841–57. doi: 10.1038/emboj.2010.143
  • Zhang ZC, Chook YM. Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the fused in sarcoma protein (FUS). Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12017–12021. doi: 10.1073/pnas.1207247109
  • Liachko NF, Guthrie CR, Kraemer BC. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci. 2010 Dec 1;30(48):16208–19. doi: 10.1523/JNEUROSCI.2911-10.2010
  • Vaccaro A, Tauffenberger A, Aggad D, et al. Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One. 2012;7(2):e31321. doi: 10.1371/journal.pone.0031321
  • Bargmann CI, Avery L. Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol. 1995;48:225–250.
  • Fouad AD, Liu A, Du A, et al. Thermal laser ablation with tunable lesion size reveals multiple origins of seizure-like convulsions in Caenorhabditis elegans. Sci Rep. 2021 Mar 3;11(1):5084. doi: 10.1038/s41598-021-84516-y
  • Chung SH, Clark DA, Gabel CV, et al. The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci. 2006 Apr 06;7(1):30. doi: 10.1186/1471-2202-7-30
  • Gabel CV, Antoine F, Chuang CF, et al. Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans. Development. 2008 Mar 8;135(6):1129–1136. doi: 10.1242/dev.013995
  • Wu Z, Ghosh-Roy A, Yanik MF, et al. Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15132–15137. doi: 10.1073/pnas.0707001104
  • Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015 Sep;18(9):1213–1225. doi: 10.1038/nn.4091
  • Duebel J, Marazova K, Sahel JA. Optogenetics. Curr Opin Ophthalmol. 2015 May;26(3):226–32. doi: 10.1097/ICU.0000000000000140
  • Wiegert JS, Mahn M, Prigge M, et al. Silencing neurons: tools, applications, and experimental constraints. Neuron. 2017 Aug 2;95(3):504–529. doi: 10.1016/j.neuron.2017.06.050
  • Nagel G, Brauner M, Liewald JF, et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 2005 Dec 20;15(24):2279–84. doi: 10.1016/j.cub.2005.11.032.
  • Gottschalk A. Optogenetic analyses of neuronal networks that generate behavior in Caenorhabditis elegans. Neuroforum. 2020;26(4):227–237. doi: 10.1515/nf-2020-0022
  • Weissenberger S, Schultheis C, Liewald JF, et al. PACα–an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem. 2011 Feb;116(4):616–625.
  • Henss T, Schneider M, Vettkötter D, et al. Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity. Methods Mol Biol. 2022;2483:61–76.
  • Xu S, Chisholm AD. Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci Rep. 2016 Feb 10;6(1):21271. doi: 10.1038/srep21271
  • Hobert O, Glenwinkel L, White J. Revisiting neuronal cell type classification in Caenorhabditis elegans.Curr Biol. 1203 [2016 Nov 21];26(22):R1197–r. doi: 10.1016/j.cub.2016.10.027
  • Toyoshima Y, Wu S, Kanamori M, et al. Neuron ID dataset facilitates neuronal annotation for whole-brain activity imaging of C. elegans. BMC Biol. 2020 Mar 19;18(1):30. doi: 10.1186/s12915-020-0745-2
  • Giunti S, Blanco MG, De Rosa MJ, et al. The ketone body β-hydroxybutyrate rescues neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants. bioRxiv. 2023 Apr 06; 535850. doi: 10.1101/2023.04.06.535850
  • White JG, Southgate E, Thomson JN, et al. The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):327–348.
  • Cáceres Ide C, Valmas N, Hilliard MA, et al. Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PLoS One. 2012;7(4):e35037. doi: 10.1371/journal.pone.0035037
  • Chew YL, Fan X, Götz J, et al. PTL-1 regulates neuronal integrity and lifespan in C. elegans. J Cell Sci. 2013 May 1;126(Pt 9):2079–91. doi: 10.1242/jcs.jcs124404
  • Pan CL, Peng CY, Chen CH, et al. Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A. 2011 May 31;108(22):9274–9279. doi: 10.1073/pnas.1011711108
  • Toth ML, Melentijevic I, Shah L, et al. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J Neurosci. 2012 Jun 27;32(26):8778–90. doi: 10.1523/JNEUROSCI.1494-11.2012
  • Nass R, Hall DH, Miller DM, et al. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 3rd ed.,2002 Mar 5;99(5):3264–9. doi: 10.1073/pnas.042497999
  • Tucci ML, Harrington AJ, Caldwell GA, et al. Modeling dopamine neuron degeneration in Caenorhabditis elegans. Methods Mol Biol. 2011;793:129–148.
