255
Views
0
CrossRef citations to date
0
Altmetric
Review

The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation

ORCID Icon &
Pages 943-962 | Received 04 Aug 2023, Accepted 18 Oct 2023, Published online: 06 Nov 2023

References

  • Cieri N, Maurer K, Wu CJ. 60 years young: the evolving role of allogeneic hematopoietic stem cell transplantation in Cancer immunotherapy. Cancer Res. 2021 Sep 1;81(17):4373–4384. doi: 10.1158/0008-5472.CAN-21-0301
  • Schmid C, Labopin M, Nagler A, et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood. 2012 Feb 9;119(6):1599–1606. doi: 10.1182/blood-2011-08-375840
  • Collins RH Jr., Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997 Feb;15(2):433–444. doi: 10.1200/JCO.1997.15.2.433
  • Mo XD, Xu LP, Zhang XH, et al. Chronic GVHD induced GVL effect after unmanipulated haploidentical hematopoietic SCT for AML and myelodysplastic syndrome. Bone Marrow Transplant. 2015 1;50(1):127–133. doi: 10.1038/bmt.2014.223
  • Buxbaum NP, Socié G, Hill GR, et al. Chronic GvHD NIH consensus project biology task force: evolving path to personalized treatment of chronic GvHD. Blood Adv. 2022 Nov 2;7(17):4886–4902.
  • Hanash AM, Kappel LW, Yim NL, et al. Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood. 2011 Jul 14;118(2):446–455. doi: 10.1182/blood-2010-07-294785
  • Miller JS, Warren EH, van den Brink MRM, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on the biology underlying recurrence of malignant disease following allogeneic HSCT: graft-versus-tumor/Leukemia reaction. Biol Blood Marrow Transplant. 2010 5;16(5):565–586. doi: 10.1016/j.bbmt.2010.02.005
  • Valenzuela JO, Iclozan C, Hossain MS, et al. Pkctheta is required for alloreactivity and GVHD but not for immune responses toward leukemia and infection in mice. J Clin Invest. 2009 12;119(12):3774–3786. doi: 10.1172/JCI39692
  • Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Rapamycin inhibits the generation of graft-versus-host disease- and graft-versus-leukemia-causing T cells by interfering with the production of Th1 or Th1 cytotoxic cytokines. J Immunol. 1998 Jun 1;160(11):5355–5365. doi: 10.4049/jimmunol.160.11.5355
  • Chakupurakal G, Freudenberger P, Skoetz N, et al. Polyclonal anti-thymocyte globulins for the prophylaxis of graft-versus-host disease after allogeneic stem cell or bone marrow transplantation in adults. Cochrane Database Syst Rev. 2023 Jun 21;2023(6):CD009159. doi: 10.1002/14651858.CD009159.pub3
  • Forcade E, Chevret S, Finke J, et al. Impact of in vivo T-cell depletion in patients with myelodysplastic syndromes undergoing allogeneic hematopoietic stem cell transplant: a registry study from the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2022 5;57(5):768–774. doi: 10.1038/s41409-022-01620-x
  • Du ZZ, Zhou M, Ling J, et al. PD-1 Checkpoint Blockade in Patients for Acute Myeloid Leukemia after HSCT Relapse Resulted in Severe GVHD and sHLH. Case Rep Hematol. 2022 Dec 22;2022:1705905. doi: 10.1155/2022/1705905
  • Schroeder T, Stelljes M, Christopeit M, et al. Azacitidine, lenalidomide and donor lymphocyte infusions for relapse of myelodysplastic syndrome, acute myeloid leukemia and chronic myelomonocytic leukemia after allogeneic transplant: the azalena-trial. Haematologica. 2023 Jun 1. doi: 10.3324/haematol.2022.282570
  • Kekre N, Kim HT, Thanarajasingam G, et al. Efficacy of immune suppression tapering in treating relapse after reduced intensity allogeneic stem cell transplantation. Haematologica. 2015 Sep;100(9):1222–1227. doi: 10.3324/haematol.2015.129650
  • Thanarajasingam G, Kim HT, Cutler C, et al. Outcome and prognostic factors for patients who relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013 Dec;19(12):1713–1718. doi: 10.1016/j.bbmt.2013.09.011
  • Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990 Feb 1;75(3):555–562. doi: 10.1182/blood.V75.3.555.555
  • Tomblyn MB, Arora M, Baker KS, et al. Myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia: analysis of graft sources and long-term outcome. J Clin Oncol. 2009 Aug 1;27(22):3634–3641. doi: 10.1200/JCO.2008.20.2960
  • Kato M, Kurata M, Kanda J, et al. Impact of graft-versus-host disease on relapse and survival after allogeneic stem cell transplantation for pediatric leukemia. Bone Marrow Transplant. 2019 1;54(1):68–75. doi: 10.1038/s41409-018-0221-6
  • Nordlander A, Mattsson J, Ringdén O, et al. Graft-versus-host disease is associated with a lower relapse incidence after hematopoietic stem cell transplantation in patients with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2004 3;10(3):195–203. doi: 10.1016/j.bbmt.2003.11.002
  • Kanda J, Hishizawa M, Utsunomiya A, et al. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study. Blood. 2012 Mar 1;119(9):2141–2148. doi: 10.1182/blood-2011-07-368233
  • Itonaga H, Iwanaga M, Aoki K, et al. Impacts of graft-versus-host disease on outcomes after allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia: a nationwide retrospective study. Leuk Res. 2016 Feb;41:48–55.
  • Hiramoto N, Kurosawa S, Tajima K, et al. Positive impact of chronic graft-versus-host disease on the outcome of patients with de novo myelodysplastic syndrome after allogeneic hematopoietic cell transplantation: a single-center analysis of 115 patients. Eur J Haematol. 2014 Feb;92(2):137–146. doi: 10.1111/ejh.12214
  • Valcarcel D, Martino R, Caballero D, et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versus-host disease is the strongest factor improving survival. J Clin Oncol. 2008 Feb 1;26(4):577–584. doi: 10.1200/JCO.2007.11.1641
  • Thepot S, Zhou J, Perrot A, et al. The graft-versus-leukemia effect is mainly restricted to NIH-defined chronic graft-versus-host disease after reduced intensity conditioning before allogeneic stem cell transplantation. Leukemia. 2010 Nov;24(11):1852–1858. doi: 10.1038/leu.2010.187
  • Dickinson AM, Norden J, Li S, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol. 2017 Jun 7;8:496. doi: 10.3389/fimmu.2017.00496
  • Markey KA, MacDonald KPA, Hill GR. The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood. 2014 Jul 17;124(3):354–362. doi: 10.1182/blood-2014-02-514745
  • Barnes DW, Corp MJ, Loutit JF, et al. Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br Med J. 1956 Sep 15;2(4993):626–627. doi: 10.1136/bmj.2.4993.626
  • Cooke KR, Luznik L, Sarantopoulos S, et al. The biology of chronic graft-versus-host disease: a task force report from the national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017 Feb;23(2):211–234. doi: 10.1016/j.bbmt.2016.09.023
  • Zhao D, Young JS, Chen YH, et al. Alloimmune response results in expansion of autoreactive donor CD4+ T cells in transplants that can mediate chronic graft-versus-host disease. J Immunol. 2011 Jan 15;186(2):856–868. doi: 10.4049/jimmunol.1002195
  • Zeiser R, Blazar BR, Longo DL. Pathophysiology of chronic graft-versus-host disease and Therapeutic targets. N Engl J Med. 2017 Dec 28;377(26):2565–2579.
