788
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunopathogenesis of ocular toxoplasmosis and implications for treatment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7-26 | Received 31 Jul 2023, Accepted 31 Oct 2023, Published online: 29 Nov 2023

References

  • Gomez-Marin JE, de-la-Torre A Ocular disease due to Toxoplasma gondii. Toxoplasma gondii [Internet]. Elsevier; 2020 [cited 2023 Jan 24]. p. 229–291. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128150412000050
  • Rahmanian V, Rahmanian K, Jahromi A, et al. Seroprevalence of toxoplasma gondii infection: an umbrella review of updated systematic reviews and meta-analyses. J Family Med Prim Care [Internet]. 2020 [cited 2023 Feb 13];9:3848. 8. doi: 10.4103/jfmpc.jfmpc_753_20
  • Dubey JP. Toxoplasmosis – a waterborne zoonosis. Vet Parasitol Internet. 2004;126(1–2):57–72. doi: 10.1016/j.vetpar.2004.09.005
  • Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans.Int J Parasitol Internet. 2000 [cited 2015 Aug 5];30(12–13):1217–1258. doi: 10.1016/S0020-7519(00)00124-7
  • Nsiangani Lusambo N, Kaimbo Wa Kaimbo D, Mumba Ngoyi D, et al. Clinical and serological characteristics of ocular toxoplasmosis in the democratic Republic of Congo. 2022. Internet [cited 2023 Jul 17]; doi: 10.1080/0927394820222140297
  • Lusambo NN, Kaimbo Wa Kaimbo D, Mumba Ngoyi D. Risk factors for ocular toxoplasmosis among uveitis patients in Kinshasa, DR Congo.BMJ Open Ophthalmol Internet. 2023 [cited 2023 Jul 17];8(1):1198. doi: 10.1136/bmjophth-2022-001198
  • Gómez-Marín JE, Muñoz-Ortiz J, Mejía-Oquendo M, et al. High frequency of ocular toxoplasmosis in Quindío, Colombia and risk factors related to the infection. Heliyon Internet. 2021 [cited 2021 Apr 8];7(4):e06659. doi: 10.1016/j.heliyon.2021.e06659
  • Ferreira AIC, De Mattos CCB, Frederico FB, et al. Risk factors for ocular toxoplasmosis in Brazil. Epidemiol Infect [Internet]. 2014 [cited 2020 Feb 28];142(1):142–148. doi: 10.1017/S0950268813000526
  • Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev Internet. 2012;25(2):264–296. doi: 10.1128/CMR.05013-11
  • Petersen E, Kijlstra A, Stanford M. Epidemiology of ocular toxoplasmosis. Ocul Immunol Inflamm. 2012;20(2):68–75. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/22409558%5Cnhttp://informahealthcare.com/doi/abs/10.3109/09273948.2012.661115
  • Milne GC, Webster JP, Walker M. Is the incidence of congenital toxoplasmosis declining? Trends Parasitol Internet. 2023 [cited 2023 Jan 25];39(1):26–37. doi: 10.1016/j.pt.2022.10.003
  • Mejia-Oquendo M, Marulanda-Ibarra E, Gomez-Marin JE. Evaluation of the impact of the first evidence-based guidelines for congenital toxoplasmosis in Armenia (Quindío) Colombia: an observational retrospective analysis. Lancet Reg Health - Am Internet. 2021 [cited 2023 Feb 24];1:100010. doi: 10.1016/j.lana.2021.100010
  • Hou JH, Patel SS, Farooq AV, et al. Decline in ocular toxoplasmosis over 40 years at a tertiary referral practice in the United States. Ocul Immunol InflammInternet. 2018 [cited 2023 Jul 17];26:577–583. https://click.endnote.com/viewer?doi=10.1080%2F09273948.2016.1246665&token=WzEwNzI1NCwiMTAuMTA4MC8wOTI3Mzk0OC4yMDE2LjEyNDY2NjUiXQ.XM8ZuJkfFpbxDBf3-0YhGhz-aK8
  • Cifuentes-González C, Zapata-Bravo E, Sierra-Cote MC, et al. Colombian ocular infectious Epidemiology study (COIES): ocular toxoplasmosis incidence and sociodemographic Characterization, 2015-2019. Inter J Infect Dis. 2022;117:349–355. doi: 10.1016/j.ijid.2022.02.028
  • Semenza JC, Rocklöv J, Ebi KL. Climate change and cascading risks from infectious disease. Infect Dis Ther. 2022;11(4):1371–1390. doi: 10.1007/s40121-022-00647-3
  • Pozio E. How globalization and climate change could affect foodborne parasites. Exp Parasitol Internet. 2020 [cited 2022 Jul 13];208:107807. doi: 10.1016/j.exppara.2019.107807
  • Gomez-Marin JE, Pinto Y, Lora F, et al. Recipe ingredients for re emergent protozoa: climatic change, rain, zoonosis, mountain and food. Infectio Internet. 2022 [cited 2023 Jan 25];26:381–383. doi: 10.22354/24223794.1080
  • FAO; WHO. Multicriteria-based ranking for risk management of food-born parasites [Internet]. First. WHO; FAO, Editor. Microbiological Risk Assessment Series No. 23. Rome. Rome: FAO/WHO; 2014 [cited 2015 Oct 2]. Available from: http://www.fao.org/3/a-i3649e.pdf
  • Jones JL, Dubey JP. Foodborne toxoplasmosis.Clin Infect Dis Internet. 2012 [cited 2015 Sep 18];55(6):845–851. doi: 10.1093/cid/cis508
  • Foodborne Disease Burden Epidemiology Reference Group 2007-2015. WHO estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007-2015 [Internet]. 2015 [cited 2022 Jul 8]. Available from: https://www.who.int/publications/i/item/9789241565165
  • Shapiro K, Bahia-Oliveira L, Dixon B, et al. Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food. Food Waterborne Parasitol Internet. 2019;15:e00049. doi: 10.1016/j.fawpar.2019.e00049
  • Nessim J, Luna-Ramirez JC, Moreno-Gómez GA, et al. Estimations of the number people with mental diseases associated with toxoplasmosis and identification of risk factors by continent. Psychiatry Res Internet. 2023 [cited 2023 Mar 9];115130:115130. doi: 10.1016/j.psychres.2023.115130
  • Palanisamy M, Madhavan B, Balasundaram M, et al. Outbreak of ocular toxoplasmosis in Coimbatore, India. Indian J Ophthalmol Internet. 2006;54(2):129. doi: 10.4103/0301-4738.25839
  • Bowie WR, King AS, Werker DH, et al. Outbreak of toxoplasmosis associated with municipal drinking water. The BC toxoplasma investigation team. Lancet Internet. 1997;350(9072):173–177. doi: 10.1016/S0140-6736(96)11105-3
  • Dubey JP. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasites Vectors Internet. 2021 [cited 2023 Jan 25];14(1): doi: 10.1186/s13071-021-04769-4
  • Vaudaux JD, Muccioli C, James ER, et al. Identification of an atypical strain of Toxoplasma gondii as the cause of a waterborne outbreak of toxoplasmosis in Santa Isabel do Ivai, Brazil. J Infect Dis. 2010;202(8):1226–1233.
