84
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Living with your biome: how the bacterial microbiome impacts ocular surface health and disease

, , , , , & ORCID Icon show all
Pages 89-103 | Received 01 Aug 2023, Accepted 14 Jan 2024, Published online: 04 Feb 2024

References

  • Noto D, Miyake S. Gut dysbiosis and multiple sclerosis. Clin Immunol. 2022 Feb;235: 108380. doi: 10.1016/j.clim.2020.108380
  • Clapp M, Aurora N, Herrera L, et al. Gut microbiota’s effect on mental health: The gut-brain axis. Clin Pract. 2017 Sep 15;7(4):987. doi: 10.4081/cp.2017.987
  • Kim J, Lee HK. Potential role of the gut microbiome in colorectal cancer progression. Front Immunol. 2021;12:807648. doi: 10.3389/fimmu.2021.807648
  • Menees S, Chey W. The gut microbiome and irritable bowel syndrome. F1000Res. 2018;7:1029. doi: 10.12688/f1000research.14592.1
  • Zhang Y, Zhou X, Lu Y. Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Front Cell Infect Microbiol. 2022;12:968992. doi: 10.3389/fcimb.2022.968992
  • Chiang MC, Chern E. Ocular surface microbiota: Ophthalmic infectious disease and probiotics. Front Microbiol. 2022;13:952473. doi: 10.3389/fmicb.2022.952473
  • Yang Y, Qu L, Mijakovic I, et al. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact. 2022 Aug 29;21(1):176. doi: 10.1186/s12934-022-01901-6
  • Zarco M, Vess T, Ginsburg G. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012;18(2):109–120. doi: 10.1111/j.1601-0825.2011.01851.x
  • Yang S, Wu BC, Cheng Z, et al. The microbiome of meibomian gland secretions from patients with internal hordeolum treated with hypochlorous acid eyelid wipes. Dis Markers. 2022;2022:7550090. doi: 10.1155/2022/7550090
  • Ozkan J, Willcox MD. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr Eye Res. 2019 Jul;44(7):685–694. doi: 10.1080/02713683.2019.1570526
  • Wan SJ, Sullivan AB, Shieh P, et al. IL-1R and MyD88 contribute to the absence of a bacterial microbiome on the healthy murine cornea [Original Research]. Front Microbiol. 2018 May 29;9. doi: 10.3389/fmicb.2018.01117
  • Leis ML, Madruga GM, Costa MO, et al. The porcine corneal surface bacterial microbiome: A distinctive niche within the ocular surface. PloS One. 2021;16(2):e0247392. doi: 10.1371/journal.pone.0247392
  • Tunç U, Çelebi ARC, Ekren BY, et al. Corneal bacterial microbiome in patients with keratoconus using next-generation sequencing–based 16S rRNA gene analysis. Exp Eye Res. 2023 Mar 01;228:109402.
  • Matysiak A, Kabza M, Karolak JA, et al. Characterization of ocular surface microbial profiles revealed discrepancies between conjunctival and corneal microbiota. Pathogens. 2021 Mar 30;10(4):405. doi: 10.3390/pathogens10040405
  • Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016 Jul 01;22(7):643.e7–643.e12.
  • Dong Q, Brulc JM, Iovieno A, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Visual Sci. 2011;52(8):5408–5413. doi: 10.1167/iovs.10-6939
  • Zhou Y, Holland MJ, Makalo P, et al. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med. 2014 Nov 15;6(11):99. doi: 10.1186/s13073-014-0099-x
  • Garza A, Diaz G, Hamdan M, et al. Homeostasis and defense at the surface of the eye. The conjunctival microbiota. Curr Eye Res. 2021 Jan;46(1):1–6.
  • Ren Z, Li W, Liu Q, et al. Profiling of the conjunctival bacterial microbiota reveals the feasibility of utilizing a microbiome-based machine learning model to differentially diagnose microbial keratitis and the core components of the conjunctival bacterial interaction network. Front Cell Infect Microbiol. 2022;12:860370. doi: 10.3389/fcimb.2022.860370
  • Zhu X, Wei L, Rong X, et al. Conjunctival microbiota in patients with type 2 diabetes mellitus and influences of perioperative use of topical levofloxacin in ocular surgery [Original research]. Front Med. 2021 Apr 06;8. doi: 10.3389/fmed.2021.605639
  • Jiang X, Deng A, Yang J, et al. Pathogens in the Meibomian gland and conjunctival sac: microbiome of normal subjects and patients with Meibomian gland dysfunction. Infect Drug Resist. 2018;11:1729–1740. doi: 10.2147/IDR.S162135
  • Peral A, Alonso J, García-García C, et al. Importance of lid hygiene before ocular surgery: qualitative and quantitative analysis of eyelid and conjunctiva microbiota. Eye Contact Lens. 2016 Nov;42(6):366–370.