  • Yamakawa T, Ohigashi H, Hashimoto D, et al. Vitamin A-coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis in chronic graft-versus-host disease. Blood. 2018 Mar 29;131(13):1476–1485. doi: 10.1182/blood-2017-04-779934
  • Du J, Paz K, Flynn R, et al. Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production. Blood. 2017 May 4;129(18):2570–2580. doi: 10.1182/blood-2017-01-758854
  • McCormick LL, Zhang Y, Tootell E, et al. Anti-TGF-beta treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J Immunol. 1999 Nov 15;163(10):5693–5699. doi: 10.4049/jimmunol.163.10.5693
  • Taylor DK, Mittereder N, Kuta E, et al. T follicular helper-like cells contribute to skin fibrosis. Sci Transl Med. 2018 Mar 7;10(431). doi: 10.1126/scitranslmed.aaf5307
  • Hess NJ, Turicek DP, Riendeau J, et al. Inflammatory CD4/CD8 double-positive human T cells arise from reactive CD8 T cells and are sufficient to mediate GVHD pathology. Sci Adv. 2023 Mar 24;9(12):eadf0567. doi: 10.1126/sciadv.adf0567
  • Biedermann BC, Sahner S, Gregor M, et al. Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic graft versus host disease. Lancet. 2002 Jun 15;359(9323):2078–2083. doi: 10.1016/S0140-6736(02)08907-9
  • Sato M, Tokuda N, Fukumoto T, et al. Immunohistopathological study of the oral lichenoid lesions of chronic GVHD. J Oral Pathol Med. 2006 Jan;35(1):33–36. doi: 10.1111/j.1600-0714.2005.00372.x
  • Tsai JJ, Velardi E, Shono Y, et al. Nrf2 regulates CD4 T cell-induced acute graft-versus-host disease in mice. Blood. 2018 Dec 27;132(26):2763–2774. doi: 10.1182/blood-2017-10-812941
  • Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010 Jun 25;141(7):1135–1145. doi: 10.1016/j.cell.2010.05.009
  • Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal paneth cells. Nature. 2008 Nov 13;456(7219):259–263. doi: 10.1038/nature07416
  • Hubbard-Lucey VM, Shono Y, Maurer K, et al. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity. 2014 Oct 16;41(4):579–591. doi: 10.1016/j.immuni.2014.09.011
  • Docampo MD, da Silva MB, Lazrak A, et al. Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood. 2022 Apr 14;139(15):2392–2405. doi: 10.1182/blood.2021010719
  • Lu SX, Alpdogan O, Lin J, et al. STAT-3 and ERK 1/2 phosphorylation are critical for T-cell alloactivation and graft-versus-host disease. Blood. 2008 Dec 15;112(13):5254–5258. doi: 10.1182/blood-2008-03-147322
  • Andrlová H, Miltiadous O, Kousa AI, et al. MAIT and Vδ2 unconventional T cells are supported by a diverse intestinal microbiome and correlate with favorable patient outcome after allogeneic HCT. Sci Transl Med. 2022 May 25;14(646):eabj2829. doi: 10.1126/scitranslmed.abj2829
  • Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005 Oct 15;106(8):2903–2911. doi: 10.1182/blood-2005-03-1257
  • McDonald-Hyman C, Flynn R, Panoskaltsis-Mortari A, et al. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood. 2016 Aug 18;128(7):1013–1017. doi: 10.1182/blood-2016-05-715896
  • Landwehr-Kenzel S, Müller-Jensen L, Kuehl J-S, et al. Adoptive transfer of ex vivo expanded regulatory T cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol Ther. 2022 Jun 1;30(6):2298–2314. doi: 10.1016/j.ymthe.2022.02.025
  • Zorn E, Mohseni M, Kim H, et al. Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand FOXP3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009 3;15(3):382–388. doi: 10.1016/j.bbmt.2008.12.494
  • Theil A, Tuve S, Oelschlägel U, et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015 4;17(4):473–486. doi: 10.1016/j.jcyt.2014.11.005
  • Sarantopoulos S, Stevenson KE, Kim HT, et al. High levels of B-cell activating factor in patients with active chronic graft-versus-host disease. Clin Cancer Res. 2007 Oct 15;13(20):6107–6114. doi: 10.1158/1078-0432.CCR-07-1290
  • Sarantopoulos S, Stevenson KE, Kim HT, et al. Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host disease. Blood. 2009 Apr 16;113(16):3865–3874. doi: 10.1182/blood-2008-09-177840
  • Jacobson CA, Sun L, Kim HT, et al. Post-transplantation B cell activating factor and B cell recovery before onset of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014 5;20(5):668–675. doi: 10.1016/j.bbmt.2014.01.021
  • Allen JL, Fore MS, Wooten J, et al. B cells from patients with chronic GVHD are activated and primed for survival via BAFF-mediated pathways. Blood. 2012 Sep 20;120(12):2529–2536. doi: 10.1182/blood-2012-06-438911
  • Miklos DB, Kim HT, Miller KH, et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005 Apr 1;105(7):2973–2978. doi: 10.1182/blood-2004-09-3660
  • Miklos DB, Kim HT, Zorn E, et al. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors. Blood. 2004 Jan 1;103(1):353–359. doi: 10.1182/blood-2003-03-0984
  • Porcheray F, Miklos DB, Floyd BH, et al. Combined CD4 T-cell and antibody response to human minor histocompatibility antigen DBY after allogeneic stem-cell transplantation. Transplantation. 2011 Aug 15;92(3):359–365. doi: 10.1097/TP.0b013e3182244cc3
  • Zorn E, Miklos DB, Floyd BH, et al. Minor histocompatibility antigen DBY elicits a coordinated B and T cell response after allogeneic stem cell transplantation. J Exp Med. 2004 Apr 19;199(8):1133–1142. doi: 10.1084/jem.20031560
  • Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012 May 7;209(5):903–911. doi: 10.1084/jem.20112408
  • Jenq RR, Taur Y, Devlin SM, et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015 8;21(8):1373–1383. doi: 10.1016/j.bbmt.2015.04.016
  • Shono Y, Docampo MD, Peled JU, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016 May 18;8(339):339ra71. doi: 10.1126/scitranslmed.aaf2311
  • Burgos da Silva M, Ponce DM, Dai A, et al. Preservation of the fecal microbiome is associated with reduced severity of graft-versus-host disease. Blood. 2022 Dec 1;140(22):2385–2397. doi: 10.1182/blood.2021015352
  • Wang Y, Huang L, Huang T, et al. The gut bacteria dysbiosis contributes to chronic graft-versus-host disease associated with a Treg/Th1 ratio imbalance. Front Microbiol. 2022;13:813576. doi: 10.3389/fmicb.2022.813576
  • Markey KA, Gomes AL, Littmann ER, et al. Pre-transplant and peri-d100 gastrointestinal dysbiosis is associated with the subsequent development of chronic graft-versus-host disease. Blood. 2018;132(Supplement 1):359–359. doi: 10.1182/blood-2018-99-110309
  • Markey KA, Schluter J, Gomes ALC, et al. The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. Blood. 2020 Jul 2;136(1):130–136. doi: 10.1182/blood.2019003369
  • Koehn BH, Zeiser R, Blazar BR. Inflammasome effects in GvHD. Oncotarget. 2015 Nov 17;6(36):38444–38445. doi: 10.18632/oncotarget.6307
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016 7;16(7):407–420. doi: 10.1038/nri.2016.58
  • Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol. 2023 Sep 1;69:101815. doi: 10.1016/j.smim.2023.101815
  • Jankovic D, Ganesan J, Bscheider M, et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J Exp Med. 2013 Sep 23;210(10):1899–1910. doi: 10.1084/jem.20130084
  • Zeiser R, Penack O, Holler E, et al. Danger signals activating innate immunity in graft-versus-host disease. J Mol Med. 2011 9;89(9):833–845. doi: 10.1007/s00109-011-0767-x
  • Koehn BH, Apostolova P, Haverkamp JM, et al. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015 Sep 24;126(13):1621–1628. doi: 10.1182/blood-2015-03-634691
  • Seike K, Kiledal A, Fujiwara H, et al. Ambient oxygen levels regulate intestinal dysbiosis and GVHD severity after allogeneic stem cell transplantation. Immunity. 2023 Feb 14;56(2):353–368.e6. doi: 10.1016/j.immuni.2023.01.007
  • Takahashi H, Okayama N, Yamaguchi N, et al. Associations of interactions between NLRP3 SNPs and HLA mismatch with acute and extensive chronic graft-versus-host diseases. Sci Rep. 2017 Oct 12;7(1):13097. doi: 10.1038/s41598-017-13506-w
  • Watkins B, Qayed M, McCracken C, et al. Phase II Trial of Costimulation Blockade With Abatacept for Prevention of Acute GVHD. J Clin Oncol. 2021 Jun 10;39(17):1865–1877. doi: 10.1200/JCO.20.01086
  • van Besien K, Kunavakkam R, Rondon G, et al. Fludarabine-melphalan conditioning for AML and MDS: alemtuzumab reduces acute and chronic GVHD without affecting long-term outcomes. Biol Blood Marrow Transplant. 2009 May;15(5):610–617. doi: 10.1016/j.bbmt.2009.01.021
  • Chakraverty R, Orti G, Roughton M, et al. Impact of in vivo alemtuzumab dose before reduced intensity conditioning and HLA-identical sibling stem cell transplantation: pharmacokinetics, GVHD, and immune reconstitution. Blood. 2010 Oct 21;116(16):3080–3088. doi: 10.1182/blood-2010-05-286856
  • Sauter CS, Chou JF, Papadopoulos EB, et al. A prospective study of an alemtuzumab containing reduced-intensity allogeneic stem cell transplant program in patients with poor-risk and advanced lymphoid malignancies. Leuk Lymphoma. 2014 Dec;55(12):2739–2747. doi: 10.3109/10428194.2014.894185
  • Soiffer RJ, Kim HT, McGuirk J, et al. Prospective, randomized, Double-blind, phase III clinical trial of anti–T-Lymphocyte globulin to assess impact on chronic graft-versus-host disease–free survival in patients undergoing HLA-Matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017 Dec 20;35(36):4003–4011. doi: 10.1200/JCO.2017.75.8177
  • Bacigalupo A, Lamparelli T, Bruzzi P, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001 Nov 15;98(10):2942–2947. doi: 10.1182/blood.V98.10.2942
  • Walker I, Panzarella T, Couban S, et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: a randomised, controlled, open-label, phase 3, multicentre trial. Lancet Oncol. 2016 Feb;17(2):164–173. doi: 10.1016/S1470-2045(15)00462-3
  • Wang Y, Fu HX, Liu DH, et al. Influence of two different doses of antithymocyte globulin in patients with standard-risk disease following haploidentical transplantation: a randomized trial. Bone Marrow Transplant. 2014 Mar;49(3):426–433. doi: 10.1038/bmt.2013.191
  • Kroger N, Solano C, Wolschke C, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016 Jan 7;374(1):43–53. doi: 10.1056/NEJMoa1506002
  • Chang YJ, Wu DP, Lai YR, et al. Antithymocyte globulin for matched sibling donor transplantation in patients with hematologic malignancies: a multicenter, open-label, randomized controlled study. J Clin Oncol. 2020 Oct 10;38(29):3367–3376. doi: 10.1200/JCO.20.00150
  • Finke J, Schmoor C, Bethge WA, et al. Prognostic factors affecting outcome after allogeneic transplantation for hematological malignancies from unrelated donors: results from a randomized trial. Biol Blood Marrow Transplant. 2012 Nov;18(11):1716–1726. doi: 10.1016/j.bbmt.2012.06.001
  • Bryant A, Mallick R, Huebsch L, et al. Low-Dose Antithymocyte Globulin for Graft-versus-Host-Disease Prophylaxis in Matched Unrelated Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2017 Dec;23(12):2096–2101. doi: 10.1016/j.bbmt.2017.08.007
  • Zuckermann J, Castro BM, Cunha TA, et al. Systematic review and meta-analysis of anti-thymocyte globulin dosage as a component of graft-versus-host disease prophylaxis. PLoS One. 2023;18(4):e0284476. doi: 10.1371/journal.pone.0284476
  • Kekre N, Antin JH. ATG in allogeneic stem cell transplantation: standard of care in 2017? Counterpoint Blood Adv. 2017 Mar 28;1(9):573–576.
  • Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-Cell–depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998 Oct 22;339(17):1186–1193. doi: 10.1056/NEJM199810223391702
  • Wagner JE, Donnenberg AD, Noga SJ, et al. Lymphocyte depletion of donor bone marrow by counterflow centrifugal elutriation: results of a phase I clinical trial. Blood. 1988 Oct;72(4):1168–1176. doi: 10.1182/blood.V72.4.1168.1168
  • Filipovich AH, McGlave PB, Ramsay NK, et al. Pretreatment of donor bone marrow with monoclonal antibody OKT3 for prevention of acute graft-versus-host disease in allogeneic histocompatible bone-marrow transplantation. Lancet. 1982 Jun 5;1(8284):1266–1269. doi: 10.1016/S0140-6736(82)92840-9
  • Soiffer RJ, Murray C, Mauch P, et al. Prevention of graft-versus-host disease by selective depletion of CD6-positive T lymphocytes from donor bone marrow. J Clin Oncol. 1992 Jul;10(7):1191–1200. doi: 10.1200/JCO.1992.10.7.1191
  • Soiffer RJ, Weller E, Alyea EP, et al. CD6+ donor marrow T-cell depletion as the sole form of graft-versus-host disease prophylaxis in patients undergoing allogeneic bone marrow transplant from unrelated donors. J Clin Oncol. 2001 Feb 15;19(4):1152–1159. doi: 10.1200/JCO.2001.19.4.1152
  • Martin PJ, Hansen JA, Buckner CD, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985 Sep;66(3):664–672. doi: 10.1182/blood.V66.3.664.664
  • Vallera DA, Ash RC, Zanjani ED, et al. Anti-T-cell reagents for human bone marrow transplantation: ricin linked to three monoclonal antibodies. Science. 1983 Nov 4;222(4623):512–515. doi: 10.1126/science.6353579
  • Mitsuyasu RT, Champlin RE, Gale RP, et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. a prospective, randomized, double-blind trial. Ann Intern Med. 1986 Jul;105(1):20–26. doi: 10.7326/0003-4819-105-1-20
  • Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991 Oct 15;78(8):2120–2130. doi: 10.1182/blood.V78.8.2120.2120
  • Goldman JM, Gale RP, Horowitz MM, et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. increased risk for relapse associated with T-cell depletion. Ann Intern Med. 1988 Jun;108(6):806–814. doi: 10.7326/0003-4819-108-6-806
  • Marks DI, Hughes TP, Szydlo R, et al. HLA-identical sibling donor bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: influence of GVHD prophylaxis on outcome. Br J Haematol. 1992 Jul;81(3):383–390. doi: 10.1111/j.1365-2141.1992.tb08244.x
  • Remberger M, Ringden O, Aschan J, et al. Long-term follow-up of a randomized trial comparing T-cell depletion with a combination of methotrexate and cyclosporine in adult leukemic marrow transplant recipients. Transplant Proc. 1994 Jun;26(3):1829–1830.
  • Keever-Taylor CA, Devine SM, Soiffer RJ, et al. Characteristics of CliniMACS(R) system CD34-enriched T cell-depleted grafts in a multicenter trial for acute myeloid leukemia-Blood and Marrow Transplant clinical trials network (BMT CTN) protocol 0303. Biol Blood Marrow Transplant. 2012 May;18(5):690–697. doi: 10.1016/j.bbmt.2011.08.017
  • Luznik L, Pasquini MC, Logan B, et al. Randomized phase III BMT CTN trial of calcineurin inhibitor-free chronic graft-versus-host disease Interventions in myeloablative hematopoietic cell transplantation for hematologic malignancies. J Clin Oncol. 2022 Feb 1;40(4):356–368. doi: 10.1200/JCO.21.02293
  • Bleakley M, Sehgal A, Seropian S, et al. Naive T-Cell depletion to prevent chronic graft-versus-host disease. J Clin Oncol. 2022 Apr 10;40(11):1174–1185. doi: 10.1200/JCO.21.01755
  • Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex–incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001 Dec 1;98(12):3456–3464. doi: 10.1182/blood.V98.12.3456
  • Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008 6;14(6):641–650. doi: 10.1016/j.bbmt.2008.03.005
  • Shaw BE, Jimenez-Jimenez AM, Burns LJ, et al. National Marrow donor program-sponsored multicenter, phase II trial of HLA-Mismatched unrelated donor bone Marrow transplantation using post-Transplant cyclophosphamide. J Clin Oncol. 2021 Jun 20;39(18):1971–1982. doi: 10.1200/JCO.20.03502
  • Ciurea SO, Al Malki MM, Kongtim P, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant. 2020 Jan;55(1):12–24. doi: 10.1038/s41409-019-0499-z
  • Kasamon YL, Bolanos-Meade J, Prince GT, et al. Outcomes of nonmyeloablative HLA-Haploidentical Blood or Marrow transplantation with high-dose post-transplantation cyclophosphamide in older adults. J Clin Oncol. 2015 Oct 1;33(28):3152–3161. doi: 10.1200/JCO.2014.60.4777
  • Kasamon YL, Luznik L, Leffell MS, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010 Apr;16(4):482–489. doi: 10.1016/j.bbmt.2009.11.011
  • McCurdy SR, Kasamon YL, Kanakry CG, et al. Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica. 2017 Feb;102(2):391–400. doi: 10.3324/haematol.2016.144139
  • Elmariah H, Kasamon YL, Zahurak M, et al. Haploidentical bone Marrow transplantation with post-Transplant cyclophosphamide using non–first-Degree related donors. Biol Blood Marrow Transplant. 2018 May;24(5):1099–1102. doi: 10.1016/j.bbmt.2018.02.005
  • Broers AEC, de Jong CN, Bakunina K, et al. Posttransplant cyclophosphamide for prevention of graft-versus-host disease: results of the prospective randomized HOVON-96 trial. Blood Adv. 2022 Jun 14;6(11):3378–3385. doi: 10.1182/bloodadvances.2021005847
  • Bolaños-Meade J, Reshef R, Fraser R, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019 Mar;6(3):e132–e143. doi: 10.1016/S2352-3026(18)30221-7
  • Bolaños-Meade J, Hamadani M, Wu J, et al. Post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis. N Engl J Med. 2023 Jun 22;388(25):2338–2348. doi: 10.1056/NEJMoa2215943
  • Martin PJ, Schoch G, Fisher L, et al. A retrospective analysis of therapy for acute graft-versus-host disease: initial treatment. Blood. 1990 Oct 15;76(8):1464–1472. doi: 10.1182/blood.V76.8.1464.1464
  • Martin PJ, Rizzo JD, Wingard JR, et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012 8;18(8):1150–1163. doi: 10.1016/j.bbmt.2012.04.005
  • Flowers MED, Martin PJ. How we treat chronic graft-versus-host disease. Blood. 2015 Jan 22;125(4):606–615. doi: 10.1182/blood-2014-08-551994
  • Lee SJ, Vogelsang G, Flowers MED. Chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2003 4;9(4):215–233. doi: 10.1053/bbmt.2003.50026
  • Wolff D, Herzberg PY, Herrmann A, et al. Post-transplant multimorbidity index and quality of life in patients with chronic graft-versus-host disease-results from a joint evaluation of a prospective German multicenter validation trial and a cohort from the National Institutes of Health. Bone Marrow Transplant. 2021 Jan;56(1):243–256. doi: 10.1038/s41409-020-01017-8