  • Arantes TEFF, Silveira C, Holland GN, et al. Ocular involvement following Postnatally acquired Toxoplasma gondii infection in Southern Brazil: a 28-year experience. Am J Ophthalmol Internet. 2015 [cited 2015 Jul 1];159(6):1002–1012.e2. doi: 10.1016/j.ajo.2015.02.015
  • Frenkel JK. Pathophysiology of toxoplasmosis. Parasitol Today Internet. 1988;4(10):273–278. doi: 10.1016/0169-4758(88)90018-X
  • Sharma P, Chitnis CE. Key molecular events during host cell invasion by apicomplexan pathogens. Curr Opin Microbiol. 2013;16(4):432–437. doi: 10.1016/j.mib.2013.07.004
  • Blader IJ, Coleman BI, Chen C-T, et al. Lytic Cycle of Toxoplasma gondii : 15 Years Later. Annu Rev Microbiol [Internet]. 2015 [cited 2020 Oct 14];69:463–485. 1 doi: 10.1146/annurev-micro-091014-104100
  • Skariah S, McIntyre MK, Mordue DG. Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion.Parasitol Res Internet. 2010 [cited 2023 Jul 23];107(2):253–260. doi: 10.1007/s00436-010-1899-6
  • Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: facts and open questions. Taylan Ozkan A, editor. PLoS Negl Trop Dis [Internet] Available from. 2020 [cited 2021 Sep 1];14(12):e0008905. doi: 10.1371/journal.pntd.0008905
  • Daré LO, Bruand P-E, Gérard D, et al. Associations of mental disorders and neurotropic parasitic diseases: a meta-analysis in developing and emerging countries. BMC Public Health [Internet]. 2019 [cited 2020 Mar 29];19(1):1645. doi: 10.1186/s12889-019-7933-4
  • Petersen E, Ajzenberg D, Mandelbrot L, et al. Protozoan Diseases: Toxoplasmosis. International Encyclopedia Of Public Health [Internet]. Amsterdan: Elsevier; 2017 [cited 2019 May 26]. p. 114–132. Available from: https://www.sciencedirect.com/science/article/pii/B9780128036785003611
  • Xiao J. Toxoplasma-induced behavioral changes: an aspecific consequence of neuroinflammation. Trends Parasitol Internet. 2020 [cited 2021 Jun 5];36(4):317–318. doi: 10.1016/j.pt.2020.01.005
  • Flegr J. Effects of Toxoplasma on human behavior. Schizophr Bull Internet. 2007;33(3):757–760. doi: 10.1093/schbul/sbl074
  • Milne G, Webster JP, Walker M. Toxoplasma gondii: an underestimated threat? Trends Parasitol Internet. 2020 [cited 2021 Jun 5];36(12):959–969. doi: 10.1016/j.pt.2020.08.005
  • Flegr J. How and why Toxoplasma makes us crazy. Trends Parasitol. 2013;29(4):156–163. Internet: https://linkinghub.elsevier.com/retrieve/pii/S1471492213000202
  • Delair E, Latkany P, Noble AG, et al. Clinical manifestations of ocular toxoplasmosis. Ocul Immunol Inflamm Internet. 2011;19(2):91–102. doi: 10.3109/09273948.2011.564068
  • Butler NJ, Furtado JM, Winthrop KL, et al. Ocular toxoplasmosis II: clinical features, pathology and management. Clin Exp Ophthalmol. 2013;41(1):95–108.
  • Huang PK, Jianping C, Vasconcelos-Santos DV, et al. Ocular toxoplasmosis in tropical areas: analysis and outcome of 190 patients from a multicenter collaborative study.Ocul Immunol Inflamm [Internet]. 2017 [cited 2023 Jul 24];26(8):1289–1296. doi: 10.1080/0927394820171367407
  • Bosch-Driessen LEHH, Berendschot TTJMJM, Ongkosuwito JV, et al. Ocular toxoplasmosis: clinical features and prognosis of 154 patients. Ophthalmol. 2002;109(5):869–878.
  • de-la-Torre A, López-Castillo CA, Gómez-Marín JE. Incidence and clinical characteristics in a Colombian cohort of ocular toxoplasmosis. Eye Internet. 2009 [cited 2015 Jan 22];23(5):1090–1093. doi: 10.1038/eye.2008.219
  • Glasner PD, Silveira C, Kruszon-Moran D, et al. An unusually high prevalence of ocular toxoplasmosis in Southern Brazil. Am J Ophthalmol [Internet]. 1992 [cited 2023 Jul 23];114(2):136–144. doi: 10.1016/S0002-9394(14)73976-5
  • de-la-Torre A, González G, Díaz-Ramirez J, et al. Screening by Ophthalmoscopy for Toxoplasma Retinochoroiditis in Colombia. Am J Ophthalmol Internet. 2007 [cited 2015 Jan 22];143(2):354–356. doi: 10.1016/j.ajo.2006.09.048
  • Commodaro AG, Chiasson M, Sundar N, et al. Elevated toxoplasma gondii infection rates for retinas from eye banks, Southern Brazil. Emerg Infect Dis [Internet]. 2016 [cited 2023 Jul 23];22:691–693. 4. doi: 10.3201/eid2204.141819
  • Burnett AJ, Shortt SG, Isaac-Renton J, et al. Multiple cases of acquired toxoplasmosis retinitis presenting in an outbreak. Ophthalmol. 1998;105(6):1032–1037.
