29
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Stem cell therapy in retinal diseases: current evidence

, , , &
Pages 119-131 | Received 13 Jul 2023, Accepted 15 Dec 2023, Published online: 20 Dec 2023

References

  • Heath Jeffery RC, Mukhtar SA, McAllister IL, et al. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021;42(4):431–439. doi: 10.1080/13816810.2021.1913610
  • Sharma A, Jaganathan BG. Stem cell therapy for retinal degeneration: the evidence to date. Biologics. 2021;15:299–306. doi: 10.2147/BTT.S290331
  • Chung SH, Frick SL, Yiu G. Targeting vascular endothelial growth factor using retinal gene therapy. Ann Transl Med. 2021;9(15):1277. doi: 10.21037/atm-20-4417
  • West EL, Ribeiro J, Ali RR. Development of stem cell therapies for retinal degeneration. Cold Spring Harb Perspect Biol. 2020;12(8):a035683. doi: 10.1101/cshperspect.a035683
  • Zacharias DG, Nelson TJ, Mueller PS, et al. The science and ethics of induced pluripotency: what will become of embryonic stem cells? Mayo Clin Proc. 2011;86(7):634–640. doi: 10.4065/mcp.2011.0054
  • Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589–603. doi: 10.3233/RNN-2010-0543
  • German OL, Vallese-Maurizi H, Soto TB, et al. Retina stem cells, hopes and obstacles. World J Stem Cells. 2021;13(10):1446–1479. doi: 10.4252/wjsc.v13.i10.1446
  • Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ. 2021;63(2):104–115. doi: 10.1111/dgd.12715
  • Ye L, Swingen C, Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr Cardiol Rev. 2013;9(1):63–72. doi: 10.2174/1573403X11309010008
  • Liu G, David BT, Trawczynski M, et al. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev And Rep. 2020;16(1):3–32. doi: 10.1007/s12015-019-09935-x
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  • Nicholson MW, Ting CY, Chan DZH, et al. Utility of iPSC-Derived cells for disease modeling, drug development, and cell therapy. Cells. 2022;11(11):1853. doi: 10.3390/cells11111853
  • Aladdad AM, Kador KE. Adult stem cells, tools for repairing the retina. Curr Ophthalmol Rep. 2019;7(1):21–29. doi: 10.1007/s40135-019-00195-z
  • Gill KP, Hewitt AW, Davidson KC, et al. Methods of retinal ganglion cell differentiation from pluripotent stem cells. Transl Vis Sci Technol. 2014;3(4):7. doi: 10.1167/tvst.3.3.7
  • Lu B, Morgans CW, Girman S, et al. Neural stem cells derived by small molecules preserve vision. Transl Vis Sci Technol. 2013;2(1):1. doi: 10.1167/tvst.2.1.1
  • Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15(7):431–42. doi: 10.1038/nrn3723
  • Todd L, Hooper MJ, Haugan AK, et al. Efficient stimulation of retinal regeneration from müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep. 2021;37(3):109857. doi: 10.1016/j.celrep.2021.109857
  • Frøen R, Johnsen EO, Nicolaissen B, et al. Does the adult human ciliary body epithelium contain “true” retinal stem cells? Biomed Res Int. 2013;2013:531579. doi: 10.1155/2013/531579
  • Jeon S, Oh IH. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases. BMB Rep. 2015;48(4):193–199. doi: 10.5483/BMBRep.2015.48.4.276
  • Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–1053. doi: 10.1056/NEJMoa1609583
  • Wang Z, Gao F, Zhang M, et al. Intravitreal injection of human retinal progenitor cells for treatment of retinal degeneration. Med Sci Monit. 2020;26:e921184. doi: 10.12659/MSM.921184
  • Gao H, Ni N, Zhang D, et al. miR-762 regulates the proliferation and differentiation of retinal progenitor cells by targeting NPDC1. Cell Cycle. 2020;19(14):1754–1767. doi: 10.1080/15384101.2020.1777805
  • Sun N, Zhang D, Ni N, et al. miR-17 regulates the proliferation and differentiation of retinal progenitor cells by targeting CHMP1A. Biochem Biophys Res Commun. 2020;523(2):493–499. doi: 10.1016/j.bbrc.2019.11.108
  • Shen B, Gao H, Zhang D, et al. miR-124-3p regulates the proliferation and differentiation of retinal progenitor cells through SEPT10. Cell Tissue Res. 2023;392(3):689–704. doi: 10.1007/s00441-023-03750-0
  • Sarsenova M, Kim Y, Raziyeva K, et al. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol. 2022;13:1010399. doi: 10.3389/fimmu.2022.1010399
  • Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653–664. doi: 10.1016/j.tips.2020.06.009
  • Zhu D, Xie M, Gademann F, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98. doi: 10.1186/s13287-020-01608-8
