1,229
Views
5
CrossRef citations to date
0
Altmetric
Regular articles

Adaptive scaling of reward in episodic memory: a replication study

, &
Pages 2306-2318 | Received 09 Sep 2015, Accepted 14 Aug 2016, Published online: 11 Oct 2016

References

  • Adcock, A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517. doi:10.1016/j.neuron.2006.03.036
  • Ariel, R., & Castel, A. D. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232, 337–344. doi:10.1007/s00221-013-3744-5
  • Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815–834. doi:10.1016/j.neuron.2010.11.022
  • Bunzeck, N., Dayan, P., Dolan, R. J., & Duzel, E. (2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380–1394. doi:10.1002/hbm.20939
  • Callan, D. E., & Schweighofer, N. (2008). Positive and negative modulation of word learning by reward anticipation. Human Brain Mapping, 29, 237–249. doi:10.1002/hbm.20383
  • Castel, A. D. (2007). The adaptive and strategic use of memory by older adults: Evaluative processing and value-directed remembering. Psychology of Learning and Motivation - Advances in Research and Theory, 48, 225–270. doi:10.1016/S0079-7421(07)48006-9
  • Castel, A. D., Benjamin, A. S., Craik, F. I. M., & Watkins, M. J. (2002). The effects of aging on selectivity and control in short-term recall. Memory & Cognition, 30, 1078–1085. doi:10.3758/BF03194325
  • Castel, A. D., Murayama, K., Friedman, M. C., McGillivray, S., & Link, I. (2013). Selecting valuable information to remember: Age-related differences and similarities in self-regulated learning. Psychology and Aging, 28, 232–242. doi:10.1037/a0030678
  • Clewett, D. V., & Mather, M. (2014). Not all that glittered is gold: Neural mechanisms that determine when reward will enhance or impair memory. Frontiers in Neuroscience, 8, 1–3. doi:10.3389/fnins.2014.00194
  • Cohen, M., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2014). Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective & Behavioral Neuroscience, 14, 578–592. doi:10.3758/s13415-014-0275-x
  • Cohen, M., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2016). Effects of aging on value-directed modulation of semantic network activity during verbal learning. NeuroImage, 125, 1046–1062. doi:10.1016/j.neuroimage.2015.07.079
  • Cooper, J. C., & Knutson, B. (2008). Valence and salience contribute to nucleus accumbens activation. NeuroImage, 39, 538–547. doi:10.1016/j.neuroimage.2007.08.009
  • Diederen, K. M., Spencer, T., Vestergaard, M. D., Fletcher, P. C., & Schultz, W. (2016). Adaptive prediction error coding in the human midbrain and striatum facilitates behavioral adaptation and learning efficiency. Neuron, 90(5), 1127–1138. doi: 10.1016/j.neuron.2016.04.019
  • Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6, 274–290. doi:10.1177/1745691611406920
  • Eysenck, M. W., & Eysenck, M. C. (1982). Effects of incentive on cued recall. The Quarterly Journal of Experimental Psychology Section A, 34, 489–498. doi:10.1080/14640748208400832
  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by Dopamine Neurons. Science, 299, 1898–1902. doi:10.1126/science.1077349
  • Friedman, M. C., & Castel, A. D. (2011). Are we aware of our ability to forget? Metacognitive predictions of directed forgetting. Memory & Cognition, 39, 1448–1456. doi:10.3758/s13421-011-0115-y
  • Harley, W. (1965). The effect of monetary incentive in paired associate learning using a differential method. Psychonomic Science, 2, 377–378. doi: 10.3758/BF03343506
  • Howard-Jones, P., Demetriou, S., Bogacz, R., Yoo, J. H., & Leonards, U. (2011). Toward a science of learning games. Mind, Brain, and Education, 5, 33–41. doi:10.1111/j.1751-228X.2011.01108.x
  • Jeffreys, H. (1961). Theory of probability. Oxford: OUP.
  • Jensen, J., Smith, A. J., Willeit, M., Crawley, A. P., Mikulis, D. J., Vitcu, I., & Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping, 28, 294–302. doi:10.1002/hbm.20274
  • Krebs, R. M., Schott, B. H., & Düzel, E. (2009). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65, 103–110. doi:10.1016/j.biopsych.2008.08.019
  • Lengyel, M., & Dayan, P. (2007). Hippocampal contributions to control: The third way. NIPS, 1–8.
  • Libby, L., Yonelinas, A. P., Ranganath, C., & Ragland, J. D. (2013). Recollection and familiarity in schizophrenia: A quantitative review. Biological Psychiatry, 73, 944–950. doi:10.1016/j.biopsych.2012.10.027
  • Litt, A., Plassmann, H., Shiv, B., & Rangel, A. (2011). Dissociating valuation and saliency signals during decision-making. Cerebral Cortex, 21, 95–102. doi:10.1093/cercor/bhq065
  • Loftus, G. R., & Wickens, T. D. (1970). Effect of incentive on storage and retrieval processes. Journal of Experimental Psychology, 85, 141–147. doi:10.1037/h0029537
  • Ludvig, E. A., Madan, C. R., & Spetch, M. L. (2015). Priming memories of past wins induces risk seeking. Journal of Experimental Psychology: General, 144, 24–29. doi:0096-3445/15/$12.00
  • Madan, C. R., Caplan, J. B., Lau, C. S., & Fujiwara, E. (2012). Emotional arousal does not enhance association-memory. Journal of Memory and Language, 66, 695–716. doi:10.1016/j.jml.2012.0
