52
Views
0
CrossRef citations to date
0
Altmetric
Review

Omega-3 polyunsaturated fatty acid derived lipid mediators: a comprehensive update on their application in anti-cancer drug discovery

Pages 617-629 | Received 26 Feb 2024, Accepted 04 Apr 2024, Published online: 09 Apr 2024

References

  • Jóźwiak M, Filipowska A, Fiorino F, et al. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol. 2020;871:172937. doi: 10.1016/j.ejphar.2020.172937
  • Chajes V, Torres-Mejía G, Biessy C, et al. ω-3 and ω-6 polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: impact of obesity status. Cancer Epidemiol Biomark Prevent. 2012;21(2):319–326. doi: 10.1158/1055-9965.EPI-11-0896
  • Williams CD, Whitley BM, Hoyo C, et al. A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res. 2011;31(1):1–8. doi: 10.1016/j.nutres.2011.01.002
  • Maillard V, Bougnoux P, Ferrari P, et al. N‐3 and N‐6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case‐control study in Tours, France. Int J Cancer. 2002;98(1):78–83. doi: 10.1002/ijc.10130
  • Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223–1230. doi: 10.1016/S0140-6736(08)61239-8
  • Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New Engl J Med. 2019;380(1):11–22. doi: 10.1056/NEJMoa1812792
  • Murray M, Hraiki A, Bebawy M, et al. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther. 2015;150:109–128. doi: 10.1016/j.pharmthera.2015.01.008
  • Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients. 2021;13(7):2421. doi: 10.3390/nu13072421
  • Wang D, DuBois RN. Eicosanoids and cancer. Nature Rev Cancer. 2010;10(3):181–193. doi: 10.1038/nrc2809
  • Finetti F, Travelli C, Ercoli J, et al. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology. 2020;9(12):434. doi: 10.3390/biology9120434
  • Sommerfeld L, Knuth I, Finkernagel F, et al. Prostacyclin released by cancer-associated fibroblasts promotes immunosuppressive and pro-metastatic macrophage polarization in the ovarian cancer microenvironment. Cancers (Basel). 2022;14(24):6154. doi: 10.3390/cancers14246154
  • Allison SE, Petrovic N, Mackenzie PI, et al. Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2. Biochem Pharmacol. 2015;96(4):306–314. doi: 10.1016/j.bcp.2015.06.002
  • Hoang KG, Allison S, Murray M, et al. Prostanoids regulate angiogenesis acting primarily on IP and EP4 receptors. Microvascular Res. 2015;101:127–134. doi: 10.1016/j.mvr.2015.07.004
  • Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002;296(5567):539–541. doi: 10.1126/science.1068711
  • Inserte J, Molla B, Aguilar R, et al. Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection: constitutive COX-2 expression and cardioprotection. J Mol Cell Cardiol. 2009;46(2):160–168. doi: 10.1016/j.yjmcc.2008.11.011
  • Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol. 2022;59:101597.
  • Waxman DJ, Dannan GA, Guengerich FP. Regulation of rat hepatic cytochrome P-450: age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex-specific isoenzymes. Biochemistry. 1985;24(16):4409–4417. doi: 10.1021/bi00337a023
  • Murray M, Zaluzny L, Dannan GA, et al. Altered regulation of cytochrome P-450 enzymes in choline-deficient cirrhotic male rat liver: impaired regulation and activity of the male-specific androst-4-ene-3,17-dione 16 alpha-hydroxylase, cytochrome P-450UT-A, in hepatic cirrhosis. Mol Pharmacol. 1987;31(1):117–121.
  • Chen J, Capdevila J, Harris RC. Cytochrome P450 epoxygenase metabolism of arachidonic acid inhibits apoptosis. Mol Cell Biol. 2001;21(18):6322–6331. doi: 10.1128/MCB.21.18.6322-6331.2001
  • Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82(1):131–185.
  • Panigrahy D, Edin ML, Lee CR, et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest. 2012;122(1):178–191. doi: 10.1172/JCI58128
  • Michaelis UR, Fleming I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol Ther. 2006;111(3):584–595.
