155
Views
8
CrossRef citations to date
0
Altmetric
Regular articles

Vestibular stimulation interferes with the dynamics of an internal representation of gravity

, , , , &
Pages 2290-2305 | Received 15 Mar 2016, Accepted 18 Aug 2016, Published online: 16 Sep 2016

References

  • Angelaki, D. E., & Cullen, K. E. (2008). Vestibular system: The many facets of a multimodal sense. Annual Review of Neuroscience, 31, 125–150. doi: 10.1146/annurev.neuro.31.060407.125555
  • Angelaki, D. E., Klier, E. M., & Snyder, L. H. (2009). A vestibular sensation: probabilistic approaches to spatial perception. Neuron, 64, 448–461. doi: 10.1016/j.neuron.2009.11.010
  • Angelaki, D. E., Shaikh, A. G., Green, A. M., & Dickman, J. D. (2004). Neurons compute internal models of the physical laws of motion. Nature, 430, 560–564. doi: 10.1038/nature02754
  • Baker, J. T., Harper, T. M., & Snyder, L. H. (2003). Spatial memory following shifts of gaze: I. Saccades to memorized world-fixed and gaze-fixed targets. Journal of Neurophysiology, 89, 2564-2576. doi: 10.1152/jn.00610.2002
  • Bertamini, M. (1993). Memory for position and dynamic representation. Memory & Cognition, 21, 449–457. doi: 10.3758/BF03197176
  • Berthoz, A. (2000). The brain’s sense of movement. Cambridge, MA: Harvard University Press.
  • Bosco, G., Monache, S., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., … Lacquaniti, F. (2015). Filling gaps in visual motion for target capture. Frontiers in Integrative Neuroscience, 9. doi:10.3389/fnint.2015.00013
  • Butler, J. S., Smith, S. T., Campos, J. L., & Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10. doi:10.1167/10.11.23
  • Clément, G. (2011). Fundamentals of space medicine. New York: Springer.
  • Clément, G., Moore, S. T., Raphan, T., & Cohen, B. (2001). Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Experimental Brain Research, 138, 410–418. doi: 10.1007/s002210100706
  • Clément, G., & Reschke, M. F. (2008). Neuroscience in space. New York, USA: Springer.
  • De Sá Teixeira, N. (2014). Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 105, 177–188. doi: 10.1016/j.visres.2014.10.024
  • De Sá Teixeira, N. A. (2016a). How fast do objects fall in visual memory? uncovering the temporal and spatial features of representational gravity. Plos One, 11(2), e0148953. doi:10.1371/journal.pone.0148953
  • De Sá Teixeira, N. A. (2016b). The visual representations of motion and of gravity are functionally independent: evidence of a differential effect of smooth pursuit eye movements. Experimental Brain Research, 234, 2491–2504. doi: 10.1007/s00221-016-4654-0
  • De Sá Teixeira, N. A., & Hecht, H. (2014). The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. Journal of Vestibular Research, 24, 267–279.
  • De Sá Teixeira, N. A., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699.
  • De Sá Teixeira, N. A., & Oliveira, A. M. (2014). Spatial and foveal biases, not perceived mass or heaviness, explain the effect of target size on representational momentum and representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1664–1679.
  • De Vrijer, M., Medendorp, W. P., & Van Gisbergen, J. A. M. (2008). Shared computational mechanisms for tilt compensation accounts for biased verticality percepts in motion and pattern vision. Journal of Neurophysiology, 99, 915–930. doi: 10.1152/jn.00921.2007
  • DiZio, P., & Lackner, J. R. (2002). Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor Adaptation. Journal of Vestibular Research, 12, 291–299.
  • Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33, 575–581. doi: 10.3758/BF03202940
  • Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427–438. doi: 10.1037/0033-295X.94.4.427
  • Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132.
  • Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society, 23, 443–446. doi: 10.3758/BF03329847
  • Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259–268.
  • Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395–407. doi: 10.1037/0096-3445.117.4.395
  • Gaunet, F., & Berthoz, A. (2000). Mental rotation for spatial environment recognition. Brain Research: Cognitive Brain Research, 9, 91–102.