  • Dréno B, Dagnelie MA, Khammari A, et al. The skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020 Sep;21(Suppl S1):18–24.
  • Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: a PCR-Based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Visual Sci. 2007;48(12):5616–5623. doi: 10.1167/iovs.07-0588
  • Gupta N, Chhibber-Goel J, Gupta Y, et al. Ocular conjunctival microbiome profiling in dry eye disease: A case control pilot study. Indian J Ophthalmol. 2023 Apr;71(4):1574–1581.
  • Suwajanakorn O, Puangsricharern V, Kittipibul T, et al. Ocular surface microbiome in diabetes mellitus. Sci Rep. 2022 Dec 13;12(1):21527. doi: 10.1038/s41598-022-25722-0
  • Li S, Yi G, Peng H, et al. How ocular surface microbiota debuts in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2019;9:202. doi: 10.3389/fcimb.2019.00202
  • Fu Y, Wu J, Wang D, et al. Metagenomic profiling of ocular surface microbiome changes in Demodex blepharitis patients. Front Cell Infect Microbiol. 2022;12:922753. doi: 10.3389/fcimb.2022.922753
  • Jabbehdari S, Memar OM, Caughlin B, et al. Update on the pathogenesis and management of ocular rosacea: an interdisciplinary review. Eur J Ophthalmol. 2021;31(1):22–33. doi: 10.1177/1120672120937252
  • Pickering H, Palmer CD, Houghton J, et al. Conjunctival microbiome-host responses are associated with impaired epithelial cell health in both early and late stages of trachoma. Front Cell Infect Microbiol. 2019;9:297. doi: 10.3389/fcimb.2019.00297
  • Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat. 2005 Mar;206(3):271–85. doi: 10.1111/j.1469-7580.2005.00394.x
  • Agnifili L, Mastropasqua R, Fasanella V, et al. In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans. Invest Ophthalmol Vis Sci. 2014 Jul 29;55(8):5254–62. doi: 10.1167/iovs.14-14365
  • Kanamori Y, Ishimaru K, Nanno M, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med. 1996 Oct 1;184(4):1449–59. doi: 10.1084/jem.184.4.1449
  • Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PloS One. 2012;7(5):e36822. doi: 10.1371/journal.pone.0036822
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001 Aug 10;106(3):255–8.
  • Gillette TE, Chandler JW, Greiner JV. Langerhans cells of the ocular surface. Ophthalmol. 1982 Jun;89(6):700–11. doi: 10.1016/s0161-6420(82)34737-5
  • Streilein JW. Regional immunity and ocular immune privilege. Chem Immunol. 1999;73:11–38.
  • Pepose JS, Gardner KM, Nestor MS, et al. Detection of HLA class I and II antigens in rejected human corneal allografts. Ophthalmol. 1985 Nov;92(11):1480–4.
  • Hamrah P, Liu Y, Zhang Q, et al. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci. 2003 Feb;44(2):581–9.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009 Apr;22(2):240–273. doi: 10.1128/CMR.00046-08
  • Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018 Aug;18(4):e27. doi: 10.4110/in.2018.18.e27
  • St Leger AJ, Desai JV, Drummond RA, et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells. Immunity. 2017 Jul 18;47(1):148–158.e5. doi: 10.1016/j.immuni.2017.06.014
  • Mass E, Nimmerjahn F, Kierdorf K, et al. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023 Mar;23(9):563–579.
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013 Apr 25;496(7446):445–55.
  • O’Koren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019 Mar 19;50(3):723–737.e7. doi: 10.1016/j.immuni.2019.02.007
  • Liu J, Xue Y, Dong D, et al. CCR2(-) and CCR2(+) corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol. 2017 Sep;10(5):1145–1159.