  • Wada M, DeLong CJ, Hong YH, et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem. 2007;282(31):22254–22266. doi: 10.1074/jbc.M703169200
  • Yang P, Chan D, Felix E, et al. Formation and antiproliferative effect of prostaglandin E3 from eicosapentaenoic acid in human lung cancer cells. J Lipid Res. 2004;45(6):1030–1039. doi: 10.1194/jlr.M300455-JLR200
  • Cui PH, Petrovic N, Murray M. The ω‐3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down‐regulation. Brit J Pharmacol. 2011;162(5):1143–1155. doi: 10.1111/j.1476-5381.2010.01113.x
  • Zhang G, Panigrahy D, Mahakian LM, et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci, USA. 2013;110(16):6530–6535. doi: 10.1073/pnas.1304321110
  • Wang W, Zhu J, Lyu F, et al. ω-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat. 2014;113:13–20. doi: 10.1016/j.prostaglandins.2014.07.002
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi: 10.1016/S0169-409X(96)00423-1
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–2623. doi: 10.1021/jm020017n
  • Proschak E, Heitel P, Kalinowsky L, et al. Opportunities and challenges for fatty acid mimetics in drug discovery. J Med Chem. 2017;60(13):5235–5266. doi: 10.1021/acs.jmedchem.6b01287
  • Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem. 2011;54(8):2529–2591.
  • Lassalas P, Gay B, Lasfargeas C, et al. Structure property relationships of carboxylic acid isosteres. J Med Chem. 2016;59(7):3183–3203. doi: 10.1021/acs.jmedchem.5b01963
  • Reddy JK.Peroxisomal β-oxidation, PPARα, and steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2001;281(6):G1333–G1339. doi: 10.1152/ajpgi.2001.281.6.G1333
  • Hildebrand M, Staks T, Schütt A, et al. Pharmacokinetics of 3H-cicaprost in healthy volunteers. Prostaglandins. 1989;37(2):259–273. doi: 10.1016/0090-6980(89)90062-2
  • Schaaf TK, Bindra JS, Eggler JF, et al. N-(Methanesulfonyl)-16-phenoxyprostaglandin carboxamides: tissue-selective, uterine stimulants. J Med Chem. 1981;24(11):1353–1359. doi: 10.1021/jm00143a018
  • Elworthy TR, Brill ER, Chiou SS, et al. Lactams as EP4 prostanoid receptor agonists. 3. Discovery of N-ethylbenzoic acid 2-pyrrolidinones as subtype selective agents. J Med Chem. 2004;47(25):6124–6127. doi: 10.1021/jm049290a
  • Kambe T, Maruyama T, Nakai Y, et al. Discovery of novel prostaglandin analogs as potent and selective EP2/EP4 dual agonists. Bioorg Med Chem. 2012;20(7):2235–2251. doi: 10.1016/j.bmc.2012.02.018
  • Matsumura Y, Asai T, Shimada T, et al. Novel fluoroprostacyclin analogs with modified cycloalkylenyl chains. Highly potent and orally active anti-anginal agents. Chem Pharm Bull. 1995;43(2):353–355. doi: 10.1248/cpb.43.353
  • Guilford WJ, Bauman JG, Skuballa W, et al. Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J Med Chem. 2004;47(8):2157–2165. doi: 10.1021/jm030569l
  • Iversen PO, Sørensen DR, Tronstad KJ, et al. A bioactively modified fatty acid improves survival and impairs metastasis in preclinical models of acute leukemia. Clin Cancer Res. 2006;12(11):3525–3531. doi: 10.1158/1078-0432.CCR-05-2802
  • Więckowski MR, Wojtczak L. Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Lett. 1998;423(3):339–342. doi: 10.1016/S0014-5793(98)00118-5
  • Tronstad KJ, Bruserud Ø, Berge K, et al. Antiproliferative effects of a non-β-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures. Leukemia. 2002;16:2292–2301. doi: 10.1038/sj.leu.2402698
  • Szymczak M, Murray M, Petrovic N. Modulation of angiogenesis by ω-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood. 2008;111(7):3514–3521. doi: 10.1182/blood-2007-08-109934
  • Idborg H, Pawelzik SC. Prostanoid metabolites as biomarkers in human disease. Metabolites. 2022;12(8):721. doi: 10.3390/metabo12080721