  • Hertz J, Qu B, Hu Y, et al. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant. 2014;23(7):855–872. doi: 10.3727/096368913X667024
  • Tu HY, Watanabe T, Shirai H, et al. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine. 2019;39:562–574. doi: 10.1016/j.ebiom.2018.11.028
  • Petrus-Reurer S, Kumar P, Padrell Sánchez S, et al. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem Cells Transl Med. 2020;9(8):936–953. doi: 10.1002/sctm.19-0396
  • Mazzilli JL, Snook JD, Simmons K, et al. A preclinical safety study of human embryonic stem cell-derived retinal pigment epithelial cells for macular degeneration. J Ocular Pharmacol Ther. 2020;36(1):65–69. doi: 10.1089/jop.2019.0039
  • Alsaeedi HA, Koh AE, Lam C, et al. Dental pulp stem cells therapy overcomes photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J Photochem Photobiol B. 2019;198:111561. doi: 10.1016/j.jphotobiol.2019.111561
  • Liu X, Xie J, Yang L, et al. Bone marrow mesenchymal stem cells enhance autophagy and help protect cells under hypoxic and retinal detachment conditions. J Cell Mol Med. 2020;24(6):3346–3358. doi: 10.1111/jcmm.15008
  • Rajashekhar G, Ramadan A, Abburi C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One. 2014;9(1):e84671. doi: 10.1371/journal.pone.0084671
  • Prokhorova TA, Harkness LM, Frandsen U, et al. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev. 2009;18(1):47–54. doi: 10.1089/scd.2007.0266
  • Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Exp Eye Res. 2020;191:107899. doi: 10.1016/j.exer.2019.107899
  • Moisseiev E, Anderson JD, Oltjen S, et al. Protective Effect of intravitreal administration of exosomes derived from mesenchymal stem cells on retinal ischemia. Curr Eye Res. 2017;42(10):1358–1367. doi: 10.1080/02713683.2017.1319491
  • Caplan H, Olson SD, Kumar A, et al. Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front Immunol. 2019;10:1645. doi: 10.3389/fimmu.2019.01645
  • Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J R Soc Interface. 2010;7(Suppl 6):S753–S763. doi: 10.1098/rsif.2010.0353.focus
  • Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, et al. Retinal organoids from human-induced pluripotent stem cells: from studying retinal dystrophies to early diagnosis of Alzheimer’s and Parkinson’s disease. Semin Cell Dev Biol. 2023;144:77–86. doi: 10.1016/j.semcdb.2022.09.011
  • Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem Cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmol. 2018;125(11):1765–1775. doi: 10.1016/j.ophtha.2018.04.037
  • Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–720. doi: 10.1016/S0140-6736(12)60028-2
  • Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4(5):860–872. doi: 10.1016/j.stemcr.2015.04.005
  • A Phase I/IIa, open-label, single-center, prospective study to determine the safety and tolerability of sub-retinal transplantation of human embryonic stem cell derived retinal pigmented Epithelial(MA09-hRPE) cells in patients with advanced dry age-related macular degeneration(AMD). Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01674829
  • Sung Y, Lee MJ, Choi J, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian stargardt disease patients. Br J Ophthalmol. 2021;105(6):829–837. doi: 10.1136/bjophthalmol-2020-316225
  • da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–337. doi: 10.1038/nbt.4114
  • A study of implantation of retinal pigment epithelium in subjects with acute wet age related macular degeneration. Available from: https://clinicaltrials.gov/ct2/show/NCT01691261
  • Kashani AH, Lebkowski JS, Rahhal FM, et al. One-year follow-up in a Phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol. 2021;10(10):13. doi: 10.1167/tvst.10.10.13
  • Kashani AH, Lebkowski JS, Hinton DR, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem Cell Rep. 2022;17(3):448–458. doi: 10.1016/j.stemcr.2022.01.001
  • Aweidah H, Matsevich C, Khaner H, et al. Survival of neural progenitors derived from human embryonic stem cells following subretinal transplantation in rodents. J Ocul Pharmacol Ther. 2022;39(5):347–358. doi: 10.1089/jop.2022.0161
  • Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–1046. doi: 10.1056/NEJMoa1608368
  • Cyranoski D. Japanese man is first to receive ‘reprogrammed’ stem cells from another person. Nature. 2017;10:1038. doi:10.1038/nature.2017.21730
  • Park SS, Bauer G, Abedi M, et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary Phase 1 clinical trial findings. Investig Opthalmol Vis Sci. 2014;56:81–89. doi: 10.1167/iovs.14-15415