  • Wu X, Nagasawa S, Muto K, et al. Mitochonic acid 5 improves Duchenne muscular dystrophy and Parkinson’s disease model of Caenorhabditis elegans. Int J Mol Sci. 2022 Aug 24;23(17):9572. doi: 10.3390/ijms23179572
  • Chalorak P, Sanguanphun T, Limboonreung T, et al. Neurorescue Effects of Frondoside A and Ginsenoside Rg3 in C. elegans Model of Parkinson’s Disease. Molecules. 2021;26(16):4843. doi: 10.3390/molecules26164843
  • Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s disease in C. elegans. J Parkinson’s Dis. 2018;8(1):17–32. doi: 10.3233/JPD-171258
  • Fu R-H, Harn H-J, Liu S-P, et al. N-butylidenephthalide protects against dopaminergic neuron degeneration and α-synuclein accumulation in Caenorhabditis elegans models of Parkinson’s disease. PLoS One. 2014;9(1):e85305–e85305. doi: 10.1371/journal.pone.0085305
  • Vayndorf EM, Scerbak C, Hunter S, et al. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis. NPJ Aging Mech Dis. 2016 Apr 07;2(1):16001. doi: 10.1038/npjamd.2016.1
  • Schafer WR. Neurophysiological methods in C. elegans: an introduction. WormBook. 2006;2006:1–4. doi: 10.1895/wormbook.1.111.1
  • Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics. 2021 Aug 9;218(4). doi: 10.1093/genetics/iyab072
  • Gong Y. The evolving capabilities of rhodopsin-based genetically encoded voltage indicators. Curr Opin Chem Biol. 2015 Aug;27:84–9. doi: 10.1016/j.cbpa.2015.05.006
  • Yang HH, St-Pierre F. Genetically encoded voltage indicators: opportunities and challenges. J Neurosci. 2016 Sep 28;36(39):9977–89. doi: 10.1523/JNEUROSCI.1095-16.2016
  • Shidara H, Hotta K, Oka K. Compartmentalized cGMP responses of olfactory sensory neurons in Caenorhabditis elegans. J Neurosci. 2017 Apr 5;37(14):3753–3763. doi: 10.1523/JNEUROSCI.2628-16.2017
  • Andersen N, Veuthey T, Blanco MG, et al. 1-mesityl-3-(3-sulfonatopropyl) imidazolium protects against oxidative stress and delays proteotoxicity in C. elegans [original research]. Front Pharmacol. 2022 May 24;13:13.
  • Flytzanis NC, Bedbrook CN, Chiu H, et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat Commun. 2014 Sep 15;5(1):4894. doi: 10.1038/ncomms5894
  • Azimi Hashemi N, Bergs ACF, Schüler C, et al. Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17051–17060. doi: 10.1073/pnas.1902443116
  • Goodman MB, Lindsay TH, Lockery SR, et al. Electrophysiological methods for Caenorhabditis elegans neurobiology. Methods Cell Biol. 2012;107:409–436.
  • Calixto A, Chelur D, Topalidou I, et al. Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods. 2010;7(7):554–559. doi: 10.1038/nmeth.1463
  • Lim J, Yue Z. Neuronal aggregates: formation, clearance, and spreading. Dev Cell. 2015 Feb 23;32(4):491–501. doi: 10.1016/j.devcel.2015.02.002
  • Hughes S, van Dop M, Kolsters N, et al. Using a Caenorhabditis elegans Parkinson’s disease model to assess disease progression and therapy efficiency. Pharmaceuticals. 2022 Apr 22;15(5). doi: 10.3390/ph15050512
  • Saewanee N, Praputpittaya T, Malaiwong N, et al. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson’s disease. Neurosci Res. 2021 Jan 01;162:13–21.
  • Waldo GS, Standish BM, Berendzen J, et al. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol. 1999 Jul;17(7):691–5.
  • Ochiishi T, Doi M, Yamasaki K, et al. Development of new fusion proteins for visualizing amyloid-β oligomers in vivo. Sci Rep. 2016 Mar 16;6(1):22712. doi: 10.1038/srep22712
  • Fay DS, Fluet A, Johnson CJ, et al. In vivo aggregation of beta-amyloid peptide variants. J Neurochem. 1998 Oct;71(4):1616–1625.