  • de-la-Torre A, Valdés-Camacho J, de Mesa CL, et al. Coinfections and differential diagnosis in immunocompetent patients with uveitis of infectious origin. BMC Infect Dis Internet. 2019;19(1):91. https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-3613-8
  • Silveira C, Muccioli C, Holland GN, et al. Ocular involvement following an epidemic of Toxoplasma gondii infection in Santa Isabel do ivaí, Brazil. Am J Ophthalmol Internet. 2015 [cited 2015 Jul 18];159(6):1013–1021.e3. doi: 10.1016/j.ajo.2015.02.017
  • de-la-Torre A, Gómez-Marín J. Disease of the Year 2019: ocular toxoplasmosis in HIV-infected patients. Ocul Immunol Inflamm. 2020;28(7):1031–1039. Internet: https://www.tandfonline.com/doi/full/10.1080/09273948.2020.1735450
  • Garweg JG, Candolfi E. Immunopathology in ocular toxoplasmosis: facts and clues. Mem Inst Oswaldo Cruz Internet. 2009;104(2):211–220. doi: 10.1590/S0074-02762009000200014
  • Rougier S, Montoya JG, Peyron F. Lifelong persistence of Toxoplasma cysts: a questionable dogma? Trends Parasitol Internet. 2016 [cited 2016 Dec 25]; Available from;33(2):93–101. doi: 10.1016/j.pt.2016.10.007
  • Holland GN. Ocular toxoplasmosis: the influence of patient age. Mem Inst Oswaldo Cruz Internet. 2009;104(2):351–357. doi: 10.1590/S0074-02762009000200031
  • Papadia M, Aldigeri R, Herbort CP. The role of serology in active ocular toxoplasmosis.Int Ophthalmol Internet. 2011 [cited 2023 Jul 26];31(6):461–465. doi: 10.1007/s10792-011-9507-z
  • Gómez-Marín JE, Montoya-de-Londoño MT, Castaño-Osorio JC, et al. Frequency of specific anti-Toxoplasma gondii IgM, IgA and IgE in Colombian patients with acute and chronic ocular toxoplasmosis. Mem Inst Oswaldo Cruz [Internet]. 2000 [cited 2015 Jan 22];95(1):89–94. doi: 10.1590/S0074-02762000000100014
  • Ongkosuwito JV, Bosch-Driessen EH, Kijlstra A, et al. Serologic evaluation of patients with primary and recurrent ocular toxoplasmosis for evidence of recent infection. Am J Ophthalmol Internet. 1999;128(4):407–412. doi: 10.1016/S0002-9394(99)00266-4
  • Bonfioli AA, Orefice F. Toxoplasmosis. Semin Ophthalmol. 2005;20(3):129–141. doi: 10.1080/08820530500231961
  • Wilder HC. TOXOPLASMA CHORIORETINITIS in ADULTS. AMA Arch Ophthalmol.Arch Ophtalmol Internet. 1952 [cited 2023 Jul 23];48(2):127–136. doi: 10.1001/archopht.1952.00920010132001
  • Gallagher MJ, Yilmaz T, Cervantes-Castañeda RA, et al. The characteristic features of optical coherence tomography in posterior uveitis. Br J Ophthalmol [Internet]. 2007 [cited 2023 Jul 24];91(12):1680–1685. doi: 10.1136/bjo.2007.124099
  • Sofia O, Wahyudi INSA, Susianti H, et al. Optical coherence tomography angiography findings in ocular toxoplasmosis with Multiple recurrences. Int Med Case Rep J Internet. 2023 [cited 2023 Feb 5];16:35–43. doi: 10.2147/IMCRJ.S395600
  • Oréfice JL, Costa RA, Campos W, et al. Third-generation optical coherence tomography findings in punctate retinal toxoplasmosis. Am J Ophthalmol. 2006;142(3):503–505.e2.
  • Oréfice JL, Costa RA, Scott IU, et al. Spectral optical coherence tomography findings in patients with ocular toxoplasmosis and active satellite lesions (MINAS report 1). Acta Ophthalmol [Internet]. 2013 [cited 2023 Jul 24];91(1):e41–e47. doi: 10.1111/j.1755-3768.2012.02531.x
  • Diniz B, Regatieri, Andrade R, et al. Evaluation of spectral domain and time domain optical coherence tomography findings in toxoplasmic retinochoroiditis. Clin Ophthalmol Internet. 2011;5:645. http://www.dovepress.com/evaluation-of-spectral-domain-and-time-domain-optical-coherence-tomogr-peer-reviewed-article-OPTH
  • Smith JR, Ashander LM, Arruda SL, et al. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res [Internet]. 2021 [cited 2023 Jul 26];81:100882. doi: 10.1016/j.preteyeres.2020.100882
  • Carme B, Bissuel F, Ajzenberg D, et al. Severe acquired toxoplasmosis in immunocompetent adult patients in French Guiana. J Clin Microbiol Internet. 2002;40(11):4037–4044. doi: 10.1128/JCM.40.11.4037-4044.2002
  • Matet A, Paris L, Fardeau C, et al. Clinical and biological factors associated with recurrences of severe toxoplasmic retinochoroiditis confirmed by aqueous humor analysis. Am J Ophthalmol. 2019;199:82–93. doi: 10.1016/j.ajo.2018.11.013
  • Cortés DA, Aguilar MC, Ríos HA, et al. Severe acute multi-systemic failure with bilateral ocular toxoplasmosis in immunocompetent patients from urban settings in Colombia: case reports. Am J Ophthalmol Case Rep Internet. 2020 [cited 2022 Jul 18];18:100661. doi: 10.1016/j.ajoc.2020.100661
  • de-la-Torre A, Sauer A, Pfaff AW, et al. Severe South American ocular toxoplasmosis is associated with decreased ifn-γ/Il-17a and increased Il-6/Il-13 intraocular levels. Jardim A, editor. PLoS Negl Trop Dis [Internet].2013 [cited 2015 Jan 22];7(11):e2541. https://dx.plos.org/10.1371/journal.pntd.0002541
  • Mantilla-Muriel LE, Hernández-de-Los-Ríos A, Rincón M, et al. Serotyping, host genes and cytokines response in human ocular toxoplasmosis. Microb Pathog Internet. 2020 [[cited 2020 Sep 9]];148:104465. doi: 10.1016/j.micpath.2020.104465
  • Su C, Khan A, Zhou P, et al. Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A Internet. 2012;109(15):5844–5849. doi: 10.1073/pnas.1203190109
  • Khan A, Ajzenberg D, Mercier A, et al. Geographic separation of domestic and wild strains of Toxoplasma gondii in French Guiana Correlates with a monomorphic version of Chromosome1a. PLoS Negl Trop Dis. 2014;8(9):e3182.