  • Sullivan KM, Witherspoon RP, Storb R, et al. Alternating-day cyclosporine and prednisone for treatment of high-risk chronic graft-v-host disease. Blood. 1988 Aug;72(2):555–561. doi: 10.1182/blood.V72.2.555.555
  • Koc S, Leisenring W, Flowers MED, et al. Therapy for chronic graft-versus-host disease: a randomized trial comparing cyclosporine plus prednisone versus prednisone alone. Blood. 2002 Jul 1;100(1):48–51. doi: 10.1182/blood.V100.1.48
  • Sullivan KM, Shulman HM, Storb R, et al. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood. 1981 2;57(2):267–276. doi: 10.1182/blood.V57.2.267.267
  • Sullivan KM, Witherspoon RP, Storb R, et al. Prednisone and azathioprine compared with prednisone and placebo for treatment of chronic graft-v-host disease: prognostic influence of prolonged thrombocytopenia after allogeneic marrow transplantation. Blood. 1988 8;72(2):546–554. doi: 10.1182/blood.V72.2.546.546
  • Drexler B, Buser A, Infanti L, et al. Extracorporeal photopheresis in graft-versus-host disease. Transfus Med Hemother. 2020 6;47(3):214–225. doi: 10.1159/000508169
  • Greinix HT, Ayuk F, Zeiser R. Extracorporeal photopheresis in acute and chronic steroid‑refractory graft-versus-host disease: an evolving treatment landscape. Leukemia. 2022 11;36(11):2558–2566. doi: 10.1038/s41375-022-01701-2
  • Greinix HT, van Besien K, Elmaagacli AH, et al. Progressive improvement in cutaneous and extracutaneous chronic graft-versus-host disease after a 24-week course of extracorporeal photopheresis–results of a crossover randomized study. Biol Blood Marrow Transplant. 2011 12;17(12):1775–1782. doi: 10.1016/j.bbmt.2011.05.004
  • Flowers MED, Apperley JF, van Besien K, et al. A multicenter prospective phase 2 randomized study of extracorporeal photopheresis for treatment of chronic graft-versus-host disease. Blood. 2008 Oct 1;112(7):2667–2674. doi: 10.1182/blood-2008-03-141481
  • Greinix HT, Knobler RM, Worel N, et al. The effect of intensified extracorporeal photochemotherapy on long-term survival in patients with severe acute graft-versus-host disease. Haematologica. 2006 3;91(3):405–408.
  • Greinix HT, Volc-Platzer B, Kalhs P, et al. Extracorporeal photochemotherapy in the treatment of severe steroid-refractory acute graft-versus-host disease: a pilot study. Blood. 2000 Oct 1;96(7):2426–2431. doi: 10.1182/blood.V96.7.2426
  • Greinix HT, Volc-Platzer B, Rabitsch W, et al. Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versus-host disease. Blood. 1998 Nov 1;92(9):3098–3104. doi: 10.1182/blood.V92.9.3098
  • Couriel DR, Hosing C, Saliba R, et al. Extracorporeal photochemotherapy for the treatment of steroid-resistant chronic GVHD. Blood. 2006 Apr 15;107(8):3074–3080. doi: 10.1182/blood-2005-09-3907
  • Krejci M, Doubek M, Buchler T, et al. Mycophenolate mofetil for the treatment of acute and chronic steroid-refractory graft-versus-host disease. Ann Hematol. 2005 10;84(10):681–685. doi: 10.1007/s00277-005-1070-0
  • Furlong T, Martin P, Flowers MED, et al. Therapy with mycophenolate mofetil for refractory acute and chronic GVHD. Bone Marrow Transplant. 2009 12;44(11):739–748. doi: 10.1038/bmt.2009.76
  • Martin PJ, Storer BE, Rowley SD, et al. Evaluation of mycophenolate mofetil for initial treatment of chronic graft-versus-host disease. Blood. 2009 May 21;113(21):5074–5082. doi: 10.1182/blood-2009-02-202937
  • Sheskin J. THALIDOMIDE IN THE TREATMENT OF LEPRA REACTIONS. Clin Pharmacol Ther. 1965;6(3):303–306. doi: 10.1002/cpt196563303
  • Vogelsang GB, Farmer ER, Hess AD, et al. Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med. 1992 Apr 16;326(16):1055–1058. doi: 10.1056/NEJM199204163261604
  • Arora M, Wagner JE, Davies SM, et al. Randomized clinical trial of thalidomide, cyclosporine, and prednisone versus cyclosporine and prednisone as initial therapy for chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2001;7(5):265–273. doi: 10.1053/bbmt.2001.v7.pm11400948
  • Antin JH, Kim HT, Cutler C, et al. Sirolimus, tacrolimus, and low-dose methotrexate for graft-versus-host disease prophylaxis in mismatched related donor or unrelated donor transplantation. Blood. 2003 Sep 1;102(5):1601–1605. doi: 10.1182/blood-2003-02-0489
  • Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic stem cell transplantation. Bone Marrow Transplant. 2004 9;34(6):471–476. doi: 10.1038/sj.bmt.1704604
  • Cutler C, Kim HT, Hochberg E, et al. Sirolimus and tacrolimus without methotrexate as graft-versus-host disease prophylaxis after matched related donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2004 5;10(5):328–336. doi: 10.1016/j.bbmt.2003.12.305
  • Shegogue D, Trojanowska M. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J Biol Chem. 2004 May 28;279(22):23166–23175. doi: 10.1074/jbc.M401238200
  • Carpenter PA, Logan BR, Lee SJ, et al. A phase II/III randomized, multicenter trial of prednisone/sirolimus prednisone/sirolimus/calcineurin inhibitor for the treatment of chronic graft–host disease: BMT CTN 0801. Haematologica. 2018 Nov;103(11):1915–1924. doi: 10.3324/haematol.2018.195123
  • Zaja F, Bacigalupo A, Patriarca F, et al. Treatment of refractory chronic GVHD with rituximab: a GITMO study. Bone Marrow Transplant. 2007 Aug;40(3):273–277. doi: 10.1038/sj.bmt.1705725
  • Canninga-van Dijk MR, van der Straaten HM, Fijnheer R, et al. Anti-CD20 monoclonal antibody treatment in 6 patients with therapy-refractory chronic graft-versus-host disease. Blood. 2004 Oct 15;104(8):2603–2606. doi: 10.1182/blood-2004-05-1855
  • Okamoto M, Okano A, Akamatsu S, et al. Rituximab is effective for steroid-refractory sclerodermatous chronic graft-versus-host disease. Leukemia. 2006 Jan;20(1):172–173. doi: 10.1038/sj.leu.2403996
  • Ratanatharathorn V, Carson E, Reynolds C, et al. Anti-CD20 chimeric monoclonal antibody treatment of refractory immune-mediated thrombocytopenia in a patient with chronic graft-versus-host disease. Ann Intern Med. 2000 Aug 15;133(4):275–279. doi: 10.7326/0003-4819-133-4-200008150-00011
  • Ratanatharathorn V, Ayash L, Reynolds C, et al. Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody. Biol Blood Marrow Transplant. 2003 Aug;9(8):505–511. doi: 10.1016/S1083-8791(03)00216-7
  • Cutler C, Miklos D, Kim HT, et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood. 2006 Jul 15;108(2):756–762. doi: 10.1182/blood-2006-01-0233