  • Link CD, Johnson CJ, Fonte V, et al. Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging. 2001 Mar;22(2):217–26.
  • Aprile FA, Sormanni P, Podpolny M, et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13509–13518. doi: 10.1073/pnas.1919464117
  • Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature. 2013 Jan 17;493(7432):327–37. doi: 10.1038/nature11860
  • Goodman MB, Sengupta P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics. 2019 May;212(1):25–51. doi: 10.1534/genetics.118.300241
  • Blanche EI, Reinoso G, Chang MC, et al. Proprioceptive processing difficulties among children with autism spectrum disorders and developmental disabilities. Am J Occup Ther. 2012 Sep;66(5):621–4.
  • Konczak J, Corcos DM, Horak F, et al. Proprioception and motor control in Parkinson’s disease. J Mot Behav. 2009 Nov;41(6):543–52.
  • Ribeiro F, Oliveira J. Aging effects on joint proprioception: the role of physical activity in proprioception preservation. Eur Rev Aging Phys Activity. 2007 Oct 01;4(2):71–76.
  • Seiss E, Praamstra P, Hesse CW, et al. Proprioceptive sensory function in Parkinson’s disease and Huntington’s disease: evidence from proprioception-related EEG potentials. Exp Brain Res. 2003 Feb;148(3):308–319.
  • Vaughan SK, Kemp Z, Hatzipetros T, et al. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations. J Comp Neurol. 2015 Dec 1;523(17):2477–2494. doi: 10.1002/cne.23848
  • Yeon J, Kim J, Kim DY, et al. A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol. 2018 Jun;16(6):e2004929.
  • Li Z, Fouad AD, Bowlin PD, et al. A robotic system for automated genetic manipulation and analysis of Caenorhabditis elegans. PNAS Nexus. 2023;2(7). doi: 10.1093/pnasnexus/pgad197
  • Chalfie M, Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol. 1981 Mar;82(2):358–370. doi: 10.1016/0012-1606(81)90459-0
  • Chalfie M, Hart AC, Rankin CH, et al. Assaying mechanosensation. WormBook : the online review of C elegans biology. 2014. doi: 10.1895/wormbook.1.172.1
  • Goodman MB. Mechanosensation. WormBook. 2006;2006:1–14. doi: 10.1895/wormbook.1.62.1
  • Ewald CY, Marfil V, Li C. Alzheimer-related protein APL-1 modulates lifespan through heterochronic gene regulation in Caenorhabditis elegans. Aging Cell. 2016 Dec;15(6):1051–1062. doi: 10.1111/acel.12509
  • Scerbak C, Vayndorf EM, Hernandez A, et al. Mechanosensory neuron aging: differential trajectories with Lifespan-Extending Alaskan Berry and fungal treatments in Caenorhabditis elegans. Front Aging Neurosci. 2016;8:173–173. doi: 10.3389/fnagi.2016.00173
  • Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000 Jun;26(3):619–631. doi: 10.1016/S0896-6273(00)81199-X
  • Bretscher AJ, Kodama-Namba E, Busch KE, et al. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron. 2011 Mar 24;69(6):1099–113. doi: 10.1016/j.neuron.2011.02.023
  • Couto A, Oda S, Nikolaev VO, et al. In vivo genetic dissection of O2-evoked cGMP dynamics in a Caenorhabditis elegans gas sensor. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3301–10. doi: 10.1073/pnas.1217428110
  • Culotti JG, Russell RL. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics. 1978 Oct;90(2):243–256. doi: 10.1093/genetics/90.2.243
  • Hart AC. Behavior Wormbook. 2006 Jun 3. WormBook, ed. The C. elegans Research Community; WormBook, ed. The C. elegans Research Community, WormBook. doi: 10.1895/wormbook.1.87.1
  • Mori I, Ohshima Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature. 1995 Jul 27;376(6538):344–348.
  • Ito H, Inada H, Mori I. Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans. J Neurosci Methods. 2006 Jun 30;154(1–2):45–52. doi: 10.1016/j.jneumeth.2005.11.011
  • Kimata T, Sasakura H, Ohnishi N, et al. Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm. 2012 Jan 1;1(1):31–41. doi: 10.4161/worm.19504
  • Tan PL, Katsanis N. Thermosensory and mechanosensory perception in human genetic disease. Hum Mol Genet. 2009 Oct 15;18(R2):R146–55. doi: 10.1093/hmg/ddp412
  • Wittenburg N, Eimer S, Lakowski B, et al. Presenilin is required for proper morphology and function of neurons in C. elegans. Nature. 2000 Jul 20;406(6793):306–9. doi: 10.1038/35018575
  • Timbers TA , Rankin CH. Learning and memory in invertebrates: C: elegans. In: Squire LR, editor. Encyclopedia of neuorscience. Amsterdam: Elsevier; 2009. p. 413–420.