  • Bundy G, Lincoln F, Nelson N, et al. Novel prostaglandin syntheses. Ann New York Acad Sci. 1971;180(1):76–90. doi: 10.1111/j.1749-6632.1971.tb53186.x
  • Robert AA, Schultz JR, Nezamis JE, et al. Gastric antisecretory and antiulcer properties of PGE2, 15-methyl PGE2, and 16, 16-dimethyl PGE2: intravenous, oral and intrajejunal administration. Gastroenterology. 1976;70:359–370. doi: 10.1016/S0016-5085(76)80147-3
  • Serhan CN, Maddox JF, Petasis NA, et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry. 1995;34(44):14609–14615. doi: 10.1021/bi00044a041
  • Gauthier KM, Falck JR, Reddy LM, et al. 14, 15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol Res. 2004;49:515–524. doi: 10.1016/j.phrs.2003.09.014
  • Imig JD, Elmarakby A, Nithipatikom K, et al. Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front physiol. 2010;1:157. doi: 10.3389/fphys.2010.00157
  • Falck JR, Koduru SR, Mohapatra S, et al. 14, 15-Epoxyeicosa-5, 8, 11-trienoic Acid (14, 15-EET) surrogates: Carboxylate Modifications. J Med Chem. 2014;57:6965–6972. doi: 10.1021/jm500262m
  • Falck JR, Wallukat G, Puli N, et al. 17 (R), 18 (S)-epoxyeicosatetraenoic acid, a potent eicosapentaenoic acid (EPA) derived regulator of cardiomyocyte contraction: structure–activity relationships and stable analogues. J Med Chem. 2011;54(12):4109–4118.
  • Oliw EH. 17R(18S)-epoxyeicosatetraenoic acid, a cytochrome P-450 metabolite of 20: 5ω-3 in monkey seminal vesicles, is metabolized to novel prostaglandins. Biochem Biophys Res Commun. 1991;178:1444–1450. doi: 10.1016/0006-291X(91)91055-H
  • Falck JR, Kodela R, Manne R, et al. 14, 15-Epoxyeicosa-5, 8, 11-trienoic acid (14, 15-EET) surrogates containing epoxide bioisosteres: Influence upon vascular relaxation and soluble epoxide hydrolase inhibition. J Med Chem. 2009;52(16):5069–5075. doi: 10.1021/jm900634w
  • Campbell WB, Imig JD, Schmitz JM, et al. Drugs in the pipeline series: orally active epoxyeicosatrienoic acid analogs. J Cardiovasc Pharmacol. 2017;70(4):211. doi: 10.1097/FJC.0000000000000523
  • Cervenka L, Husková Z, Kopkan L, et al. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens. 2018;36(6):1326–1341. doi: 10.1097/HJH.0000000000001708
  • Hrdlička J, Neckář J, Papoušek F, et al. Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive sprague-dawley but not in hypertensive ren-2 transgenic rats. Front Pharmacol. 2019;10:159. doi: 10.3389/fphar.2019.00159
  • Krause W, Hümpel M, Hoyer GA. Biotransformation of the stable prostacyclin analogue, iloprost, in the rat. Drug Metab Dispos. 1984;12:645–651.
  • Stürzebecher S, Haberey M, Müller B, et al. Pharmacological profile of a novel carbacyclin derivative with high metabolic stability and oral activity in the rat. Prostaglandins. 1986;31(1):95–109. doi: 10.1016/0090-6980(86)90228-5
  • Yu M, Alonso-Galicia M, Sun CW, et al. 20-hydroxyeicosatetraenoic acid (20-HETE): structural determinants for renal vasoconstriction. Bioorg Med Chem. 2003;11(13):2803–2821. doi: 10.1016/S0968-0896(03)00192-5
  • Tunctan B, Korkmaz B, Sari AN, et al. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91phox to the protective effect of 5, 14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide. 2013;33:18–41. doi: 10.1016/j.niox.2013.05.001
  • Tunctan B, Korkmaz B, Sari AN, et al. 5, 14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins Other Lipid Mediat. 2013;102:31–41. doi: 10.1016/j.prostaglandins.2013.01.005
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Lee JM, Dedhar S, Kalluri R, et al. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–981. doi: 10.1083/jcb.200601018
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899.