  • Siqueira RC, Messias A, Voltarelli JC, et al. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy. Retina. 2011;31(6):1207–1214. doi: 10.1097/IAE.0b013e3181f9c242
  • Gu X, Yu X, Zhao C, et al. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem. 2018;49:40–52. doi: 10.1159/000492838
  • Oumlzmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther. 2020;11:353. doi: 10.1186/s13287-020-01870-w
  • Saraf SS, Cunningham MA, Kuriyan AE, et al. Bilateral retinal detachments after intravitreal injection of adipose-derived ‘stem cells’ in a patient with exudative macular degeneration. Ophthalmic Surg Lasers Imaging Retina. 2017;48(9):772–775. doi: 10.3928/23258160-20170829-16
  • Leung EH, HW F Jr, Albini TA, et al. Retinal detachment after subretinal stem cell transplantation. Ophthalmic Surg Lasers Imaging Retina. 2016;47(6):600–601. doi: 10.3928/23258160-20160601-16
  • Hu C, La H, Wei X, et al. Transplantation site affects the outcomes of adipose-derived stem cell-based therapy for retinal degeneration. Stem Cells Int. 2020;2020:9625798. doi: 10.1155/2020/9625798
  • Safety of a single, intravitreal injection of human retinal progenitor cells (jCell) in retinitis pigmentosa. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02320812
  • Safety and efficacy of IIntravitreal injection of human retinal progenitor cells in adults with retinitis pigmentosa. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03073733
  • Safety and tolerability of hRPC in retinitis pigmentosa. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02464436
  • Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8(1):209. doi: 10.1186/s13287-017-0661-8
  • Dosmar E, Walsh J, Doyel M, et al. Targeting ocular drug delivery: an examination of local anatomy and Current approaches. Bioeng. 2022;9(1):41. doi: 10.3390/bioengineering9010041
  • Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, et al. Subretinal injection techniques for retinal disease: a review. J Clin Med. 2022;11(16):4717. doi: 10.3390/jcm11164717
  • Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097. doi: 10.1126/scitranslmed.aao4097
  • AC MH, Chang TS, Samuel M, et al. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:67–80. doi: 10.1016/j.ajo.2017.04.006
  • Zhang X, Bok D. Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(6):1021–1027.
  • Casella AM, Taba KE, Kimura H, et al. Retinal pigment epithelial cells are heterogeneous in their expression of MHC-II after stimulation with interferon-gamma. Exp Eye Res. 1999;68(4):423–430. doi: 10.1006/exer.1998.0621
  • Chen M, Luo C, Zhao J, et al. Immune regulation in the aging retina. Prog Retin Eye Res. 2019;69:159–172. doi: 10.1016/j.preteyeres.2018.10.003
  • Kaur G, Singh NK. Inflammation and retinal degenerative diseases. Neural Regen Res. 2023;18(3):513–518. doi: 10.4103/1673-5374.350192
  • Sugita S, Mandai M, Kamao H, et al. Immunological aspects of RPE cell transplantation. Prog Retin Eye Res. 2021;84:100950. doi: 10.1016/j.preteyeres.2021.100950
  • Meneghini M, Bestard O, Grinyo JM. Immunosuppressive drugs modes of action. Best Pract Res Clin Gastroenterol. 2021;54-55:101757. doi: 10.1016/j.bpg.2021.101757
  • Petrus-Reurer S, Romano M, Howlett S, et al. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol. 2021;4(1):798. doi: 10.1038/s42003-021-02237-4
  • Meissner TB, Schulze HS, Dale SM. Immune editing: overcoming immune barriers in stem cell transplantation. Curr Stem Cell Rep. 2022;8(4):206–218. doi: 10.1007/s40778-022-00221-0
  • Flahou C, Morishima T, Takizawa H, et al. Fit-for-all iPSC-Derived cell therapies and their evaluation in humanized mice with NK cell immunity. Front Immunol. 2021;12:662360. doi: 10.3389/fimmu.2021.662360
  • Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPscs in MHC-Matched models. Stem Cell Rep. 2016;7(4):635–648. doi: 10.1016/j.stemcr.2016.08.010
  • Morizane A, Kikuchi T, Hayashi T, et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun. 2017;8(1):385. doi: 10.1038/s41467-017-00926-5
  • Pilat N, Sayegh MH, Wekerle T. Costimulatory pathways in transplantation. Semin Immunol. 2011;23(4):293–303. doi: 10.1016/j.smim.2011.04.002
  • Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–296. doi: 10.1016/j.ccr.2012.03.003
  • Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem. 2010;111(4):769–781.