  • Kepler LD, McDiarmid TA, Rankin CH. Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiol Learn Mem. 2020 May;171:107208. doi: 10.1016/j.nlm.2020.107208
  • Rankin CH, Abrams T, Barry RJ, et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009 Sep;92(2):135–8.
  • Tomioka M, Umemura Y, Ueoka Y, et al. Antagonistic regulation of salt and sugar chemotaxis plasticity by a single chemosensory neuron in Caenorhabditis elegans. PLoS Genet. 2023 Sep;19(9):e1010637.
  • Mohri A, Kodama E, Kimura KD, et al. Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics. 2005;169(3):1437–1450. doi: 10.1534/genetics.104.036111
  • Cao SQ, Wang HL, Palikaras K, et al. Chemotaxis assay for evaluation of memory-like behavior in wild-type and Alzheimer’s-disease-like C. elegans models. STAR Protoc. 2023 Apr 26;4(2):102250. doi: 10.1016/j.xpro.2023.102250
  • Rankin CH, Broster BS. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav Neurosci. 1992 Apr;106(2):239–49. doi: 10.1037/0735-7044.106.2.239
  • Cavanagh JF, Kumar P, Mueller AA, et al. Diminished EEG habituation to novel events effectively classifies Parkinson’s patients. Clin Neurophysiol. 2018 Feb;129(2):409–418.
  • Smith S, Hopp SC. The 5XFAD mouse model of Alzheimer’s disease displays age-dependent deficits in habituation to a novel environment. Aging Brain. 2023;3:100078. doi: 10.1016/j.nbas.2023.100078
  • Blok LER, Boon M, van Reijmersdal B, et al. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev. 2022 Dec 01;143:104883.
  • Donnelly JL, Clark CM, Leifer AM, et al. Monoaminergic orchestration of motor programs in a complex C. elegans behavior. PLoS Biol. 2013;11(4):e1001529. doi: 10.1371/journal.pbio.1001529
  • Gjorgjieva J, Biron D, Haspel G. Neurobiology of Caenorhabditis elegans locomotion: where do we stand? BioSci. 2014 Jun 1;64(6):476–486. doi: 10.1093/biosci/biu058
  • Perni M, Challa PK, Kirkegaard JB, et al. Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. J Neurosci Methods. 2018 Aug 1;306:57–67. doi: 10.1016/j.jneumeth.2018.02.005
  • Huang YC, Pirri JK, Rayes D, et al. Gain-of-function mutations in the UNC-2/CaV2alpha channel lead to excitation-dominant synaptic transmission in Caenorhabditis elegans. Elife. 2019 Aug 5;8. doi: 10.7554/eLife.45905
  • Safdie G, Liewald JF, Kagan S, et al. RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle. Mol Biol Cell. 2016 Oct 1;27(19):2994–3003. doi: 10.1091/mbc.E16-05-0265
  • Dani VS, Chang Q, Maffei A, et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of rett syndrome. Proc Nat Acad Sci. 2005;102(35):12560–12565. doi: 10.1073/pnas.0506071102
  • O’Donnell C, Gonçalves JT, Portera-Cailliau C, et al. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders. Elife. 2017 Oct 11;6:e26724.
  • Vico Varela E, Etter G, Williams S. Excitatory-inhibitory imbalance in Alzheimer’s disease and therapeutic significance. Neurobiol Dis. 2019 Jul;127:605–615. doi: 10.1016/j.nbd.2019.04.010
  • Pirri JK, Alkema MJ The neuroethology of C. elegans escape. Curr Opin Neurobiol. 2012;22(2):187–193. doi: 10.1016/j.conb.2011.12.007
  • Nagy S, Huang Y-C, Alkema MJ, et al. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci Rep. 2015 Nov 24;5(1):17174. doi: 10.1038/srep17174
  • Avery L, You YJ. C. elegans feeding. WormBook. 2012 2012:1–23.
