208
Views
12
CrossRef citations to date
0
Altmetric
Regular articles

Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence

, &
Pages 2460-2477 | Received 28 Nov 2015, Accepted 23 Sep 2016, Published online: 02 Nov 2016

References

  • Brisson, B., & Jolicoeur, P. (2007a). Electrophysiological evidence of central interference in the control of visuospatial attention. Psychonomic Bulletin & Review, 14(1), 126–132. doi:10.3758/BF03194039
  • Brisson, B., & Jolicoeur, P. (2007b). A psychological refractory period in access to visual short-term memory and the deployment of visual? Spatial attention: Multitasking processing deficits revealed by event-related potentials. Psychophysiology, 44(2), 323–333. doi:10.1111/j.1469-8986.2007.00503.x
  • Cameron, E. L., Tai, J. C., Eckstein, M. P., & Carrasco, M. (2004). Signal detection theory applied to three visual search tasks — Identification, yes/no detection and localization. Spatial Vision, 17(4), 295–325. doi:10.1163/1568568041920212
  • Cohen, J. Y., Heitz, R. P., Woodman, G. F., & Schall, J. D. (2009). Neural basis of the set-size effect in frontal eye field: Timing of attention during visual search. Journal of Neurophysiology, 101(4), 1699–1704. doi:10.1152/jn.00035.2009
  • Di Lollo, V. (2012). The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences, 16(6), 317–321. doi:10.1016/j.tics.2012.04.007
  • Dowdall, J. R., Luczak, A., & Tata, M. S. (2012). Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia, 50(10), 2442–2453. doi:10.1016/j.neuropsychologia.2012.06.015
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. doi:10.1016/0013-4694(96)95711-9
  • Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210. doi:10.1126/science.1171402
  • Heitz, R. P., Cohen, J. Y., Woodman, G. F., & Schall, J. D. (2010). Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activity. Journal of Neurophysiology, 104(5), 2433–2441. doi:10.1152/jn.00604.2010
  • Hendrich, E., Strobach, T., Buss, M., Müller, H. J., & Schubert, T. (2012). Temporal-order judgment of visual and auditory stimuli: Modulations in situations with and without stimulus discrimination. Frontiers in Integrative Neuroscience, 6, 63. doi:10.3389/fnint.2012.00063
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2008). Target and distractor processing in visual search: Decomposition of the N2pc. Visual Cognition, 16(1), 110–113. doi:10.1080/13506280701692097
  • Hopf, J. M., Boelmans, K., Schoenfeld, A., Luck, S. J., & Heinze, H.-J. (2004). Attention to features precedes attention to locations in visual search: Evidence from electromagnetic brain responses in humans. Journal of Neuroscience, 24(8), 1822–1832. doi:10.1523/JNEUROSCI.3564-03.2004
  • Hopf, J. M., Boelmans, K., Schoenfeld, A. M., Heinze, H.-J., & Luck, S. J. (2002). How does attention attenuate target-distractor interference in vision? Evidence from magnetoencephalographic recordings. Cognitive Brain Research, 15(1), 17–29. doi:10.1016/S0926-6410(02)00213-6
  • Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H.-J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10(12), 1233–1241. doi:10.1093/cercor/10.12.1233
  • Jentzsch, I., Leuthold, H., & Ulrich, R. (2007). Decomposing sources of response slowing in the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 610–626. doi:10.1037/0096-1523.33.3.610
  • Jiang, Y., Saxe, R., & Kanwisher, N. (2004). Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychological Science, 15(6), 390–396. doi:10.1111/j.0956-7976.2004.00690.x
  • Johnston, J. C., McCann, R. S., & Remington, R. W. (1995). Chronometric evidence for two types of attention. Psychological Science, 6(6), 365–369. doi:10.1111/j.1467-9280.1995.tb00527.x
  • Jolicoeur, P. (1999). Dual-task interference and visual encoding. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 596–616. doi:10.1037/0096-1523.25.3.596
  • Jolicoeur, P., Sessa, P., Dell’Acqua, R., & Robitaille, N. (2006). On the control of visual spatial attention: Evidence from human electrophysiology. Psychological Research, 70(6), 414–424. doi:10.1007/s00426-005-0008-4
  • Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45(2), 250–274. doi:10.1111/j.1469-8986.2007.00618.x
  • Kirk, R. E. (2013). Experimental design: Procedures for the behavioral sciences (4th ed.). Thousand Oaks, CA: Sage.
  • Kiss, M., Grubert, A., & Eimer, M. (2013). Top-down task sets for combined features: Behavioral and electrophysiological evidence for two stages in attentional object selection. Attention, Perception, & Psychophysics, 75(2), 216–228. doi:10.3758/s13414-012-0391-z
  • Lien, M.-C., Croswaite, K., & Ruthruff, E. (2011). Controlling spatial attention without central attentional resources: Evidence from event-related potentials. Visual Cognition, 19(1), 37–78. doi:10.1080/13506285.2010.491643
  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393–434. doi:10.1037/0033-295X.108.2.393
  • Luck, S. J. (2005). The operation of attention - Millisecond by millisecond - over the first half second. In H. Ogmen, & B. G. Breitmeyer (Eds.), The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes (pp. 187–206). Cambridge, MA: MIT Press.
  • Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33(1), 64–87. doi:10.1006/cogp.1997.0660
  • Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308. doi:10.1111/j.1469-8986.1994.tb02218.x
  • Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000–1014. doi:10.1037/0096-1523.20.5.1000
  • Maquestiaux, F., Hartley, A. A., & Bertsch, J. (2004). Can practice overcome age-related differences in the psychological refractory period effect? Psychology and Aging, 19(4), 649–667. doi:10.1037/0882-7974.19.4.649
  • Mazza, V., Turatto, M., & Caramazza, A. (2009). Attention selection, distractor suppression and N2pc. Cortex, 45(7), 879–890. doi:10.1016/j.cortex.2008.10.009
  • Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research, 181(3), 531–536. doi:10.1007/s00221-007-1002-4
  • Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part I. Basic mechanisms. Psychological Review, 104(1), 3–65. doi:10.1037/0033-295X.104.1.3
  • Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370–373. doi:10.1038/nature01341
  • Müller, H. J., & Krummenacher, J. (2006)). Visual search and selective attention. Visual Cognition, 14(4-8), 389–410. doi:10.1080/13506280500527676
  • Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251. doi:10.1006/cogp.2001.0767
  • Pashler, H. (1989). Dissociations and dependencies between speed and accuracy: Evidence for a two-component theory of divided attention in simple tasks. Cognitive Psychology, 21(4), 469–514. doi:10.1016/0010-0285(89)90016-9
  • Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1023–1040. doi:10.1037/0096-1523.17.4.1023
  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244. doi:10.1037/0033-2909.116.2.220
  • Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology Section A, 41(1), 19–45. doi:10.1080/14640748908402351
  • Reimer, C. B., Strobach, T., Frensch, P. A., & Schubert, T. (2015). Are processing limitations of visual attention and response selection subject to the same bottleneck in dual-tasks? Attention, Perception, & Psychophysics, 77(4), 1052–1069. doi:10.3758/s13414-015-0874-9
  • Schubert, T. (1999). Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks. Journal of Experimental Psychology: Human Perception and Performance, 25(2), 408–425. doi: 239143
  • Schubert, T. (2008). The central attentional limitation and executive control. Frontiers in Bioscience, 13(13), 3569–3580. doi:10.2741/2950
  • Schubert, T., Fischer, R., & Stelzel, C. (2008). Response activation in overlapping tasks and the response-selection bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 376–397. doi:10.1037/0096-1523.34.2.376
  • Schubert, T., & Szameitat, A. J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: An fMRI study. Cognitive Brain Research, 17(3), 733–746. doi:239254
  • Schubö, A., Wykowska, A., & Müller, H. J. (2007). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials (ERPs). Brain Research, 1138, 136–147. doi:10.1016/j.brainres.2006.12.059
  • Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. Journal of Mathematical Psychology, 18(2), 105–139. doi:10.1016/0022-2496(78)90059-7
  • Schweickert, R. (1980). Critical-path scheduling of mental processes in a dual task. Science, 209(4457), 704–706. doi:10.1126/science.7394529
  • Strobach, T., Schütz, A., & Schubert, T. (2015). On the importance of Task 1 and error performance measures in PRP dual-task studies. Frontiers in Psychology, 6, 403. doi:10.3389/fpsyg.2015.00403
  • Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18. doi:10.1037/0096-1523.29.1.3
  • Tombu, M., & Jolicoeur, P. (2005). Testing the predictions of the central capacity sharing model. Journal of Experimental Psychology: Human Perception and Performance, 31(4), 790–802. doi:10.1037/0096-1523.31.4.790
  • Töllner, T., Strobach, T., Schubert, T., & Müller, H. J. (2012). The effect of task order predictability in audio-visual dual task performance: Just a central capacity limitation? Frontiers in Integrative Neuroscience, 6, 75. doi:10.3389/fnint.2012.00075
  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010-0285(80)90005-5
  • Welford, A. T. (1952). The psychological refractory period and the timing of high speed performance – A review and a theory. British Journal of Psychology, 43(1), 2–19. doi:10.1111/j.2044-8295.1952.tb00322.x
  • Wolber, M., & Wascher, E. (2003). Visual search strategies are indexed by event-related lateralizations of the EEG. Biological Psychology, 63(1), 79–100. doi:10.1016/S0301-0511(03)00028-0
  • Wolber, M., & Wascher, E. (2005). The posterior contralateral negativity as a temporal indicator of visuo-spatial processing. Journal of Psychophysiology, 19(3), 182–194. doi:10.1027/0269-8803.19.3.182
  • Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. doi:10.3758/BF03200774
  • Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33–39. doi:10.1111/1467-9280.00006
  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray (Eds.), Integrated Models of Cognitive System (pp. 99–119). New York: Oxford.
  • Wolfe, J. M. (2012). The binding problem lives on: Comment on Di Lollo. Trends in Cognitive Sciences, 16(6), 307–308. doi:10.1016/j.tics.2012.04.013
  • Wolfe, J. M., & Bennett, S. C. (1996). Preattentive object files: Shapeless bundles of basic features. Vision Research, 37(1), 25–43. doi:10.1016/S0042-6989(96)00111-3
  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433. doi:10.1037/0096-1523.15.3.419
  • Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869. doi:10.1038/23698
  • Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 121–138. doi:10.1037/0096-1523.29.1.121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.