  • Ward RA, Fawell S, Floc’h N, et al. Challenges and opportunities in cancer drug resistance. Chem Rev. 2020;121:3297–3351. doi: 10.1021/acs.chemrev.0c00383
  • Dyari HR, Rawling T, Bourget K, et al. Synthetic ω-3 epoxyfatty acids as antiproliferative and pro-apoptotic agents in human breast cancer cells. J Med Chem. 2014;57(17):7459–7464. doi: 10.1021/jm501083y
  • Dyari HR, Rawling T, Chen Y, et al. A novel synthetic analogue of ω‐3 17, 18‐epoxyeicosatetraenoic acid activates TNF receptor‐1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells. FASEB J. 2017;31(12):5246–5257. doi: 10.1096/fj.201700033R
  • Rawling T, Choucair H, Koolaji N, et al. A novel arylurea fatty acid that targets the mitochondrion and depletes cardiolipin to promote killing of breast cancer cells. J Med Chem. 2017;60(20):8661–8666. doi: 10.1021/acs.jmedchem.7b00701
  • Al-Zubaidi Y, Pazderka C, Koolaji N, et al. Aryl-urea fatty acids that activate the p38 MAP kinase and down-regulate multiple cyclins decrease the viability of MDA-MB-231 breast cancer cells. Eur J Pharm Sci. 2019;129:87–98. doi: 10.1016/j.ejps.2018.12.015
  • Murray M, Roseblade A, Chen Y, et al. Carbon chain length modulates MDA‐MB‐231 breast cancer cell killing mechanisms by mitochondrially targeted aryl-urea fatty acids. ChemMedChem. 2020;15(2):247–255. doi: 10.1002/cmdc.201900577
  • Koolaji N, Rawling T, Bourget K, et al. Carboxylate analogues of aryl‐urea‐substituted fatty acids that target the mitochondria in MDA‐MB‐231 breast cancer cells to promote cell death. ChemMedChem. 2018;13(10):1036–1043. doi: 10.1002/cmdc.201800018
  • Rahman MK, Umashankar B, Choucair H, et al. Inclusion of the in-chain sulfur in 3-thiaCTU increases the efficiency of mitochondrial targeting and cell killing by anticancer aryl-urea fatty acids. Eur J Pharmacol. 2023;939:175470. doi: 10.1016/j.ejphar.2022.175470
  • Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nature Rev Drug Disc. 2010;9:447–464.
  • Rawling T, MacDermott-Opeskin H, Roseblade A, et al. Aryl urea substituted fatty acids: a new class of protonophoric mitochondrial uncoupler that utilises a synthetic anion transporter. Chem Sci. 2020;11(47):12677–12685. doi: 10.1039/D0SC02777D
  • Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. doi: 10.1016/j.redox.2020.101674
  • MacDermott-Opeskin H, Clarke C, Wu X, et al. Protonophoric and mitochondrial uncoupling activity of aryl-carbamate substituted fatty acids. Org Biomol Chem. 2023;21(1):132–139. doi: 10.1039/D2OB02049A
  • Choucair H, Rahman MK, Umashankar B, et al. The aryl-ureido fatty acid CTU activates endoplasmic reticulum stress and PERK/NOXA-mediated apoptosis in tumor cells by a dual mitochondrial-targeting mechanism. Cancer Lett. 2022;526:131–141. doi: 10.1016/j.canlet.2021.11.022
  • Al-Zubaidi Y, Chen Y, Rahman MK, et al. PTU, a novel ureido-fatty acid, inhibits MDA-MB-231 cell invasion and dissemination by modulating Wnt5a secretion and cytoskeletal signaling. Biochem Pharmacol. 2021;192:114726. doi: 10.1016/j.bcp.2021.114726
  • Kantarci A, Kansal S, Hasturk H, et al. Resolvin E1 reduces tumor growth in a xenograft model of lung cancer. Am J Pathol. 2022;192(10):1470–1484. doi: 10.1016/j.ajpath.2022.07.004
  • Sulciner ML, Serhan CN, Gilligan MM, et al. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med. 2018;215(1):115–140. doi: 10.1084/jem.20170681
  • Sun YP, Oh SF, Uddin J, et al. Resolvin D1 and its aspirin-triggered 17R epimer: stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem. 2007;282:9323–9334. doi: 10.1074/jbc.M609212200