  • Shwab EK, Jiang T, Pena HFJ, et al. The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii. Int J Parasitol [Internet]. 2016 [cited 2018 Dec 26];46(2):141–146. doi: 10.1016/j.ijpara.2015.10.005
  • Behnke MS, Khan A, Lauron EJ, et al. Rhoptry proteins ROP5 and ROP18 are Major murine virulence factors in genetically divergent South American strains of Toxoplasma gondii. Malik HS, editor. PLoS Genet [Internet] Available from. 2015 [cited 2018 Dec 26];11(8):e1005434. doi: 10.1371/journal.pgen.1005434
  • Bertranpetit E, Jombart T, Paradis E, et al. Phylogeography of Toxoplasma gondii points to a South American origin. Infect Genet Evol Internet. 2017;48:150–155. doi: 10.1016/j.meegid.2016.12.020
  • Gazzinelli RT, Mendonça-Neto R, Lilue J, et al. Innate resistance against Toxoplasma gondii: an evolutionary tale of mice, cats, and men. Cell Host Microbe Cell Press. 2014;15(2):132–138.
  • Lehmann T, Marcet PL, Graham DH, et al. Globalization and the population structure of Toxoplasma gondii. Proc Natl Acad Sci U S A Internet. 2006;103(30):11423–11428. doi: 10.1073/pnas.0601438103
  • Wang J-L, Li T-T, Elsheikha HM, et al. Functional Characterization of Rhoptry Kinome in the virulent Toxoplasma gondii RH strain. Front Microbiol Internet. 2017;8:1–8. doi: 10.3389/fmicb.2017.00084
  • Chen L, Christian DA, Kochanowsky JA, et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J Exp Med. 2020 [[cited 2020 Oct 14]];217(3): Internet. doi: 10.1084/jem.20181757
  • Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. Hunter CA, editor. PLoS Pathog [Internet] Available from. 2011 [cited 2020 Oct 14];7(9):e1002236. doi: 10.1371/journal.ppat.1002236
  • Saeij JPJ, Coller S, Boyle JP, et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature. 2007;445(7125):324–327.
  • Fentress SJ, Steinfeldt T, Howard JC, et al. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii. Cell Microbiol. 2012;14(12):1921–1933.
  • Sánchez V, De-la-Torre A, Gómez-Marín JE. Characterization of ROP18 alleles in human toxoplasmosis.Parasitol Int Internet. 2014 [cited 2015 Jan 17];63(2):463–469. doi: 10.1016/j.parint.2013.10.012
  • Behnke MS, Khan A, Wootton JC, et al. Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc Natl Acad Sci U S A [Internet]. 2011 [cited 2023 Jul 26];108(23):9631–9636. doi: 10.1073/pnas.1015338108
  • Bayram Delibaş S, Turgay N, Gürüz AY The role of cytokines in the immunopathogenesis of toxoplasmosis. Turkiye Klinikleri J Med Sci. 2009;29:1217–1221.
  • de-la-Torre A, Pfaff AW, Grigg ME, et al. Ocular cytokinome is linked to clinical characteristics in ocular toxoplasmosis. Cytokine Internet. 2014;68(1):23–31. http://www.ncbi.nlm.nih.gov/pubmed/24787053
  • Cone RE, Pais R. Anterior Chamber-associated immune Deviation (ACAID): an acute response to ocular insult protects from Future immune-mediated damage? Internet. 2009 [cited 2023 Jul 25];1;OED.S2858. https://click.endnote.com/viewer?doi=10.4137%2Foed.s2858&token=WzEwNzI1NCwiMTAuNDEzNy9vZWQuczI4NTgiXQ.BMb28RbIx80X-cQ7TJdeDSmVCUE
  • Acosta Davila JA, Hernandez De Los Rios A, Acosta JAD, et al. An overview of peripheral blood mononuclear cells as a model for immunological Research of Toxoplasma gondii and other apicomplexan parasites. Front Cell Infect Microbiol Internet. 2019 [cited 2019 May 15];9:24. doi: 10.3389/fcimb.2019.00024
  • Costantini S, Castello G, Colonna G. Human cytokinome: a new challenge for systems biology.Bioinformation Internet. 2010 [cited 2016 Nov 14];5(4):166–167. doi: 10.6026/97320630005166
  • Frickel EM, Hunter CA. Lessons from toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med Internet. 2021 [cited 2022 Jan 23];218(11): doi: 10.1084/jem.20201314
  • Fisch D, Clough B, Frickel E-M. Human immunity to Toxoplasma gondii. Coers J, editor. PLoS Pathog [Internet]. 2019;15(12):e1008097. Available from: https://dx.plos.org/10.1371/journal.ppat.1008097
  • Ooi KGJ, Galatowicz G, Calder VL, et al. Cytokines and Chemokines in uveitis – is there a correlation with clinical phenotype? Clinical Medicine & Research Internet. 2006 [cited 2023 Jul 25];4(4):294–309. doi: 10.3121/cmr.4.4.294
  • Maia MM, Meira-Strejevitch CS, Pereira-Chioccola VL, et al. Evaluation of gene expression levels for cytokines in ocular toxoplasmosis. Parasite Immunol Internet. 2017;39(10):e12462. doi: 10.1111/pim.12462
  • Thieme C, Schlickeiser S, Metzner S, et al. Immune Mediator profile in aqueous humor differs in patients with primary acquired ocular toxoplasmosis and recurrent acute ocular toxoplasmosis. Mediators Inflamm Internet. 2019 [[cited 2023 Jul 25]];2019:1–12. doi: 10.1155/2019/9356728
  • Sauer A, Rochet E, Lahmar I, et al. The local immune response to intraocular Toxoplasma re-challenge: less pathology and better parasite control through Treg/Th1/Th2 induction. Int J Parasitol Internet. 2013;43(9):721–728. doi: 10.1016/j.ijpara.2013.04.004
  • Sauer A, Villard O, Creuzot-Garcher C, et al. Intraocular levels of interleukin 17A (IL-17A) and IL-10 as respective determinant markers of toxoplasmosis and viral uveitis. Papasian CJ, editor. Clin Vaccin Immunol [Internet]. 2015 [cited 2017 Mar 5];22(1):72–78. doi: 10.1128/CVI.00423-14
  • Sauer A, Pfaff AW, Villard O, et al. Interleukin 17A as an effective target for anti-inflammatory and antiparasitic treatment of toxoplasmic uveitis. J Infect Dis. 2012;206(8):1319–1329.