  • Kim SJ, Lee JW, Jung CW, et al. Weekly rituximab followed by monthly rituximab treatment for steroid-refractory chronic graft-versus-host disease: results from a prospective, multicenter, phase II study. Haematologica. 2010 Nov;95(11):1935–1942. doi: 10.3324/haematol.2010.026104
  • Jeon Y, Lim J-Y, Im K-I, et al. BAFF blockade attenuates acute graft-versus-host disease directly the dual regulation of T- and B-cell homeostasis. Front Immunol. 2022 Dec 6;13:995149. doi: 10.3389/fimmu.2022.995149
  • Barmettler S, Ong M-S, Farmer JR, et al. Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia. JAMA Netw Open. 2018 Nov 2;1(7):e184169. doi: 10.1001/jamanetworkopen.2018.4169
  • Lucas F, Woyach JA. Inhibiting Bruton’s tyrosine kinase in CLL and other B-Cell malignancies. Targ Oncol. 2019 4;14(2):125–138. doi: 10.1007/s11523-019-00635-7
  • da Cunha-Bang C, Niemann CU. Targeting Bruton’s Tyrosine Kinase across B-cell malignancies. Drugs. 2018 11;78(16):1653–1663. doi: 10.1007/s40265-018-1003-6
  • Palaniyandi S, Strattan E, Kumari R, et al. Combinatorial inhibition of tec kinases BTK and ITK is beneficial in ameliorating murine sclerodermatous chronic graft versus host disease. Bone Marrow Transplant. 2023 May 9;58(8):924–935. doi: 10.1038/s41409-023-02001-8
  • Miklos DB, Abu Zaid M, Cooney JP, et al. Ibrutinib for first-line treatment of chronic graft-versus-host disease: results from the randomized phase III iNTEGRATE Study. J Clin Oncol. 2023 Apr 1;41(10):1876–1887. doi: 10.1200/JCO.22.00509
  • Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017 Nov 23;130(21):2243–2250. doi: 10.1182/blood-2017-07-793786
  • Waller EK, Miklos D, Cutler C, et al.Ibrutinib for chronic graft-versus-host disease after failure of prior therapy: 1-year update of a phase 1b/2 study. Biol Blood Marrow Transplant. 2019 10;25(10): 2002–2007. 10.1016/j.bbmt.2019.06.023
  • Chin KK, Kim HT, Inyang EA, et al. Ibrutinib in steroid-refractory chronic graft-versus-host disease, a single-center experience. Transplant Cell Ther. 2021 Dec;27(12):e990 1–e990 7. doi: 10.1016/j.jtct.2021.08.017
  • Zeiser R, Burchert A, Lengerke C, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015 Oct;29(10):2062–2068. doi: 10.1038/leu.2015.212
  • Zeiser R, von Bubnoff N, Butler J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med. 2020 May 7;382(19):1800–1810. doi: 10.1056/NEJMoa1917635
  • White J, Elemary M, Linn SM, et al. A multicenter, retrospective study evaluating clinical outcomes of ruxolitinib therapy in heavily pretreated chronic GVHD patients with steroid failure. Transplant Cell Ther. 2023 Feb;29(2):.e120.1–.e120.9. doi: 10.1016/j.jtct.2022.11.025
  • Zeiser R, Polverelli N, Ram R, et al. Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease. N Engl J Med. 2021 Jul 15;385(3):228–238. doi: 10.1056/NEJMoa2033122
  • Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, et al. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16814–16819. doi: 10.1073/pnas.1414189111
  • Flynn R, Paz K, Du J, et al. Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood. 2016 Apr 28;127(17):2144–2154. doi: 10.1182/blood-2015-10-678706
  • Jagasia M, Lazaryan A, Bachier CR, et al. ROCK2 inhibition with belumosudil (KD025) for the treatment of chronic graft-versus-host disease. J Clin Oncol. 2021 Jun 10;39(17):1888–1898. doi: 10.1200/JCO.20.02754
  • Przepiorka D, Le RQ, Ionan A, et al. FDA approval summary: belumosudil for adult and pediatric patients 12 years and older with chronic GvHD after two or more prior lines of systemic therapy. Clin Cancer Res. 2022 Jun 13;28(12):2488–2492. doi: 10.1158/1078-0432.CCR-21-4176
  • Cutler C, Lee SJ, Arai S, et al. Belumosudil for chronic graft-versus-host disease after 2 or more prior lines of therapy: the ROCKstar study. Blood. 2021 Dec 2;138(22):2278–2289. doi: 10.1182/blood.2021012021
  • Alexander KA, Flynn R, Lineburg KE, et al. CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest. 2014 Oct;124(10):4266–4280. doi: 10.1172/JCI75935
  • Kitko CL, Arora M, DeFilipp Z, et al. Axatilimab for chronic graft-versus-host disease after failure of at least two prior systemic therapies: results of a phase I/II study. J Clin Oncol. 2023 Apr 1;41(10):1864–1875. doi: 10.1200/JCO.22.00958
  • Lee SJ, Arora M, Defilipp Z, et al. Safety, tolerability, and efficacy of axatilimab, a CSF-1R humanized antibody, for chronic graft-versus-host disease after 2 or more lines of systemic treatment. Blood. 2021 Nov 5;138(Supplement 1):263–263. doi: 10.1182/blood-2021-146050
  • A study of axatilimab at 3 different doses in participants with chronic graft versus host disease (cGVHD). [Accessed 2023 August 1]. https://classic.clinicaltrials.gov/ct2/show/NCT04710576
  • Yu C-C, Fornoni A, Weins A, et al. Abatacept in B7-1–Positive Proteinuric Kidney Disease. N Engl J Med. 2013 Dec 19;369(25):2416–2423. doi: 10.1056/NEJMoa1304572
  • Genovese MC, Becker J-C, Schiff M, et al. Abatacept for Rheumatoid Arthritis refractory to tumor necrosis factor α inhibition. N Engl J Med. 2005 Sep 15;353(11):1114–1123. doi: 10.1056/NEJMoa050524
  • Via CS, Rus V, Nguyen P, et al. Differential effect of CTLA4Ig on murine Graft-Versus-Host Disease (GVHD) development: CTLA4Ig prevents both acute and chronic GVHD development but reverses only chronic GVHD. J Immunol. 1996 Nov 1;157(9):4258–4267. doi: 10.4049/jimmunol.157.9.4258
  • Nahas MR, Soiffer RJ, Kim HT, et al. Phase 1 clinical trial evaluating abatacept in patients with steroid-refractory chronic graft-versus-host disease. Blood. 2018 Jun 21;131(25):2836–2845. doi: 10.1182/blood-2017-05-780239
  • Koshy AG, Kim HT, Liegel J, et al. Phase 2 clinical trial evaluating abatacept in patients with steroid-refractory chronic graft-versus-host disease. Blood. 2023 Jun 15;141(24):2932–2943. doi: 10.1182/blood.2022019107
  • Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012 Feb 17;12(3):180–190.
  • Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in T cell function. Nat Immunol. 2016 Nov;17(11):1322–1333. doi: 10.1038/ni.3540
  • Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004 Sep;4(9):665–674. doi: 10.1038/nri1435
  • Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol. 2004 Apr 1;172(7):3983–3988.
  • Overwijk WW, Tagliaferri MA, Zalevsky J. Engineering IL-2 to give new life to T cell immunotherapy. Annu Rev Med. 2021 Jan 27;72(1):281–311.