  • Madan, C. R., Ludvig, E. A., & Spetch, M. L. (2014). Remembering the best and worst of times: Memories for extreme outcomes bias risky decisions. Psychonomic Bulletin & Review, 21, 629–636. doi:10.3758/s13423-013-05429
  • Madan, C. R., & Spetch, M. L. (2012). Is the enhancement of memory due to reward driven by value or salience? Acta psychologica, 139(2), 343–349. doi: 10.1016/j.actpsy.2011.12.010
  • Mason, A., Ludwig, C., & Farrell, S. (2016). The role of reward and reward uncertainty in episodic memory. Manuscript submitted for publication.
  • Mather, M., & Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience, 5, 129. doi:10.3389/fnins.2011.00129
  • Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Reason, 4, 61–64.
  • Morey, R. D., & Rouder, J. (2015). BayesFactor: 0.9.11-1 CRAN. Retrieved from http://zenodo.org/record/16238. doi:10.5281/zenodo.16238
  • Murayama, K., & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143, 15–20. doi:10.1037/a0031992
  • Murty, V. P., Labar, K. S., & Adcock, A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32, 8969–8976. doi:10.1523/JNEUROSCI.0094-12.2012
  • Murty, V. P., LaBar, K. S., Hamilton, D. A., & Adcock, A. (2011). Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learning & Memory, 18, 712–717. doi:10.1101/lm.023549.111
  • Nairne, J. (2014). Adaptive memory: Controversies and future directions. In B. Schwartz, M. Howe, M. Toglia, & H. Otgaar (Eds.), What is adaptive about adaptive memory? (pp. 308–321). New York: OUP.
  • Nairne, J. S. (2005). The functionalist agenda in memory research. In A. Healy (Ed.), Experimental cognitive psychology and its applications (pp. 115–126). Washington, DC: American Psychological Association.
  • Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191, 507–520. doi:10.1007/s00213-006-0502-4
  • Park, S. Q., Kahnt, T., Talmi, D., Rieskamp, J., Dolan, R. J., & Heekeren, H. R. (2012). Adaptive coding of reward prediction errors is gated by striatal coupling. Proceedings of the National Academy of Sciences, 109, 4285–4289. doi:10.1073/pnas.1119969109
  • Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51, 381–390. doi:10.1016/j.neuron.2006.06.024
  • Rouder, J. N., Morey, R. D., & Province, J. M. (2013). A Bayes factor meta-analysis of recent extrasensory perception experiments: Comment on Storm, Tressoldi, and Di Risio (2010). Psychological Bulletin, 139, 241–247. doi:10.1037/a0029008
  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi:10.1016/j.jmp.2012.08.001
  • Rouder, J. N., Morey, R. D., Verhagen, J., Province J. M., & Wagenmakers, E.-J. (2016). Is there a free lunch in inference? Topics in Cognitive Science, 8, 520–547. doi:10.1111/tops.12214.
  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. doi:10.3758/PBR.16.2.225
  • Schacter, D. L. (1999). The seven sins of memory: Insights from psychology and cognitive neuroscience. American psychologist, 54(3), 182–203. doi: 10.1037/0003-066X.54.3.182
  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.
  • Scimeca, J. M., & Badre, D. (2012). Striatal contributions to declarative memory retrieval. Neuron, 75, 380–392. doi:10.1016/j.neuron.2012.07.014
  • Shohamy, D., & Adcock, A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14, 464–472. doi:10.1016/j.tics.2010.08.002
  • Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication results. Psychological science, 26, 559–569. doi:10.1177/095679761456734
  • Soderstrom, N. C., & McCabe, D. P. (2011). The interplay between value and relatedness as bases for metacognitive monitoring and control: Evidence for agenda-based monitoring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1236–1242. doi:10.1037/a0023548
  • Spaniol, J., Schain, C., & Bowen, H. J. (2013). Reward-enhanced memory in younger and older adults. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 1–11. doi:10.1093/geronb/gbt044
  • Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307, 1642–1645. doi:10.1126/science.1105370
  • Tulving, E. (1985). How many memory systems are there? American Psychologist, 40, 385–398. doi: 10.1037/0003-066X.40.4.385
  • Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. doi:10.3758/BF03194105
  • Wittmann, B. C., Dolan, R. J., & Düzel, E. (2011). Behavioral specifications of reward-associated long-term memory enhancement in humans. Learning & Memory, 18, 296–300. doi:10.1101/lm.1996811
  • Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus- dependent long-term memory formation. Neuron, 45, 459–467. doi:10.1016/j.neuron.2005.01.010
  • Wittmann, B. C., Tan, G. C., Lisman, J. E., Dolan, R. J., & Düzel, E. (2013). DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment. Neuropsychologia, 51(11), 2184–2193. doi: 10.1016/j.neuropsychologia.2013.07.018
  • Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal suBField activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24, 1532–1547. doi:10.1162/jocn_a_00237
  • Yonelinas, A., & Jacoby, L. (1995). The relation between remembering and knowing as bases for recognition: Effects of size congruency. Journal of Memory and Language, 34, 622–643. doi: 10.1006/jmla.1995.1028