  • Kalogeropoulos D, Kalogeropoulos C, Sakkas H, et al. Pathophysiological aspects of ocular toxoplasmosis: host-parasite interactions. Ocul Immunol Inflamm [Internet]. 2022 [cited 2023 Jul 26];30(3):560–569. doi: 10.1080/09273948.2021.1922706
  • Naranjo-Galvis CA, de-la-Torre A, Mantilla-Muriel LE, et al. Genetic polymorphisms in cytokine genes in Colombian patients with ocular toxoplasmosis. Adams JH, editor. Infect Immun Internet. 2018;86(4): doi: 10.1128/IAI.00597-17
  • Cordeiro CA, Moreira PR, Costa GC, et al. Interleukin-1 gene polymorphisms and toxoplasmic retinochoroiditis. Mol VisInternet. 2008 [cited 2017 May 11];14:1845–1849. http://www.ncbi.nlm.nih.gov/pubmed/18941541
  • de Neves ES, Curi ALL, de Albuquerque MC, et al. Genetic polymorphism for IFNγ +874T/A in patients with acute toxoplasmosis. Rev Soc Bras Med Trop Internet. 2012 [cited 2017 May 11];45(6):757–760. doi: 10.1590/S0037-86822012000600020
  • de Albuquerque MC, Do Aleixo ALQ C, Benchimol EI, et al. The IFN-³+874T/A gene polymorphism is associated with retinochoroiditis toxoplasmosis susceptibility. Mem Inst Oswaldo Cruz Internet. 2009 [cited 2017 May 11];104(3):451–455. doi: 10.1590/S0074-02762009000300009
  • Cordeiro CA, Moreira PR, Andrade MS, et al. Interleukin-10 gene polymorphism (−1082G/A) is associated with Toxoplasmic Retinochoroiditis. Invest Ophthalmol Vis Sci Internet. 2008 [cited 2017 May 11];49(5):1979–1982. doi: 10.1167/iovs.07-1393
  • Torres-Morales E, Taborda L, Cardona N, et al. Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis. Med Microbiol Immunol [Internet]. 2014 [cited 2015 Jan 22];203(5):315–322. doi: 10.1007/s00430-014-0339-0
  • Maia MM, Meira-Strejevitch CS, Pereira-Chioccola VL, et al. Evaluation of gene expression levels for cytokines in ocular toxoplasmosis. Parasite Immunol Internet. 2017 [cited 2023 Jul 26];39(10):e12462. doi: 10.1111/pim.12462
  • Pfaff AW, de-la-Torre A, Rochet E, et al. New clinical and experimental insights into old world and neotropical ocular toxoplasmosis. Int J Parasitol [Internet]. 2014 [cited 2015 Jan 22];44(2):99–107. doi: 10.1016/j.ijpara.2013.09.007
  • Rudzinski M, Pardini L, Bernstein M, et al. Interferon-γ and il-10 release assay for patients with ocular toxoplasmosis. Am J Trop Med Hyg [Internet]. 2020 [cited 2023 Jul 26];103(6):2239–2243. doi: 10.4269/ajtmh.20-0124
  • Barbosa BF, Lopes-Maria JB, Gomes AO, et al. IL10, TGF Beta1, and IFN gamma modulate intracellular signaling pathways and cytokine production to control Toxoplasma gondii infection in BeWo trophoblast Cells1. Biol Reprod. 2015;92(3). doi: 10.1095/biolreprod.114.124115
  • Cai Y, Shen J. Modulation of host immune responses to Toxoplasma gondii by microRnas. Parasite Immunol Internet. 2017 [cited 2023 Jul 26];39(2):e12417. doi: 10.1111/pim.12417
  • Meira CS, Pereira-Chioccola VL, Vidal JE, et al. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front Microbiol. 2014;5:105138. doi: 10.3389/fmicb.2014.00492
  • Mahmoudzadeh S, Nozad Charoudeh H, Marques CS, et al. The role of IL-12 in stimulating NK cells against Toxoplasma gondii infection: a mini-review. Parasitol Res. 2021;120(7):2303–2309.
  • Geiller B, Greigert V, Hillenbrand CA, et al. Type I and III interferons shape the retinal cytokine network and barrier function in an in vitro model of ocular toxoplasmosis. Front Immunol. 2023;14:1148037. doi: 10.3389/fimmu.2023.1148037
  • Roberts CW, Prasad S, Khaliq F, et al. Adaptive immunity and genetics of the host immune response. Toxoplasma Gondii [Internet]. Second Edi. Elsevier; 2014. p. 819–994. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123964816000258
  • Jamieson SE, Cordell H, Petersen E, et al. Host genetic and epigenetic factors in toxoplasmosis. Mem Inst Oswaldo Cruz. 2009;104(2):162–169.
  • Wujcicka W, Gaj Z, Wilczyński J, et al. Contribution of IL6 −174 G>C and IL1B +3954 C>T polymorphisms to congenital infection with Toxoplasma gondii. Eur J Clin Microbiol Infect Dis. 2015;34(11):2287–2294.
  • Cordeiro CA, MMoreira PR, Costa GC, et al. Interleukin-1 gene polymorphisms and toxoplasmic retinochoroiditis. Mol VisInternet. 2008 [cited 2023 Jul 29];14:1845–1849. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568892/pdf/mv-v14-1845.pdf
  • Araujo WMR, Ayo CM, Previato M, et al. Role of interleukin 1β and interleukin 10 variants on ocular toxoplasmosis in Brazilian individuals. Front Ophthalmol Internet. 2023;3. https://www.frontiersin.org/articles/10.3389/fopht.2023.1183167/full
  • Cordeiro CA, Moreira PR, Bessa TF, et al. Interleukin-6 gene polymorphism (−174 G/C) is associated with toxoplasmic retinochoroiditis. Acta Ophthalmol. 2013;91:e311–e314. doi: 10.1111/aos.12046
  • Abu EK, Boampong JN, Kyei S, et al. Associations between polymorphisms within interferon gamma and Tumor necrosis factor genes and Toxoplasma Retinochoroiditis in Ghanaian patients. Ocul Immunol Inflamm. 2017;25(5):683–689.