  • Matsuoka K-I, Kim HT, McDonough S, et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2010 May;120(5):1479–1493. doi: 10.1172/JCI41072
  • Buckner JH. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010 Dec;10(12):849–859. doi: 10.1038/nri2889
  • Koreth J, Antin JH. Current and future approaches for control of graft-versus-host disease. Expert Rev Hematol. 2008 Oct;1(1):111. doi: 10.1586/17474086.1.1.111
  • Koreth J, Matsuoka K-I, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011 Dec 1;365(22):2055–2066. doi: 10.1056/NEJMoa1108188
  • Matsuoka K-I, Koreth J, Kim HT, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med. 2013 Apr 3;5(179):179ra43. doi: 10.1126/scitranslmed.3005265
  • Mo X-D, Zhang X-H, Xu L-P, et al. Comparison of outcomes after donor lymphocyte infusion with or without prior chemotherapy for minimal residual disease in acute leukemia/myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2017 May;96(5):829–838. doi: 10.1007/s00277-017-2960-7
  • Ogasawara M, Nozu R, Miki K, et al. Donor lymphocyte infusion for relapsed acute leukemia or myelodysplastic syndrome after hematopoietic stem cell transplantation: a single-Institute retrospective analysis. Intern Med. 2023 May 24. doi: 10.2169/internalmedicine.1714-23
  • Ho VT, Kim HT, Kao G, et al. Sequential infusion of donor-derived dendritic cells with donor lymphocyte infusion for relapsed hematologic cancers after allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2014 Dec;89(12):1092–1096. doi: 10.1002/ajh.23825
  • Schmid C, Labopin M, Nagler A, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT acute leukemia working party. J Clin Oncol. 2007 Nov 1;25(31):4938–4945. doi: 10.1200/JCO.2007.11.6053
  • Oba U, Koga Y, Suminoe A, et al. Donor lymphocyte infusion is an effective therapy for relapsed Hodgkin lymphoma after reduced-intensity allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2014 Nov;100(5):511–513. doi: 10.1007/s12185-014-1654-3
  • Rager A, Porter DL. Cellular therapy following allogeneic stem-cell transplantation. Ther Adv Hematol. 2011 Dec;2(6):409–428. doi: 10.1177/2040620711412416
  • Soiffer RJ. Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin Haematol. 2008 Sep;21(3):455–466. doi: 10.1016/j.beha.2008.07.009
  • Soiffer RJ, Alyea EP, Hochberg E, et al. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant. 2002;8(11):625–632. doi: 10.1053/bbmt.2002.v8.abbmt080625
  • Porter DL, Antin JH. Donor leukocyte infusions in myeloid malignancies: new strategies. Best Pract Res Clin Haematol. 2006;19(4):737–755. doi: 10.1016/j.beha.2006.05.003
  • Matte CC, Cormier J, Anderson BE, et al. Graft-versus-leukemia in a retrovirally induced murine CML model: mechanisms of T-cell killing. Blood. 2004 Jun 1;103(11):4353–4361. doi: 10.1182/blood-2003-10-3735
  • Bachireddy P, Azizi E, Burdziak C, et al. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 2021 Nov 9;37(6):109992. doi: 10.1016/j.celrep.2021.109992
  • Alyea EP, Soiffer RJ, Canning C, et al. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone Marrow Transplant. Blood. 1998 May 15;91(10):3671–3680. doi: 10.1182/blood.V91.10.3671
  • Symons HJ, Levy MY, Wang J, et al. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008 May;14(5):499–509. doi: 10.1016/j.bbmt.2008.02.013
  • Chakraverty R, Eom H-S, Sachs J, et al. Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood. 2006 Sep 15;108(6):2106–2113. doi: 10.1182/blood-2006-03-007427
  • Rezvani K, Barrett AJ. Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol. 2008 Sep;21(3):437–453. doi: 10.1016/j.beha.2008.07.004
  • Wilm B, Muñoz-Chapuli R. The role of WT1 in embryonic development and normal organ homeostasis. Methods Mol Biol. 2016;1467:23–39.
  • Oka Y, Elisseeva OA, Tsuboi A, et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics. 2000 Feb;51(2):99–107. doi: 10.1007/s002510050018
  • Gao L, Bellantuono I, Elsässer A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 2000 Apr 1;95(7):2198–2203. doi: 10.1182/blood.V95.7.2198
  • Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013 Feb 27;5(174):174ra27. doi: 10.1126/scitranslmed.3004916
  • Tawara I, Kageyama S, Miyahara Y, et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood. 2017 Nov 2;130(18):1985–1994. doi: 10.1182/blood-2017-06-791202
  • Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019 Jul;25(7):1064–1072. doi: 10.1038/s41591-019-0472-9
  • Van Tendeloo VF, Van de Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13824–13829. doi: 10.1073/pnas.1008051107
  • Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017 Oct 12;130(15):1713–1721. doi: 10.1182/blood-2017-04-780155
  • Di Stasi A, Jimenez AM, Minagawa K, et al. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015 Feb 4;6:36.
  • Akahori Y, Wang L, Yoneyama M, et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood. 2018 Sep 13;132(11):1134–1145. doi: 10.1182/blood-2017-08-802926
  • Dao T, Pankov D, Scott A, et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol. 2015 Oct;33(10):1079–1086. doi: 10.1038/nbt.3349
  • Augsberger C, Hänel G, Xu W, et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood. 2021 Dec 23;138(25):2655–2669. doi: 10.1182/blood.2020010477
  • Ruggiero E, Carnevale E, Prodeus A, et al. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci Transl Med. 2022 Feb 9;14(631):eabg8027. doi: 10.1126/scitranslmed.abg8027
  • Ishikawa T, Fujii N, Imada M, et al. Graft-versus-leukemia effect with a WT1-specific T-cell response induced by azacitidine and donor lymphocyte infusions after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2017 Apr;19(4):514–520. doi: 10.1016/j.jcyt.2016.12.007
  • Naik S, Vasileiou S, Tzannou I, et al. Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplant in patients with ALL. Blood. 2022 Apr 28;139(17):2706–2711. doi: 10.1182/blood.2021014648
  • Steger B, Floro L, Amberger DC, et al. WT1, PRAME, and PR3 mRNA Expression in Acute Myeloid Leukemia (AML). J Immunother. 2020;43(6):204–215. doi: 10.1097/CJI.0000000000000322
  • Huang Q-S, Wang J-Z, Qin Y-Z, et al. Overexpression of WT1 and PRAME predicts poor outcomes of patients with myelodysplastic syndromes with thrombocytopenia. Blood Adv. 2019 Nov 12;3(21):3406–3418. doi: 10.1182/bloodadvances.2019000564
  • McLarnon A, Piper KP, Goodyear OC, et al. CD8+ T-cell immunity against cancer-testis antigens develops following allogeneic stem cell transplantation and reveals a potential mechanism for the graft-versus-leukemia effect. Haematologica. 2010 Sep;95(9):1572–1578. doi: 10.3324/haematol.2009.019539
  • Xue L, Hu Y, Wang J, et al. T cells targeting multiple tumor-associated antigens as a postremission treatment to prevent or delay relapse in acute myeloid leukemia. Cancer Manag Res. 2019 Jul 16;11:6467–6476.
  • Kinoshita H, Cooke KR, Grant M, et al. Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT. Blood Adv. 2022 Apr 26;6(8):2520–2534. doi: 10.1182/bloodadvances.2021006831
  • Lulla PD, Naik S, Vasileiou S, et al. Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood. 2021 May 13;137(19):2585–2597. doi: 10.1182/blood.2020009471
  • Biernacki MA, Sheth VS, Bleakley M. T cell optimization for graft-versus-leukemia responses. JCI Insight. 2020 May 7;5(9). doi: 10.1172/jci.insight.134939
  • Riddell SR, Bleakley M, Nishida T, et al. Adoptive transfer of allogeneic antigen-specific T cells. Biol Blood Marrow Transplant. 2006 Jan;12(1 Suppl 1):9–12. doi: 10.1016/j.bbmt.2005.10.025
  • Anderson LD Jr., Mori S, Mann S, et al. Pretransplant tumor antigen-specific immunization of allogeneic bone marrow transplant donors enhances graft-versus-tumor activity without exacerbation of graft-versus-host disease. Cancer Res. 2000 Oct 15;60(20):5797–5802.
  • Anderson LD Jr., Savary CA, Mullen CA. Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus-tumor activity without exacerbating graft-versus-host disease. Blood. 2000 Apr 1;95(7):2426–2433.