  • Fortress AM, Miyagishima KJ, Reed AA, et al. Stem cell sources and characterization in the development of cell-based products for treating retinal disease: an NEI Town Hall report. Stem Cell Res Ther. 2023;14(1):53. doi: 10.1186/s13287-023-03282-y
  • Leach LL, Clegg DO. Concise review: making stem cells retinal: methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells. 2015;33(8):2363–2373. doi: 10.1002/stem.2010
  • Choudhary P, Booth H, Gutteridge A, et al. Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med. 2017;6(2):490–501. doi: 10.5966/sctm.2016-0088
  • Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408. doi: 10.1016/j.stem.2009.07.002
  • Otonkoski T, Beattie GM, Mally MI, et al. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest. 1993;92(3):1459–1466. doi: 10.1172/JCI116723
  • Kuroda T, Yasuda S, Kusakawa S, et al. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One. 2012;7(5):e37342. doi: 10.1371/journal.pone.0037342
  • Kuroda T, Yasuda S, Sato Y. In vitro detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human induced pluripotent stem cells. Methods Mol Biol. 2014;1210:183–192.
  • Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5(1):e8763. doi: 10.1371/journal.pone.0008763
  • Koss MJ, Falabella P, Stefanini FR, et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch Clin Exp Ophthalmol. 2016;254(8):1553–1565. doi: 10.1007/s00417-016-3386-y
  • Kashani AH, Martynova A, Koss M, et al. Subretinal implantation of a human embryonic stem cell-derived retinal pigment epithelium monolayer in a porcine model. Adv Exp Med Biol. 2019;1185:569–574.
  • Rajendran Nair DS, Seiler MJ, Patel KH, et al. Tissue Engineering Strategies for Retina Regeneration. Appl Sci. 2021;11(5):2154. doi: 10.3390/app11052154
  • Yao J, Tao SL, Young MJ. Synthetic polymer scaffolds for stem cell transplantation in retinal tissue engineering. Polymers. 2011;3(2):899–914. doi: 10.3390/polym3020899
  • Ru L, Wu N, Wei K, et al. Improving cell survival and engraftment in vivo via layer-by-layer nanocoating of hESC-derived RPE cells. Stem Cell Res Ther. 2020;11(1):495. doi: 10.1186/s13287-020-01986-z
  • Warre-Cornish K, Barber AC, Sowden JC, et al. Migration, integration and maturation of photoreceptor precursors following transplantation in the mouse retina. Stem Cells Dev. 2014 1;23(9):941–954. doi: 10.1089/scd.2013.0471
  • Pearson RA, Hippert C, Graca AB, et al. Photoreceptor replacement therapy: challenges presented by the diseased recipient retinal environment. Vis Neurosci. 2014;31(4–5):333–344. doi: 10.1017/S0952523814000200
  • Santos-Ferreira T, Postel K, Stutzki H, et al. Daylight vision repair by cell transplantation. Stem Cells. 2015;33(1):79–90. doi: 10.1002/stem.1824
  • Zhang Z, Xu Z, Yuan F, et al. Retinal organoid technology: where are we Now? Int J Mol Sci. 2021 23;22(19):10244. doi: 10.3390/ijms221910244
  • Lin B, McLelland BT, Aramant RB, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci. 2020 1;61(11):34. doi: 10.1167/iovs.61.11.34
  • Rajendran Nair DS, Zhu D, Sharma R, et al. Long-term transplant effects of iPSC-RPE monolayer in immunodeficient RCS rats. Cells. 2021;10(11):2951. doi: 10.3390/cells10112951
  • Dose escalation study to evaluate the safety/tolerability and efficacy of EA-2353 in subjects with retinitis pigmentosa. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05392751.
  • NIH. Grants & funding: NIH human embryonic stem cell registry [internet]. [cited 2023 Sep 26]. Available from: http://grants.nih.gov/stem_cells/registry/current.htm.
  • Verginer L, Riccaboni M. Stem cell legislation and its impact on the geographic preferences of stem cell researchers. Eurasian Bus Rev. 2021;11:1603–189. doi: 10.1007/s40821-021-00182-0
  • Mathews DJ, Donovan PJ, Harris J, et al. Pluripotent stem cell-derived gametes: truth and (potential) consequences. Cell Stem Cell. 2009;5(1):11–14. doi: 10.1016/j.stem.2009.06.005
  • Liang G, Zhang Y. Genetic and epigenetic variations in iPscs: potential causes and implications for application. Cell Stem Cell. 2013;13(2):149–159. doi: 10.1016/j.stem.2013.07.001
  • Blasco MA, Serrano M, Fernandez-Capetillo O. Genomic instability in iPS: time for a break. EMBO J. 2011;30(6):991–993. doi: 10.1038/emboj.2011.50
  • Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene. 2019;686:146–159. doi: 10.1016/j.gene.2018.11.069
  • Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;157:8. doi: 10.21037/sci-2020-001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.