  • Cordeiro CA, Moreira PR, Costa GC, et al. TNF- gene polymorphism (-308G/A) and toxoplasmic retinochoroiditis. Br J Ophthalmol. 2008;92(7):986–988.
  • de Albuquerque MC, Do Aleixo AC, Benchimol EI, et al. The IFN-³+874T/A gene polymorphism is associated with retinochoroiditis toxoplasmosis susceptibility. Mem Inst Oswaldo Cruz. 2009;104(3):451–455.
  • Do Aleixo AC, Vasconcelos C, de Oliveira R, et al. Toxoplasmic retinochoroiditis: the influence of age, number of retinochoroidal lesions and genetic polymorphism for IFN-γ +874 T/A as risk factors for recurrence in a survival analysis. PLoS One. 2019;14(2):e0211627.
  • de S NE, Curi ALL, de AM, et al. Genetic polymorphism for IFNγ +874T/A in patients with acute toxoplasmosis. Rev Soc Bras Med Trop. 2012;45(6):757–760.
  • Peixe RG, Boechat MSB, Rangel ALP, et al. Single nucleotide polymorphisms in the interferon gamma gene are associated with distinct types of retinochoroidal scar lesions presumably caused by Toxoplasma gondii infection. Mem Inst Oswaldo Cruz. 2014;109(1):99–107.
  • de Faria Junior GM, Ayo CM, de Oliveira AP, et al. CCR5 chemokine receptor gene polymorphisms in ocular toxoplasmosis. Acta Trop. 2018;178:276–280. doi: 10.1016/j.actatropica.2017.12.012
  • Jamieson SE, Peixoto-Rangel AL, Hargrave AC, et al. Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis. Genes Immun. 2010;11(5):374–383.
  • Witola WH, Liu SR, Montpetit A, et al. ALOX12 in human toxoplasmosis. Infect Immun. 2014;82(7):2670–2679.
  • Peixoto-Rangel AL, Miller EN, Castellucci L, et al. Candidate gene analysis of ocular toxoplasmosis in Brazil: evidence for a role for toll-like receptor 9 (TLR9). Mem Inst Oswaldo Cruz. 2009;104(8):1187–1190.
  • Dutra MS, Bela SR, Peixoto-Rangel AL, et al. Association of a NOD2 gene polymorphism and T-Helper 17 cells with presumed ocular toxoplasmosis. J Infect Dis. 2013;207(1):152–163.
  • Witola WH, Mui E, Hargrave A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii -infected monocytic cells. Infect Immun. 2011;79(2):756–766.
  • Ayo CM, da Camargo AS, Frederico FB, et al. MHC class I Chain-related gene a polymorphisms and linkage disequilibrium with HLA-B and HLA-C alleles in ocular toxoplasmosis. PLoS One. 2015;10(12):e0144534.
  • Ayo CM, Frederico FB, Siqueira RC, et al. Ocular toxoplasmosis: susceptibility in respect to the genes encoding the KIR receptors and their HLA class I ligands. Sci Rep. 2016;6(1):36632.
  • de Perce-da-Silva DS, Joaquim TE, Do Aleixo AC, et al. Influence of killer immunoglobulin-like receptors genes on the recurrence rate of ocular toxoplasmosis in Brazil. Mem Inst Oswaldo Cruz Internet. 2023;118 [[cited 2023 Jul 29]]. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762023000101103&tlng=en
  • Felix JPF, Lira RPC, Zacchia RS, et al. Trimethoprim-sulfamethoxazole versus placebo to reduce the risk of recurrences of Toxoplasma gondii retinochoroiditis: randomized controlled clinical trial. Am J Ophthalmol Internet. 2014;157(4):762–766.e1. doi: 10.1016/j.ajo.2013.12.022
  • Fernandes Felix JP, Cavalcanti Lira RP, Cosimo AB, et al. Trimethoprim-sulfamethoxazole versus placebo in reducing the risk of toxoplasmic retinochoroiditis recurrences: a three-year follow-up. Am J Ophthalmol Internet. 2016 [[cited 2019 Apr 26]];170:176–182. doi: 10.1016/j.ajo.2016.08.003
  • Amim LHLV, Pacheco AG, Fonseca-Costa J, et al. Role of IFN-γ +874 T/A single nucleotide polymorphism in the tuberculosis outcome among Brazilians subjects. Mol Biol Rep [Internet]. 2008 [cited 2023 Jul 28];35(4):563–566. doi:10.1007/s11033-007-9123-1
  • Sica A, Dorman L, Viggiano V, et al. Interaction of NF-κB and NFAT with the interferon-γ promoter. J Biol Chem. 1997;272(48):30412–30420.
  • Hernández-de-Los-Ríos A, Murillo-Leon M, Mantilla-Muriel LELE, et al. Influence of two major Toxoplasma gondii virulence factors (ROP16 and ROP18) on the immune response of peripheral blood mononuclear cells to human toxoplasmosis infection. Front Cell Infect Microbiol Internet. 2019;9:413. doi: 10.3389/fcimb.2019.00413
  • El-Bendary M, Neamatallah M, Elalfy H, et al. Association of interferon gamma gene polymorphism and susceptibility to hepatitis C virus infection in Egyptian patients: A multicenter, family‐based study. JGH Open [Internet]. 2017 [cited 2023 Jul 28];1:140 4 10.1002/jgh3.12024
  • Barrett S, Collins M, Kenny C, et al. Polymorphisms in tumour necrosis factor-α, transforming growth factor-β, interleukin-10, interleukin-6, interferon-γ, and outcome of hepatitis C virus infection. J Med Virol. 2003;71(2):212–218.