  • Warren EH, Zhang XC, Li S, et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood. 2012 Oct 4;120(14):2796–2806. doi: 10.1182/blood-2012-04-347286
  • Spierings E, Kim Y-H, Hendriks M, et al. Multicenter analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013 Aug;19(8):1244–1253. doi: 10.1016/j.bbmt.2013.06.001
  • Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol. 2011 Mar;89(3):396–407. doi: 10.1038/icb.2010.124
  • Fleischhauer K, Beelen DW. HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Semin Hematol. 2016 Apr;53(2):57–64. doi: 10.1053/j.seminhematol.2016.01.010
  • Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol. 2016 Mar 15;7:100. doi: 10.3389/fimmu.2016.00100
  • Cieri N, Hookeri N, Stromhaug K, et al. Systematic Identification of autosomal and Y-Encoded minor histocompatibility antigens reveals predictors of chronic gvhd and candidate GVL targets. Blood. 2022 Nov 15;140(Supplement 1):4762–4764. doi: 10.1182/blood-2022-162841
  • DeLuca DS, Eiz-Vesper B, Ladas N, et al. High-throughput minor histocompatibility antigen prediction. Bioinformatics. 2009 Sep 15;25(18):2411–2417. doi: 10.1093/bioinformatics/btp404
  • Lansford JL, Dharmasiri U, Chai S, et al. Computational modeling and confirmation of leukemia-associated minor histocompatibility antigens. Blood Adv. 2018 Aug 28;2(16):2052–2062. doi: 10.1182/bloodadvances.2018022475
  • Olsen KS, Jadi O, Dexheimer S, et al. Shared graft-versus-leukemia minor histocompatibility antigens in DISCOVeRY-BMT. Blood Adv. 2023 May 9;7(9):1635–1649. doi: 10.1182/bloodadvances.2022008863
  • Hombrink P, Hassan C, Kester MGD, et al. Identification of biological relevant minor histocompatibility antigens within the B-lymphocyte-derived HLA-Ligandome using a reverse immunology approach. Clin Cancer Res. 2015 May 1;21(9):2177–2186. doi: 10.1158/1078-0432.CCR-14-2188
  • Armistead PM, Liang S, Li H, et al. Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data. PLoS One. 2011 Aug 9;6(8):e23217. doi: 10.1371/journal.pone.0023217
  • Li N, Matte-Martone C, Zheng H, et al. Memory T cells from minor histocompatibility antigen–vaccinated and virus-immune donors improve GVL and immune reconstitution. Blood. 2011 Nov 24;118(22):5965–5976. doi: 10.1182/blood-2011-07-367011
  • Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr. 2020 Jun 3;8:284. doi: 10.3389/fped.2020.00284
  • Bund D, Buhmann R, Gökmen F, et al. Minor histocompatibility antigen UTY as target for graft-versus-leukemia and graft-versus-haematopoiesis in the canine model. Scand J Immunol. 2013 Jan;77(1):39–53. doi: 10.1111/sji.12011
  • van Bergen CAM, van Luxemburg-Heijs SAP, de Wreede LC, et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest. 2017 Feb 1;127(2):517–529. doi: 10.1172/JCI86175
  • van der Zouwen B, Kruisselbrink AB, Frederik Falkenburg JH, et al. Collateral damage of nonhematopoietic tissue by hematopoiesis-specific T cells results in graft-versus-host disease during an ongoing profound graft-versus-leukemia reaction. Biol Blood Marrow Transplant. 2014 Jun;20(6):760–769. doi: 10.1016/j.bbmt.2014.03.002
  • Laurin D, Hannani D, Pernollet M, et al. Immunomonitoring of graft-versus-host minor histocompatibility antigen correlates with graft-versus-host disease and absence of relapse after graft. Transfusion. 2010 Feb;50(2):418–428. doi: 10.1111/j.1537-2995.2009.02440.x
  • Stumpf AN, van der Meijden ED, van Bergen CAM, et al. Identification of 4 new HLA-DR–restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood. 2009 Oct 22;114(17):3684–3692. doi: 10.1182/blood-2009-03-208017
  • Nakamura R, La Rosa C, Tsai W, et al. Ex vivo detection of CD8 T cells specific for H-Y minor histocompatibility antigens in allogeneic hematopoietic stem cell transplant recipients. Transpl Immunol. 2014 May;30(4):128–135. doi: 10.1016/j.trim.2014.02.001
  • Fuji S, Kapp M, Einsele H. Alloreactivity of virus-specific T cells: possible implication of graft-versus-host disease and graft-versus-leukemia effects. Front Immunol. 2013 Oct 14;4:330. doi: 10.3389/fimmu.2013.00330
  • Heemskerk MHM, Hoogeboom M, Hagedoorn R, et al. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med. 2004 Apr 5;199(7):885–894. doi: 10.1084/jem.20031110
  • Koldehoff M, Lindemann M, Opalka B, et al. Cytomegalovirus induces apoptosis in acute leukemia cells as a virus-versus-leukemia function. Leuk Lymphoma. 2015 May 15;56(11):3189–3197. doi: 10.3109/10428194.2015.1032968
  • van Balen P, Jedema I, van Loenen MM, et al. HA-1H T-Cell receptor gene transfer to redirect virus-specific T cells for treatment of hematological malignancies after allogeneic stem cell transplantation: a phase 1 clinical study. Front Immunol. 2020 Aug 20;11:1804.
  • Ho VT, Kim HT, Brock J, et al. GM-CSF secreting leukemia cell vaccination for MDS/AML after allogeneic HSCT: a randomized, double-blinded, phase 2 trial. Blood Adv. 2022 Apr 12;6(7):2183–2194. doi: 10.1182/bloodadvances.2021006255
  • Rosenblatt J, Stone RM, Uhl L, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016 Dec 7;8(368):368ra171. doi: 10.1126/scitranslmed.aag1298
  • Zhou M, Sacirbegovic F, Zhao K, et al. T cell exhaustion and a failure in antigen presentation drive resistance to the graft-versus-leukemia effect. Nat Commun. 2020 Aug 24;11(1):4227. doi: 10.1038/s41467-020-17991-y
  • Koestner W, Hapke M, Herbst J, et al. PD-L1 blockade effectively restores strong graft-versus-leukemia effects without graft-versus-host disease after delayed adoptive transfer of T-cell receptor gene-engineered allogeneic CD8+ T cells. Blood. 2011 Jan 20;117(3):1030–1041. doi: 10.1182/blood-2010-04-283119
  • Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for Patients with Relapse after Allogeneic Transplantation. N Engl J Med. 2016 Jul 14;375(2):143–153. doi: 10.1056/NEJMoa1601202
  • Penter L, Zhang Y, Savell A, et al. Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation. Blood. 2021 Jun 10;137(23):3212–3217. doi: 10.1182/blood.2021010867
  • Gournay V, Vallet N, Peux V, et al. Immune landscape after allo-HSCT: TIGIT- and CD161-expressing CD4 T cells are associated with subsequent leukemia relapse. Blood. 2022 Sep 15;140(11):1305–1321. doi: 10.1182/blood.2022015522
  • Minnie SA, Waltner OG, Ensbey KS, et al. Depletion of exhausted alloreactive T cells enables targeting of stem-like memory T cells to generate tumor-specific immunity. Sci Immunol. 2022 Oct 21;7(76):eabo3420. doi: 10.1126/sciimmunol.abo3420
  • Yao S, Jianlin C, Zhuoqing Q, et al. Case report: combination therapy with PD-1 blockade for acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation resulted in fatal GVHD. Front Immunol. 2021 Apr 1;12:639217.
  • Teshima T, Hill GR, Pan L, et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest. 1999 Aug;104(3):317–325. doi: 10.1172/JCI7111
  • Yang Y-G, Sergio JJ, Pearson DA, et al. Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood. 1997 Dec 1;90(11):4651–4660. doi: 10.1182/blood.V90.11.4651
  • Reddy V, Winer AG, Eksioglu E, et al. Interleukin 12 is associated with reduced relapse without increased incidence of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005 Dec;11(12):1014–1021. doi: 10.1016/j.bbmt.2005.08.032
  • Sykes M, Abraham VS, Harty MW, et al. IL-2 reduces graft-versus-host disease and preserves a graft-versus-leukemia effect by selectively inhibiting CD4+ T cell activity. J Immunol. 1993 Jan 1;150(1):197–205. doi: 10.4049/jimmunol.150.1.197
  • Darlak KA, Wang Y, Li J-M, et al. Enrichment of IL-12–producing plasmacytoid dendritic cells in donor bone Marrow grafts enhances graft-versus-leukemia activity in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013 Sep;19(9):1331–1339. doi: 10.1016/j.bbmt.2013.06.016
  • Reddy P, Teshima T, Hildebrandt G, et al. Interleukin 18 preserves a perforin-dependent graft-versus-leukemia effect after allogeneic bone marrow transplantation. Blood. 2002 Nov 1;100(9):3429–3431. doi: 10.1182/blood-2002-04-1252
  • Reddy P, Teshima T, Hildebrandt G, et al. Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects. Blood. 2003 Apr 1;101(7):2877–2885. doi: 10.1182/blood-2002-08-2566
  • Burchert A, Bug G, Fritz LV, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with -internal tandem duplication mutation (SORMAIN). J Clin Oncol. 2020 Sep 10;38(26):2993–3002. doi: 10.1200/JCO.19.03345
  • Mathew NR, Baumgartner F, Braun L, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018 Mar;24(3):282–291. doi: 10.1038/nm.4484
  • Romee R, Cooley S, Berrien-Elliott MM, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018 Jun 7;131(23):2515–2527. doi: 10.1182/blood-2017-12-823757
  • Yang Y-G, Wang H, Asavaroengchai W, et al. Role of interferon-gamma in GVHD and GVL. Cell Mol Immunol. 2005 Oct;2(5):323–329.
  • Wang H, Yang Y-G. The complex and central role of interferon-γ in graft-versus-host disease and graft-versus-tumor activity. Immunol Rev. 2014 Mar;258(1):30–44. doi: 10.1111/imr.12151
  • Matte-Martone C, Liu J, Zhou M, et al. Differential requirements for myeloid leukemia IFN-γ conditioning determine graft-versus-leukemia resistance and sensitivity. J Clin Invest. 2017 Jun 30;127(7):2765–2776. doi: 10.1172/JCI85736
  • Klauer LK, Schutti O, Ugur S, et al. Interferon gamma secretion of adaptive and innate immune cells as a parameter to describe leukaemia-derived dendritic-cell-mediated immune responses in acute myeloid leukaemia in vitro. Transfus Med Hemother. 2022 Feb;49(1):44–61. doi: 10.1159/000516886
  • Robb RJ, Kreijveld E, Kuns RD, et al. Type I-IFNs control GVHD and GVL responses after transplantation. Blood. 2011 Sep 22;118(12):3399–3409. doi: 10.1182/blood-2010-12-325746
  • Ito S, Krakow EF, Ventura K, et al. Pilot trial of IFN-γ and donor lymphocyte infusion to treat relapsed AML and MDS after allogeneic hematopoietic stem cell transplantation. Blood. 2022 Nov 15;140(Supplement 1):7678–7679. doi: 10.1182/blood-2022-157054
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol. 2008 Apr 18;9(5):503–510. doi: 10.1038/ni1582
  • Braud VM, Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998 Feb 19;391(6669):795–799. doi: 10.1038/35869
  • Lee N, Llano M, Carretero M, et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5199–5204. doi: 10.1073/pnas.95.9.5199
  • Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol. 2014 Apr;26(2):138–144. doi: 10.1016/j.smim.2014.02.007
  • Pende D, Falco M, Vitale M, et al. Killer ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019 May 28;10:1179.