  • Tai HH, Ensor CM, Tong M, et al. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat. 2002;68:483–493. doi: 10.1016/S0090-6980(02)00050-3
  • Orr SK, Colas RA, Dalli J, et al. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am J Physiol Lung Cell Mol Physiol. 2015;308(9):L904–11. doi: 10.1152/ajplung.00370.2014
  • Murakami Y, Fukuda H, Muromoto R, et al. Design and synthesis of benzene congeners of resolvin E2, a proresolving lipid mediator, as its stable equivalents. ACS Med Chem Lett. 2020;11(4):479–484. doi: 10.1021/acsmedchemlett.9b00596
  • Arita M, Oh SF, Chonan T, et al. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J Biol Chem. 2006;281(32):22847–22854. doi: 10.1074/jbc.M603766200
  • Tang H, Liu Y, Yan C, et al. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex–induced inflammation and lung injury. J Immunol. 2014;193(7):3769–3778. doi: 10.4049/jimmunol.1400942
  • Arai S, Fujiwara K, Kojima M, et al. Design and synthesis of cyclopropane congeners of resolvin E3, an endogenous pro-resolving lipid mediator, as its stable equivalents. J Org Chem. 2022;87(15):10501–10508. doi: 10.1021/acs.joc.2c01110
  • Fukuda H, Muromoto R, Takakura Y, et al. Design and synthesis of cyclopropane congeners of resolvin E2, an endogenous proresolving lipid mediator, as its stable equivalents. Org Lett. 2016;18(24):6224–6227. doi: 10.1021/acs.orglett.6b02612
  • Watson JE, Kim JS, Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat. 2019;143:106337. doi: 10.1016/j.prostaglandins.2019.106337
  • Roy J, Watson JE, Hong IS, et al. Antitumorigenic properties of omega-3 endocannabinoid epoxides. J Med Chem. 2018;61(13):5569–5579. doi: 10.1021/acs.jmedchem.8b00243
  • Tan JY, Yoon BK, Cho NJ, et al. Lipid nanoparticle technology for delivering biologically active fatty acids and monoglycerides. Int J Mol Sci. 2021;22:9664. doi: 10.3390/ijms22189664
  • Garrastazu Pereira G, Rawling T, Pozzoli M, et al. Nanoemulsion-enabled oral delivery of novel anticancer ω-3 fatty acid derivatives. Nanomaterials. 2018;8(10):825. doi: 10.3390/nano8100825
  • Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016;498(1–2):326–334. doi: 10.1016/j.ijpharm.2015.12.037
  • Mussi SV, Silva RC, de Oliveira MC, et al. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci. 2013;48:282–290. doi: 10.1016/j.ejps.2012.10.025
  • Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383
  • Dravid AA, Dhanabalan KM, Agarwal S, et al. Resolvin D1‐loaded nanoliposomes promote M2 macrophage polarization and are effective in the treatment of osteoarthritis. Bioeng Transl Med. 2022;7:e10281. doi: 10.1002/btm2.10281
  • Levy ES, Kim AS, Werlin E, et al. Tissue factor targeting peptide enhances nanoparticle binding and delivery of a synthetic specialized pro-resolving lipid mediator to injured arteries. JVS-Vasc Sci. 2023;4:100126. doi: 10.1016/j.jvssci.2023.100126
  • Gc JB, Szlenk CT, Gao J, et al. Molecular dynamics simulations provide insight into the loading efficiency of proresolving lipid mediators resolvin D1 and D2 in cell membrane-derived nanovesicles. Mol Pharm. 2020;17(6):2155–2164. doi: 10.1021/acs.molpharmaceut.0c00299
  • Dong X, Gao J, Zhang CY, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano. 2019;13:1272–1283. doi: 10.1021/acsnano.8b06572
  • Gao J, Wang S, Dong X, et al. Co-delivery of resolvin D1 and antibiotics with nanovesicles to lungs resolves inflammation and clears bacteria in mice. Commun Biol. 2020;3(1):680. doi: 10.1038/s42003-020-01410-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.