  • Silva JLA, Rezende-Oliveira K, da Silva MV, et al. IL-17-expressing CD4+ and CD8+ T lymphocytes in human toxoplasmosis. Mediators InflammInternet. 2014 [cited 2017 Mar 5];2014:573825. http://www.hindawi.com/journals/mi/2014/573825/
  • Fatoohi F, Cozon GJN, Wallon M, et al. Systemic T cell response to Toxoplasma gondii antigen in patients with ocular toxoplasmosis. Jpn J Ophthalmol Internet. 2006;50(2):103–110. doi: 10.1007/s10384-005-0295-8
  • Feron EJ, Klaren VN, Wierenga EA, et al. Characterization of Toxoplasma gondii-specific T cells recovered from vitreous fluid of patients with ocular toxoplasmosis. Invest Ophthalmol Vis SciInternet. 2001 [cited 2018 Oct 26];42:3228–3232. https://iovs.arvojournals.org/article.aspx?articleid=2123203
  • Guan H, Moretto M, Bzik DJ, et al. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J Immunol. 2007;179(1):590–596.
  • Hunter CA. How are NK cell responses regulated during infection? Exp Parasitol. 1996;84(3):444–448. doi: 10.1006/expr.1996.0133
  • Sturge CR, Yarovinsky F, Andrews-Polymenis HL. Complex immune cell interplay in the gamma interferon response during Toxoplasma gondii infection.Infect Immun Internet. 2014 [cited 2023 Jul 26];82(8):3090–3097. doi: 10.1128/IAI.01722-14
  • Frenkel JK, Jacobs L. Ocular toxoplasmosis; pathogenesis, diagnosis and treatment. AMA Arch Ophthalmol. AMA Archives Of Ophthalmol Internet. 1958 [cited 2018 Jul 5];59(2):260–279. doi: 10.1001/archopht.1958.00940030128013
  • Wilder HC. Toxoplasma chorioretinitis in adults: a preliminary study of forty-one Cases diagnosed by microscopic examination.AMA Arch Ophthalmol [Internet]. 1952 [[cited 2018 Jul 4]];47(4):425. doi: 10.1001/archopht.1952.01700030435003
  • Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. 2012 [cited 2023 Jul 26]. doi: 10.1016/j.preteyeres.2012.10.002
  • García-López LL, Vargas-Montes M, Osorio-Méndez JF, et al. CD8+ T–cell exhaustion phenotype in human asymptomatic and ocular toxoplasmosis.Ocul Immunol Inflamm Internet. 2023 [cited 2023 Jul 11].1–10. doi: 10.1080/0927394820232217906
  • Cordeiro CA, Vieira ELM, Castro VM, et al. T cell immunoregulation in active ocular toxoplasmosis. Immunol Lett Internet. 2017 [[cited 2023 Jul 26]];184:84–91. doi: 10.1016/j.imlet.2017.02.009
  • Sauer A, Pfaff AW, Villard O, et al. Interleukin 17A as an effective target for anti-inflammatory and antiparasitic treatment of toxoplasmic uveitis. J Infect Dis Internet. 2012 [[cited 2023 Jul 26]];206:1319–1329. doi:10.1093/infdis/jis486
  • Kelly MN, Kolls JK, Happel K, et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun. 2005;73(1):617–621.
  • Gaddi PJ, Yap GS. Cytokine regulation of immunopathology in toxoplasmosis.Immunol Cell Biol Internet. 2007 [cited 2023 Jul 26];85(2):155–159. doi: 10.1038/sj.icb.7100038
  • Dutra MS, Bela SR, Peixoto-Rangel AL, et al. Association of a NOD2 gene polymorphism and Th17 lymphocytes with presumed ocular toxoplasmosis. J Infect Dis Internet. 2012;207(1):152–163. http://www.ncbi.nlm.nih.gov/pubmed/23100559
  • Ashander LM, Lie S, Ma Y, et al. Neutrophil activities in human ocular toxoplasmosis: an in vitro study with human cells. Invest Ophthalmol Vis Sci [Internet]. 2019 [cited 2023 Jul 26];60(14):4652–4660. doi: 10.1167/iovs.19-28306
  • de Araújo TE, dos Santos LI, Gomes AO, et al. Putative biomarkers for early diagnosis and prognosis of congenital ocular toxoplasmosis. Sci Rep Internet. 2020 [cited 2023 Jul 26];10(11):1–14. doi: 10.1038/s41598-020-73265-z
  • Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation.Nat Immunol Internet. 2003 [cited 2023 Jul 28];4(9):835–842. doi: 10.1038/ni969
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–499. doi: 10.1038/ni.2035
  • Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Med 12:10Internet. 2006 [cited 2021 Aug 31];12(10):1198–1202. doi: 10.1038/nm1482
  • de Oliveira BC, da Silva AA, de Andrade Cavalcante MK, et al. Central and effector memory human CD4+ and CD8+ T cells during Cutaneous leishmaniasis and after in vitro stimulation with leishmania (viannia) braziliensis epitopes. Vaccines (Basel) Internet. 2023 [[cited 2023 Jul 11]];11(1): doi: 10.3390/vaccines11010158
  • Cifuentes-González C, Rojas-Carabali W, Pérez ÁO, et al. Risk factors for recurrences and visual impairment in patients with ocular toxoplasmosis: a systematic review and meta-analysis. PLoS One [Internet]. 2023 [cited 2023 Jul 28];18. 4 e0283845. doi: 10.1371/journal.pone.0283845
  • De-la-Torre A, Rios-Cadavid ACC, Cardozo-García CMM, et al. Frequency and factors associated with recurrences of ocular toxoplasmosis in a referral centre in Colombia. Br J Ophthalmol Internet. 2009;93(8):1001–1004. doi: 10.1136/bjo.2008.155861
  • Lin H-Y, Lee W-J. The role of corticosteroids in treating acute ocular toxoplasmosis in an immunocompetent patient: a case report. Front Med Internet. 2022;9. doi: 10.3389/fmed.2022.843050
  • Oray M, Ozdal PC, Cebeci Z, et al. Fulminant ocular toxoplasmosis: the hazards of corticosteroid monotherapy. Ocul Immunol Inflamm. 2016;24(6):637–646.