  • Liu J, Wu M, He J, et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal nerve regeneration by affecting CCR2-negative macrophage distribution. Am J Pathol. 2018 Dec;188(12):2786–2799.
  • Xue Y, He J, Xiao C, et al. The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol. 2018 Sep;11(5):1496–1511.
  • Yun H, Yee MB, Lathrop KL, et al. Production of the cytokine VEGF-A by CD4(+) T and myeloid cells disrupts the corneal nerve landscape and promotes herpes stromal keratitis. Immunity. 2020 Nov 17;53(5):1050–1062.
  • Paludan SR. Interleukin-4 and interferon-gamma: the quintessence of a mutual antagonistic relationship. Scand J Immunol. 1998 Nov;48(5):459–468. doi: 10.1046/j.1365-3083.1998.00435.x
  • Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012 May;5(3):232–9. doi: 10.1038/mi.2012.4
  • Foulsham W, Coco G, Amouzegar A, et al. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol. 2018 Apr;39(4):288–301.
  • Suzuki K, Saito J, Yanai R, et al. Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog Retin Eye Res. 2003 Mar;22(2):113–133.
  • Sugrue SP, Zieske JD. ZO1 in corneal epithelium: association to the zonula occludens and adherens junctions. Exp Eye Res. 1997 Jan;64(1):11–20. doi: 10.1006/exer.1996.0175
  • Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001 Apr;2(4):285–93. doi: 10.1038/35067088
  • Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996 Feb 9;84(3):381–8.
  • Morris JE, Zobell S, Yin XT, et al. Mice with mutations in Fas and Fas ligand demonstrate increased herpetic stromal keratitis following corneal infection with HSV-1. J Immunol. 2012 Jan 15;188(2):793–9. doi: 10.4049/jimmunol.1102251
  • El Annan J, Goyal S, Zhang Q, et al. Regulation of T-cell chemotaxis by programmed death-ligand 1 (PD-L1) in dry eye-associated corneal inflammation. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3418–3423.
  • Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006 Oct 26;443(7114):993–7. doi: 10.1038/nature05249
  • Ferrari G, Hajrasouliha AR, Sadrai Z, et al. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci. 2013 Jan 28;54(1):813–20. doi: 10.1167/iovs.11-8379
  • Redfern RL, Reins RY, McDermott AM. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells. Exp Eye Res. 2011 Mar;92(3):209–20. doi: 10.1016/j.exer.2010.12.005
  • Contreras-Ruiz L, Masli S, Wallace GR. Immunomodulatory cross-talk between conjunctival goblet cells and dendritic cells. PloS One. 2015;10(3):e0120284. doi: 10.1371/journal.pone.0120284
  • Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009 Jul;124(1):37–42. doi: 10.1016/j.jaci.2009.04.045
  • Taube MA, Del Mar Cendra M, Elsahn A, et al. Pattern recognition receptors in microbial keratitis. Eye (Lond). 2015 Nov;29(11):1399–415.
  • Gordon YJ, Huang LC, Romanowski EG, et al. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res. 2005 May;30(5):385–94.
  • Mc NN, Van R, Tuchin OS, et al. Ocular surface epithelia express mRNA for human beta defensin-2. Exp Eye Res. 1999 Nov;69(5):483–490.
  • Narayanan S, Miller WL, McDermott AM. Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3795–3801. doi: 10.1167/iovs.02-1301
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–95.
  • Stepp MA, Tadvalkar G, Hakh R, et al. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia. 2017 Jun;65(6):851–863.
  • Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113
  • Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9(1):181–218. doi: 10.1146/annurev-pathol-020712-164023
  • Futosi K, Fodor S, Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013 Nov;17(3):638–50. doi: 10.1016/j.intimp.2013.06.034
  • Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012 Jun 14;119(24):5640–9.
  • Kobayashi SD, Malachowa N, DeLeo FR. Neutrophils and Bacterial Immune Evasion. J Innate Immun. 2018;10(5–6):432–441. doi: 10.1159/000487756
  • Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016 Apr;28(2):119–28. doi: 10.1016/j.smim.2016.04.003
  • Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016 Sep;273(1):357–70. doi: 10.1111/imr.12453
  • Chen F, Wu W, Millman A, et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat Immunol. 2014 Oct;15(10):938–46.