  • Gianna, C., Heimbrand, S., & Gresty, M. (1996). Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. Brain Research Bulletin, 40, 443–447. doi: 10.1016/0361-9230(96)00140-2
  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
  • Grush, R. (2005). Internal models and the construction of time: generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. Journal of Neural Engineering, 2, S209–S218. doi: 10.1088/1741-2560/2/3/S05
  • Harris, L. R., Herpers, R., Hofhammer, T., & Jenkin, M. (2014) How much gravity is needed to establish the perceptual upright? PLoS ONE, 9, e106207. doi:10.1371/journal.pone.0106207
  • Harris, L. R., Jenkin, M. R., Dyde, R. T., & Jenkin, H. L. (2011). Enhancing visual cues to orientation: suggestions for space travellers and the elderly. Progress in Brain Research, 191, 133–142. doi: 10.1016/B978-0-444-53752-2.00008-4
  • Helmholtz, H. von (1867). Handbuch der physiologischen optik. Leipzig: Leopold Voss.
  • Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. New York, USA: Wiley.
  • Hubbard, T. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309. doi: 10.3758/BF03213883
  • Hubbard, T. L. (1995). Cognitive representation of motion: evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 241–254.
  • Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484–1493.
  • Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12, 822–851. doi: 10.3758/BF03196775
  • Hubbard, T. L. (2006). Computational theory and cognition in representational momentum and related types of displacement: A reply to kerzel. Psychonomic Bulletin and Review, 13, 174–177. doi: 10.3758/BF03193830
  • Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221. doi: 10.3758/BF03206290
  • Jampel, R. S., & Shi, D. X. (2002). The absence of so-called compensatory ocular countertorsion: the response of the eyes to head tilt. Archives of Ophthalmology, 120, 1331–1340. doi: 10.1001/archopht.120.10.1331
  • Jenkin, H. L., Dyde, R. T., Jenkin, M. R., Harris, L. R., & Howard, I. P. (2003). Relative role of visual and non-visual cues in judging the direction of ‘up': experiments in the york tilted room facility. Journal of Vestibular Research, 13, 287–293.
  • Jenkin, H. L., Jenkin, M. R., Dyde, R. T., & Harris, L. R. (2004). Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception, 33, 1453–1461. doi: 10.1068/p5285
  • Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715. doi: 10.1016/S0042-6989(00)00226-1
  • Kerzel, D. (2002). The locus of “memory displacement” is at least partially perceptual: effects of velocity, expectation, friction, memory averaging, and weight. Perception & Psychophysics, 64, 680–692. doi: 10.3758/BF03194735
  • Kerzel, D. (2003). Centripetal force draws the eyes, not memory of the target, toward the center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 458–466.
  • Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomic Bulletin and Review, 13, 166–173. doi: 10.3758/BF03193829
  • Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840.
  • Lackner, J. R., & DiZio, P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annual Review of Psychology, 56, 115–147. doi: 10.1146/annurev.psych.55.090902.142023
  • Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2014). Multisensory integration and internal models for sensing gravity effects in primates. BioMed Research International. Article no. 615854. doi:10.1155/2014/615854
  • Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., MAffei, V., & Zago, M. (2015). Gravity in the brain as a reference for space and time perception. Multisensory Research, 28, 397–426. doi: 10.1163/22134808-00002471
  • Lacquaniti, F., Bosco, G., Indovina, I., La Scaleia, B., Maffei, V., Moscatelli, A., & Zago, M. (2013). Visual gravitational motion and the vestibular system in humans. Frontiers of Integrative Neuroscience, 7. doi:10.3389/fnint.2013.00101
  • La Scaleia, B., Lacquaniti, F., & Zago, M. (2014). Neural extrapolation of motion for a ball rolling down an inclined plane. PloS One, 9, e99837. doi:10.1371/journal.pone.0099837
  • La Scaleia, B., Zago, M., & Lacquaniti, F. (2015). Hand interception of occluded motion in humans: A test of model-based vs. on-line Control. Journal of Neurophysiology, 114, 1577–1592. doi: 10.1152/jn.00475.2015
  • Lobmaier, J. S., & Mast, F. W. (2007). The thatcher illusion: rotating the viewer instead of the picture. Perception, 36, 537–546. doi: 10.1068/p5508
  • Lopez, C., Bachofner, C., Mercier, M., & Blanke, O. (2009). Gravity and observer's body orientation influence the visual perception of human body postures. Journal or Vision, 9, 1–14. doi: 10.1167/9.5.1
  • MacNeilage, R. R., Banks, M. S., Berger, D. R., & Bülthoff, H. H. (2007). A bayesian model of the disambiguation of gravitoinertial force by visual cues. Experimental Brain Research, 179, 263–290. doi: 10.1007/s00221-006-0792-0
  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco, CA: W. H. Freema.