  • Garweg JG, Scherrer J, Wallon M, et al. Reactivation of ocular toxoplasmosis during pregnancy. BJOG [Internet]. 2005 [cited 2023 Jul 28];112(2):241–242. doi: 10.1111/j.1471-0528.2004.00302.x
  • Inchauspe S, Palacio A, Arriazu G, et al. Association between ocular Trauma and activation of ocular toxoplasmosis. Ocul Immunol Inflamm Internet. 2023 [cited 2023 Jul 28]; 1–5. https://click.endnote.com/viewer?doi=10.1080%2F09273948.2023.2203215&token=WzEwNzI1NCwiMTAuMTA4MC8wOTI3Mzk0OC4yMDIzLjIyMDMyMTUiXQ.q0vjbL8ahzWFPviXMj69q1rIV6Q
  • Lee KA, Flores RR, Jang IH, et al. Immune Senescence, Immunosenescence and Aging. Frontiers In Aging Internet. 2022 [cited 2023 Jul 28]; 3. doi: 10.3389/fragi.2022.900028
  • Velasco-Velásquez S, Celis-Giraldo D, Botero Hincapié A, et al. Clinical, socio-economic and environmental factors related with recurrences in ocular toxoplasmosis in Quindío, Colombia. Ophthalmic Epidemiol Internet. 2020;28(3):258–264. https://www.tandfonline.com/doi/full/10.1080/09286586.2020.1839509
  • Jensen KDC, Camejo A, Melo MB, et al. Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. Weiss LM, editor. MBio [Internet]. 2015;6(2): doi: 10.1128/mBio.02280-14
  • Holland GN, Crespi CM, ten Dam-van Loon N, et al. Analysis of recurrence patterns associated with Toxoplasmic Retinochoroiditis. Am J Ophthalmol Internet. 2008;145(6):1007–1013.e1. doi: 10.1016/j.ajo.2008.01.023
  • Reich M, Ruppenstein M, Becker MD, et al. Time patterns of recurrences and factors predisposing for a higher risk of recurrence of ocular toxoplasmosis. Retina [Internet]. 2015 [cited 2023 Sep 24];35(4):809–819. doi: 10.1097/IAE.0000000000000361
  • Garweg JG, Pleyer U. Treatment strategy in human ocular toxoplasmosis: why antibiotics have failed. J Clin Med Internet. 2021 [[cited 2023 Sep 24]];10(5):1–20. doi: 10.3390/jcm10051090
  • Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe [Internet]. 2010 [cited 2020 Oct 14];8(6):484–495. doi: 10.1016/j.chom.2010.11.005
  • BLADER IJ, SAEIJ JP. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS Internet. 2009;117(5–6):458–476. doi: 10.1111/j.1600-0463.2009.02453.x
  • Reich M, Becker MD, Mackensen F. Influence of drug therapy on the risk of recurrence of ocular toxoplasmosis. Br J Ophthalmol bjophthalmol-2015. 2015;100(2):195–199. doi: 10.1136/bjophthalmol-2015-306650
  • Gómez Marín JE. Possibilities for immunomodulation in congenital toxoplasmosis. J Infect Dis Internet. 2016 [cited 2016 Sep 13];214(4):656.1–656. doi: 10.1093/infdis/jiw210
  • Gómez Marín JE, El Bissati K. Editorial: Innovative Therapeutic and Immunomodulatory Strategies for Protozoan Infections. Front Cell Infect Microbiol Internet. 2019;9. doi: 10.3389/fcimb.2019.00293
  • Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation.Journal Of Leukocyte Biology Internet. 2003 [cited 2018 Oct 26];74(2):179–185. doi: 10.1189/jlb.1102574
  • Hu Z, Wu D, Lu J, et al. Inflammasome activation dampens type I IFN signaling to strengthen anti-Toxoplasma immunity. MBio. 2022 [[cited 2023 Jul 27]];13(6): Internet. doi: 10.1128/mbio.02361-22
  • Bretscher PA. On the mechanism determining the Th1/Th2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases.Scand J Immunol Internet. 2014 [cited 2023 May 27];79(6):361–376. doi: 10.1111/sji.12175
  • McBride D, Kerr M, Dorn N, et al. Triggers, timescales, and treatments for cytokine-mediated tissue damage. EMJ Innovations Internet. 2020 [[cited 2023 Jul 27]]. https://click.endnote.com/viewer?doi=10.33590%2Femjinnov%2F20-00203&token=WzEwNzI1NCwiMTAuMzM1OTAvZW1qaW5ub3YvMjAtMDAyMDMiXQ.zIek2f43CMQ0WpRUMnWDoDoGHGc
  • Mease PJ, Van Der Heijde D, Ritchlin CT, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebocontrolled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum DisInternet. 2017 [cited 2023 Jul 27];76:79–87. https://click.endnote.com/viewer?doi=10.1136%2Fannrheumdis-2016-209709&token=WzEwNzI1NCwiMTAuMTEzNi9hbm5yaGV1bWRpcy0yMDE2LTIwOTcwOSJd.KrsXr2mzaaCvvXXLShfGu79Cchw
  • Lebwohl M, Strober B, Menter A, et al. Phase 3 Studies Comparing Brodalumab with Ustekinumab in Psoriasis. N Engl J Med [Internet]. 2015 [cited 2023 Jul 27];373:1318–1328. 14 10.1056/NEJMoa1503824
  • Baeten D, Sieper J, Braun J, et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med [Internet]. 2015 [cited 2023 Jul 27];373(26):2534–2548. doi: 10.1056/NEJMoa1505066
  • Pepple KL, Lin P. Targeting interleukin-23 in the treatment of noninfectious uveitis.Ophthalmol Internet. 2018 [cited 2023 Jul 27];125(12):1977. doi: 10.1016/j.ophtha.2018.05.014
  • Atienza-Mateo B, Calvo-Río V, Beltrán E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behçet’s disease: multicentre retrospective study. Rheumatology [Internet]. 2018 [cited 2023 Jul 27];57:856–864. doi: 10.1093/rheumatology/kex480. 5
  • Syambani Ulhaq Z, Vita Soraya G, Retno Wulandari L. The role of IL-6-174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis. Sci Rep. 2020 [cited 2023 Jul 27];10(1). doi: 10.1038/s41598-020-74203-9
  • Yang JY, Goldberg D, Sobrin L. Interleukin-6 and Macular Edema: a review of Outcomes with inhibition. Int J Mol Sci 2023, Vol 24, Page 4676Internet. 2023 [cited 2023 Jul 27];24(5):4676. doi: 10.3390/ijms24054676
  • Ciulla TA, Hussain RM, Taraborelli D, et al. Longer-Term Anti-VEGF Therapy Outcomes in Neovascular Age-Related Macular Degeneration, Diabetic Macular Edema, and Vein Occlusion-Related Macular Edema: Clinical Outcomes in 130 247 Eyes. Ophthalmol Retina. 2022;6(9):796–806.