  • Shashikumar S, Pradeep H, Chinnu S, et al. Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans. Physiol Behav. 2015 Nov 1;151:563–9. doi: 10.1016/j.physbeh.2015.08.025
  • Stravalaci M, Bastone A, Beeg M, et al. Specific recognition of biologically active amyloid-β oligomers by a new surface plasmon resonance-based immunoassay and an in vivo assay in Caenorhabditis elegans. J Biol Chem. 2012 Aug 10;287(33):27796–805. doi: 10.1074/jbc.M111.334979
  • Maulik M, Mitra S, Bult-Ito A, et al. Behavioral phenotyping and pathological indicators of Parkinson’s disease in C. elegans models. Front Genet. 2017;8:77. doi: 10.3389/fgene.2017.00077
  • Rand JB. Acetylcholine. WormBook. 2007 Jan;30:1–21. doi: 10.1895/wormbook.1.131.1
  • Blazie SM, Jin Y. Pharming for genes in neurotransmission: combining chemical and genetic approaches in Caenorhabditis elegans. ACS Chem Neurosci. 2018 Aug 15;9(8):1963–1974.
  • Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. Invert Neurosci. 2018 Mar 12;18(2):4. doi: 10.1007/s10158-018-0207-5
  • Thapliyal S, Babu K. Pentylenetetrazole (PTZ)-induced convulsion assay to determine GABAergic defects in Caenorhabditis elegans. Bio Protoc. 2018 Sep 5;8(17). doi: 10.21769/BioProtoc.2989
  • Mahoney TR, Luo S, Nonet ML Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc. 2006;1(4):1772–1777. doi: 10.1038/nprot.2006.281
  • Opperman KJ, Mulcahy B, Giles AC, et al. The HECT family ubiquitin ligase EEL-1 regulates neuronal function and development. Cell Rep. 2017 Apr 25;19(4):822–835. doi: 10.1016/j.celrep.2017.04.003
  • Giles AC, Desbois M, Opperman KJ, et al. A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function. J Biol Chem. 2019 Apr 26;294(17):6843–6856. doi: 10.1074/jbc.RA119.007406
  • Wang L, Graziano B, Bianchi L. Protocols for treating C. elegans with pharmacological agents, osmoles, and salts for imaging and behavioral assays. STAR Protoc. 2023 Apr 25;4(2):102241. doi: 10.1016/j.xpro.2023.102241
  • Blanco MG, Vela Gurovic MS, Silbestri GF, et al. Diisopropylphenyl-imidazole (DII): a new compound that exerts anthelmintic activity through novel molecular mechanisms. PLoS Negl Trop Dis. 2018 Dec;12(12):e0007021.
  • San-Miguel A, Lu H. Microfluidics as a tool for C. elegans research. WormBook. 2013 Sep;24:1–19. doi: 10.1895/wormbook.1.162.1
  • Teo E, Fong S, Tolwinski N, et al. Drug synergy as a strategy for compression of morbidity in a Caenorhabditis elegans model of Alzheimer’s disease. Geroscience. 2020 Jun 01;42(3):849–856. doi: 10.1007/s11357-020-00169-1
  • Barlow IL, Feriani L, Minga E, et al. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol. 2022 Mar 23;5(1):253. doi: 10.1038/s42003-022-03206-1
  • Ikenaka K, Tsukada Y, Giles AC, et al. A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Sci Rep. 2019 Sep 12;9(1):10104. doi: 10.1038/s41598-019-46642-6
  • Sofela S, Sahloul S, Song YA, et al. Biophysical analysis of drug efficacy on C. elegans models for neurodegenerative and neuromuscular diseases. PLoS One. 2021;16(6):e0246496. doi: 10.1371/journal.pone.0246496
  • Sohrabi S, Mor DE, Kaletsky R, et al. High-throughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun Biol. 2021 Feb 15;4(1):203. doi: 10.1038/s42003-021-01731-z
  • Cornaglia M, Krishnamani G, Mouchiroud L, et al. Automated longitudinal monitoring of in vivo protein aggregation in neurodegenerative disease C. elegans models. Mol Neurodegener. 2016 Feb 9;11(1):17. doi: 10.1186/s13024-016-0083-6
  • Salam S, Ansari A, Amon S, et al. A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior. Worm. 2013 Apr 1;2(2):e24558. doi: 10.4161/worm.24558
  • Patten SA, Aggad D, Martinez J, et al. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis. JCI Insight. 2017 Nov 16;2(22). doi: 10.1172/jci.insight.97152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.