  • Mahajan A, Gruneboom A, Petru L, et al. Frontline Science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. J Leukocyte Biol. 2019 Jun;105(6):1087–1098.
  • Postnikoff CK, Nichols KK. Neutrophil and T-Cell Homeostasis in the closed eye. Invest Ophthalmol Vis Sci. 2017 Dec 1;58(14):6212–6220.
  • Gorbet M, Postnikoff C, Williams S. The noninflammatory phenotype of neutrophils from the closed-eye environment: a flow cytometry analysis of receptor expression. Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4582–91. doi: 10.1167/iovs.14-15750
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020 Jun;30(6):492–506. doi: 10.1038/s41422-020-0332-7
  • Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease. Exp Eye Res. 2013 Dec;117: 118–25. doi: 10.1016/j.exer.2013.08.013
  • El Annan J, Chauhan SK, Ecoiffier T, et al. Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3802–7.
  • Reyes NJ, Mathew R, Saban DR. Induction and characterization of the allergic eye disease mouse model. Methods Mol Biol. 2018;1799:49–57.
  • Hazlett LD. Role of innate and adaptive immunity in the pathogenesis of keratitis. Ocul Immunol Inflamm. 2005 Apr;13(2–3):133–8. doi: 10.1080/09273940490912362
  • Leal SM Jr., Pearlman E. The role of cytokines and pathogen recognition molecules in fungal keratitis – Insights from human disease and animal models. Cytokine. 2012 Apr;58(1):107–111. doi: 10.1016/j.cyto.2011.12.022
  • Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options. J Ocul Pharmacol Ther. 2020 Apr;36(3):137–146.
  • Weckel A, Dhariwala MO, Ly K, et al. Long-term tolerance to skin commensals is established neonatally through a specialized dendritic cell subgroup. Immunity. 2023 Jun 13;56(6):1239–1254.e7. doi: 10.1016/j.immuni.2023.03.008
  • Ridaura VK, Bouladoux N, Claesen J, et al. Contextual control of skin immunity and inflammation by Corynebacterium. J Exp Med. 2018 Mar 5;215(3):785–799. doi: 10.1084/jem.20171079
  • Tarabishy AB, Hise AG, Traboulsi EI. Ocular manifestations of the autoinflammatory syndromes. Ophthalmic Genet. 2012 Dec;33(4):179–86. doi: 10.3109/13816810.2012.695421
  • Meng G, Zhang F, Fuss I, et al. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity. 2009 Jun 19;30(6):860–74. doi: 10.1016/j.immuni.2009.04.012
  • Kugadas A, Wright Q, Geddes-McAlister J, et al. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4593–4600. doi: 10.1167/iovs.17-22119
  • Shivaji S, Jayasudha R, Chakravarthy SK, et al. Alterations in the conjunctival surface bacterial microbiome in bacterial keratitis patients. Exp Eye Res. 2021 Feb;203:108418.
  • Prashanthi GS, Jayasudha R, Chakravarthy SK, et al. Alterations in the Ocular Surface Fungal Microbiome in Fungal Keratitis Patients. Microorganisms. 2019 Sep 2;7(9):309. doi: 10.3390/microorganisms7090309
  • Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: the role of gland dysfunction in dry eye disease. Ophthalmol. 2017 Nov;124(11):S20–S26. doi: 10.1016/j.ophtha.2017.05.031
  • Reyes NJ, Yu C, Mathew R, et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Sci Transl Med. 2018 Jul 25;10(451). doi: 10.1126/scitranslmed.aas9164
  • Bron AJ, Tiffany JM, Gouveia SM, et al. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004 Mar;78(3):347–60.
  • Nichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci. 2011 Mar 30;52(4):1922–9. doi: 10.1167/iovs.10-6997a
  • Schaumberg DA, Nichols JJ, Papas EB, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Invest Ophthalmol Vis Sci. 2011 Mar;52(4):1994–2005.
  • Pflugfelder SC, Huang AJ, Feuer W, et al. Conjunctival cytologic features of primary Sjogren’s syndrome. Ophthalmol. 1990 Aug;97(8):985–991.
  • Shimazaki J, Goto E, Ono M, et al. Meibomian gland dysfunction in patients with Sjogren syndrome. Ophthalmol. 1998 Aug;105(8):1485–1488.