  • Mittelstaedt, H. (1983). A new solution to the problem of the subjective vertical. Naturwissenschaften, 70, 272–281. doi: 10.1007/BF00404833
  • Mittelstaedt, H. (1986). The subjective vertical as a function of visual and extraretinal cues. Acta Psychologica, 63, 63–85. doi: 10.1016/0001-6918(86)90043-0
  • Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1076–1083.
  • Mowrer, O. H. (1937). The influence of vision during bodily rotation upon the duration of post-rotational nystagmus. Acta Oto-Laryngologica, 25, 351–364. doi: 10.3109/00016483709127972
  • Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9, 28–40. doi: 10.1080/13506280143000304
  • Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257. doi: 10.1038/370256b0
  • Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31, 179–198.
  • Nijhawan, R., & Kirschfeld, K. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: evidence from motor flash-lag. Current Biology, 13, 749–753. doi: 10.1016/S0960-9822(03)00248-3
  • Oman, C. M. (2003). Human visual orientation in weightlessness. In L. Harris & M. Jenkin (Eds.), Levels of perception (pp. 375–398). New York: Springer.
  • Peirce, J. W. (2007). Psychopy – psychophysics software in python. Journal of Neuroscience Methods, 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017
  • Peirce, J. W. (2009). Generating stimuli for neuroscience using psychoPy. Frontiers in Neuroinformatics, 2. doi:10.3389/neuro.11.010.2008
  • Poon, C.-S., & Merfeld, D. M. (2005). Internal models: The state of the art. Journal of Neural Engineering, 2, editorial, i–v. doi: 10.1088/1741-2552/2/3/E01
  • Prsa, M., Jimenez-Rezende, D., & Blanke, O. (2015). Inference of perceptual priors from path dynamics of passive self-motion. Journal of Neurophysiology, 113, 1400–1413. doi: 10.1152/jn.00755.2014
  • Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839–850.
  • Schöne, H. (1962). Über den einfluss der schwerkraft auf die augenrollung und auf die wahrnehmung der lage im raum. Zeitschrift für Vergleichende Physiologie, 46, 57–87. doi: 10.1007/BF00340353
  • Sekuler, R., & Armstrong, R. (1978). Fourier analysis of polar coordinate data in visual physiology and psychophysics. Behavior Research Methods & Instrumentation, 10, 8–14. doi: 10.3758/BF03205080
  • Shepard, R. N. (1984). Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 91, 417–447. doi: 10.1037/0033-295X.91.4.417
  • Snyder, L. (1999). This way up: illusions and the internal models in the vestibular system. Nature Neuroscience, 2, 396–398. doi: 10.1038/8056
  • Tin, C., & Poon, C.-S. (2005). Internal models in sensorimotor integration: perspectives from adaptive control theory. Journal of Neural Engineering, 2, S147–S163. doi: 10.1088/1741-2560/2/3/S01
  • Van Barneveld, D. C. P. B. M., Kiemeneij, A. C. M., & Van Opstal, A. J. (2011). Absence of spatial updating when the visuomotor system is unsure about stimulus motion. Journal of Neuroscience, 31(29), 10558–10568.
  • Wade, S. W., & Curthoys, I. S. (1997). The effect of ocular torsional position on perception of the roll-tilt of visual stimuli. Vision Research, 37, 1071–1078. doi: 10.1016/S0042-6989(96)00252-0
  • Woellner, R. C., & Graybiel, A. (1959). Counterrrolling ofthe eyes and its dependance on the magnitude of gravitational or inertial force acting laterally on the body. Journal of Applied Physiology, 14, 632–634.
  • Young, L. R. (1983). Perception of the body in space: mechanisms. In J. M. Brookhart, V. B. Mountcastle and H. W. Magoun (Eds.), Handbook of physiology: The nervous system III (pp. 1023–1066). Bethesda, MD: American Physiological Society.
  • Young, L. R. (1999). Artificial gravtiy considerations for a Mars exploration mission. Annals of the New York Academy of Sciences, 871, 367–378. doi: 10.1111/j.1749-6632.1999.tb09198.x
  • Young, L. R., Hecht, H., Lyne, L. E., Sienko, K. H., Cheung, C. C., & Kavelaars, J. (2001). Artificial gravity: head movements during short-radius centrifugation. Acta Astronautica, 49, 215–226. doi: 10.1016/S0094-5765(01)00100-X
  • Young, L. R., Sienko, K. H., Lyne, L. E., Hecht, H., & Natapoff, A. (2003). Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation. Journal of Vestibular Research, 13, 65–77.
  • Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2008). Internal models and prediction of visual gravitational motion. Vision Research, 48, 1532–1538. doi: 10.1016/j.visres.2008.04.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.