  • Ciccone E, Viale O, Pende D, et al. Specific lysis of allogeneic cells after activation of CD3- lymphocytes in mixed lymphocyte culture. J Exp Med. 1988 Dec 1;168(6):2403–2408. doi: 10.1084/jem.168.6.2403
  • Vivier E, Colonna M. Immunobiology of natural killer cell receptors. Heidelberg: Springer Science & Business Media; 2005 Dec 20.
  • Ciccone E, Colonna M, Viale O, et al. Susceptibility or resistance to lysis by alloreactive natural killer cells is governed by a gene in the human major histocompatibility complex between BF and HLA-B. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9794–9797. doi: 10.1073/pnas.87.24.9794
  • Colonna M, Spies T, Strominger JL, et al. Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7983–7985. doi: 10.1073/pnas.89.17.7983
  • Colonna M, Brooks EG, Falco M, et al. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science. 1993 May 21;260(5111):1121–1124. doi: 10.1126/science.8493555
  • Ruggeri L, Capanni M, Mancusi A, et al. Natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Int J Hematol. 2005 Jan;81(1):13–17. doi: 10.1532/IJH97.04172
  • Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-Mismatched hematopoietic stem cell transplantation. Blood. 1999 Jul 1;94(1):333–339. doi: 10.1182/blood.V94.1.333.413a31_333_339
  • Impola U, Turpeinen H, Alakulppi N, et al. Donor haplotype B of NK KIR receptor reduces the relapse risk in HLA-Identical sibling hematopoietic stem cell transplantation of AML patients. Front Immunol. 2014 Aug 25;5:405.
  • Krieger E, Qayyum R, Keating A, et al. Increased donor inhibitory KIR with known HLA interactions provide protection from relapse following HLA matched unrelated donor HCT for AML. Bone Marrow Transplant. 2021 Nov;56(11):2714–2722. doi: 10.1038/s41409-021-01393-9
  • Rathmann S, Glatzel S, Schönberg K, et al. Expansion of NKG2A−LIR1− natural killer cells in HLA-Matched, killer cell immunoglobulin-like receptors/HLA-Ligand mismatched patients following hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2010 Apr;16(4):469–481. doi: 10.1016/j.bbmt.2009.12.008
  • Symons HJ, Leffell MS, Rossiter ND, et al. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2010 Apr;16(4):533–542. doi: 10.1016/j.bbmt.2009.11.022
  • Bastos-Oreiro M, Anguita J, Martínez-Laperche C, et al. Inhibitory killer cell immunoglobulin-like receptor (iKIR) mismatches improve survival after T-cell-repleted haploidentical transplantation. Eur J Haematol. 2016 May;96(5):483–491. doi: 10.1111/ejh.12616
  • Escudero A, Martínez-Romera I, Fernández L, et al. Donor KIR Genotype Impacts on Clinical Outcome after T Cell–Depleted HLA Matched Related Allogeneic Transplantation for High-Risk Pediatric Leukemia Patients. Biol Blood Marrow Transplant. 2018 Dec;24(12):2493–2500. doi: 10.1016/j.bbmt.2018.08.009
  • McQueen KL, Dorighi KM, Guethlein LA, et al. Donor–recipient combinations of group a and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-Matched, sibling donor hematopoietic cell transplantation. Hum Immunol. 2007 May;68(5):309–323. doi: 10.1016/j.humimm.2007.01.019
  • Fein JA, Shouval R, Krieger E, et al. KIR-HLA interactions lack clinical utility in matched unrelated donor transplantation for AML: an analysis of the CIBMTR and DRST registries. Blood. 2021;138(Supplement 1):419–419. doi: 10.1182/blood-2021-149935
  • Dubreuil L, Chevallier P, Retière C, et al. Relevance of polymorphic KIR and HLA class I genes in NK-Cell-based immunotherapies for adult leukemic patients. Cancers. 2021 Jul 27;13(15):3767. doi: 10.3390/cancers13153767
  • Koenecke C, Shaffer J, Alexander SI, et al. NK cell recovery, chimerism, function, and recognition in recipients of haploidentical hematopoietic cell transplantation following nonmyeloablative conditioning using a humanized anti-CD2 mAb, medi-507. Exp Hematol. 2003 Oct;31(10):911–923. doi: 10.1016/S0301-472X(03)00224-8
  • Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014 Jun 19;123(25):3855–3863. doi: 10.1182/blood-2013-10-532531
  • Curti A, Ruggeri L, D’Addio A, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011 Sep 22;118(12):3273–3279. doi: 10.1182/blood-2011-01-329508
  • Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016 Sep 21;8(357):357ra123. doi: 10.1126/scitranslmed.aaf2341
  • Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012 Dec 6;120(24):4751–4760. doi: 10.1182/blood-2012-04-419283
  • Berrien-Elliott MM, Cashen AF, Cubitt CC, et al. Multidimensional analyses of donor memory-like NK cells reveal new associations with response after adoptive immunotherapy for leukemia. Cancer Discov. 2020 Dec;10(12):1854–1871. doi: 10.1158/2159-8290.CD-20-0312
  • Leong JW, Chase JM, Romee R, et al. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol Blood Marrow Transplant. 2014 Apr;20(4):463–473. doi: 10.1016/j.bbmt.2014.01.006
  • Shapiro RM, Birch GC, Hu G, et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J Clin Invest. 2022 Jun 1;132(11). doi: 10.1172/JCI154334
  • Dong H, Ham JD, Hu G, et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2122379119. doi: 10.1073/pnas.2122379119
  • Peltier D, Reddy P. Non-Coding RNA Mediated Regulation of Allogeneic T Cell Responses After Hematopoietic Transplantation. Front Immunol. 2018 Jun 15;9:1110. doi: 10.3389/fimmu.2018.01110
  • Zeiser R, Youssef S, Baker J, et al. Preemptive HMG-CoA reductase inhibition provides graft-versus-host disease protection by th-2 polarization while sparing graft-versus-leukemia activity. Blood. 2007 Dec 15;110(13):4588–4598. doi: 10.1182/blood-2007-08-106005
  • Uhl FM, Chen S, O’Sullivan D, et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci Transl Med. 2020 Oct 28;12(567). doi: 10.1126/scitranslmed.abb8969
  • Li J-M, Petersen CT, Li J-X, et al. Modulation of immune checkpoints and graft-versus-leukemia in allogeneic transplants by antagonizing vasoactive intestinal peptide signaling. Cancer Res. 2016 Dec 1;76(23):6802–6815. doi: 10.1158/0008-5472.CAN-16-0427
  • Oravecz-Wilson K, Rossi C, Zajac C, et al. ATG5-dependent autophagy uncouples T-cell proliferative and effector functions and separates graft-versus-host disease from graft-versus-Leukemia. Cancer Res. 2021 Feb 15;81(4):1063–1075. doi: 10.1158/0008-5472.CAN-20-1346
  • Ghosh A, Holland AM, Dogan Y, et al. PLZF confers effector functions to donor T cells that preserve graft-versus-tumor effects while attenuating GVHD. Cancer Res. 2013 Aug 1;73(15):4687–4696. doi: 10.1158/0008-5472.CAN-12-4699
  • Gambacorta V, Beretta S, Ciccimarra M, et al. Integrated Multiomic Profiling Identifies the Epigenetic Regulator PRC2 as a Therapeutic Target to Counteract Leukemia Immune Escape and Relapse. Cancer Discov. 2022 Jun 2;12(6):1449–1461. doi: 10.1158/2159-8290.CD-21-0980
  • Ho JNGH, Schmidt D, Lowinus T, et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation. Blood. 2022 Sep 8;140(10):1167–1181. doi: 10.1182/blood.2022016082
  • Baron F, Labopin M, Tischer J, et al. Human leukocyte antigen-haploidentical transplantation for relapsed/refractory acute myeloid leukemia: better leukemia-free survival with bone marrow than with peripheral blood stem cells in patients ≥55 years of age. Am J Hematol. 2022 Aug;97(8):1065–1074. doi: 10.1002/ajh.26627
  • Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015 Aug 20;126(8):1033–1040. doi: 10.1182/blood-2015-04-639831

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.