  • Akpek EK, Merchant A, Pinar V, et al. Ocular rosacea: patient characteristics and follow-up. Ophthalmol. 1997 Nov;104(11):1863–7.
  • Floyd JL, Grant MB. The gut-eye axis: lessons learned from murine models. Ophthalmol Ther. 2020 Sep;9(3):499–513. doi: 10.1007/s40123-020-00278-2
  • Zaheer M, Wang C, Bian F, et al. Protective role of commensal bacteria in Sjögren Syndrome. J Autoimmun. 2018 Sep;93:45–56.
  • Wu Y, Wu J, Bu J, et al. High-fat diet induces dry eye-like ocular surface damages in murine. Ocular Surf. 2020 Apr 01;18(2):267–276. doi: 10.1016/j.jtos.2020.02.009
  • Molina-Leyva I, Molina-Leyva A, Bueno-Cavanillas A. Efficacy of nutritional supplementation with omega-3 and omega-6 fatty acids in dry eye syndrome: a systematic review of randomized clinical trials. Acta Ophthalmol. 2017 Dec;95(8):e677–e685. doi: 10.1111/aos.13428
  • Hussain M, Shtein RM, Pistilli M, et al. The Dry Eye Assessment and Management (DREAM) extension study – a randomized clinical trial of withdrawal of supplementation with omega-3 fatty acid in patients with dry eye disease. Ocul Surf. 2020 Jan;18(1):47–55.
  • Moon J, Ryu JS, Kim JY, et al. Effect of IRT5 probiotics on dry eye in the experimental dry eye mouse model. PloS One. 2020;15(12):e0243176. doi: 10.1371/journal.pone.0243176
  • Tavakoli A, Markoulli M, Papas E, et al. The impact of probiotics and prebiotics on Dry Eye disease Signs and symptoms. J Clin Med. 2022;11(16):4889. doi: 10.3390/jcm11164889
  • Schaefer L, Trujillo-Vargas CM, Midani FS, et al. Gut microbiota from Sjögren syndrome patients causes decreased T regulatory cells in the lymphoid organs and desiccation-induced corneal barrier disruption in mice [Original research]. Front Med. 2022 Mar 09;9. doi: 10.3389/fmed.2022.852918
  • Watane A, Cavuoto KM, Rojas M, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022 Jan 01;233:90–100.
  • Iovieno A, Lambiase A, Sacchetti M, et al. Preliminary evidence of the efficacy of probiotic eye-drop treatment in patients with vernal keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol. 2008 Mar 01;246(3):435–441. doi: 10.1007/s00417-007-0682-6
  • Chisari G, Chisari EM, Francaviglia A, et al. The mixture of bifidobacterium associated with fructo-oligosaccharides reduces the damage of the ocular surface. Clin Ter. 2017 May;168(3):e181–e185.
  • Chang CJ, Somohano K, Zemsky C, et al. Topical glaucoma therapy is associated with alterations of the ocular surface microbiome. Invest Ophthalmol Vis Sci. 2022 Aug 2;63(9):32. doi: 10.1167/iovs.63.9.32
  • Gomes JÁP, Frizon L, Demeda VF. Ocular surface microbiome in health and disease. Asia-Pac J Ophthalmol. 2020;9(6):505–511. doi: 10.1097/APO.0000000000000330
  • Gunduz G, Gunduz A, Polat N, et al. The effect of chronic alcoholism on the conjunctival flora. Curr Eye Res. 2016 Jun;41(6):734–9.
  • Retuerto MA, Szczotka-Flynn L, Mukherjee PK, et al. Diversity of ocular surface bacterial microbiome adherent to worn contact lenses and bacterial communities associated with care solution use. Eye Contact Lens. 2019;45(5):331–339. doi: 10.1097/ICL.0000000000000578
  • Sidiq T, Yoshihama S, Downs I, et al. Nod2: A critical regulator of ileal microbiota and Crohn’s disease [Review]. Front Immunol. 2016 Sep 20;7. doi: 10.3389/fimmu.2016.00367
  • Mondot S, Barreau F, Al Nabhani Z, et al. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice. Gut. 2012 Apr;61(4):634–635.
  • Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA. 2009 Sep 15;106(37):15813–8. doi: 10.1073/pnas.0907722106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.