239
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges facing minimal residual disease testing for acute myeloid leukemia and promising strategies to overcome them

, , , &
Pages 981-990 | Received 24 Aug 2023, Accepted 16 Nov 2023, Published online: 21 Nov 2023

References

  • Dohner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–1377. doi: 10.1182/blood.2022016867
  • DiNardo CD, Erba HP, Freeman SD, et al. Acute myeloid leukaemia. Lancet. 2023;401(10393):2073–2086. doi:10.1016/S0140-6736(23)00108-3
  • Guo H, Chang YJ, Hong Y, et al. Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol. 2021;18(5):1172–1185. doi: 10.1038/s41423-020-00597-1
  • Liu J, Ma R, Liu YR, et al. The significance of peri-transplantation minimal residual disease assessed by multiparameter flow cytometry on outcomes for adult AML patients receiving haploidentical allografts. Bone Marrow Transplant. 2019;54(4):567–577. doi: 10.1038/s41409-018-0300-8
  • Bazinet A, Kantarjian HM. Moving toward individualized target-based therapies in acute myeloid leukemia. Ann Oncol. 2023;34(2):141–151. doi:10.1016/j.annonc.2022.11.004
  • Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189–1199. doi: 10.1056/NEJMoa1716863
  • Heuser M, Freeman SD, Ossenkoppele GJ, et al. Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021;138(26):2753–2767.
  • Chang YJ, Pei XY, Huang XJ. Haematopoietic stem-cell transplantation in China in the era of targeted therapies: current advances, challenges, and future directions. Lancet Haematol. 2022;9(12):e919–e929. doi:10.1016/S2352-3026(22)00293-9
  • Yan CH, Wang Y, Sun YQ, et al. Optimized therapeutic strategy for patients with refractory or relapsed acute myeloid leukemia: long-term clinical outcomes and health-related quality of life assessment. Cancer Commun (Lond). 2022;42(12):1387–1402.
  • Vasseur L, Fenwarth L, Lambert J, et al. LSC17 score complements genetics and measurable residual disease in acute myeloid leukemia: an ALFA study. Blood Adv. 2023;7(15):4024–4034.
  • Zhang XH, Chen J, Han MZ, et al. The consensus from the Chinese society of hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14(1):145. doi: 10.1186/s13045-021-01159-2
  • Dillon LW, Gui G, Page KM, et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell Transplant. JAMA. 2023;329(9):745–755. doi: 10.1001/jama.2023.1363
  • Pratz KW, Jonas BA, Pullarkat V, et al. Measurable residual disease response and prognosis in treatment-naive acute myeloid leukemia with venetoclax and Azacitidine. J Clin Oncol. 2022;40(8):855–865.
  • Balsat M, Renneville A, Thomas X, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the acute leukemia French association group. J Clin Oncol. 2017;35(2):185–193. doi: 10.1200/JCO.2016.67.1875
  • Chang YJ, Wang Y, Liu YR, et al. Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis. J Hematol Oncol. 2017;10(1):134. doi: 10.1186/s13045-017-0502-3
  • Hourigan CS, Dillon LW, Gui G, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with Genomic evidence of residual disease. J Clin Oncol. 2020;38(12):1273–1283. doi: 10.1200/JCO.19.03011
  • Platzbecker U, Middeke JM, Sockel K, et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Lancet Oncol. 2018;19(12):1668–1679. doi: 10.1016/S1470-2045(18)30580-1
  • Paiva B, Vidriales MB, Sempere A, et al. Impact of measurable residual disease by decentralized flow cytometry: a PETHEMA real-world study in 1076 patients with acute myeloid leukemia. Leukemia. 2021;35(8):2358–2370. doi: 10.1038/s41375-021-01126-3
  • Patkar N, Kakirde C, Shaikh AF, et al. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia. 2021;35(5):1392–1404. doi: 10.1038/s41375-021-01131-6
  • Blachly JS, Walter RB, Hourigan CS. The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica. 2022;107(12):2810–2822. doi:10.3324/haematol.2022.282034
  • Soh KT, Conway A, Liu X, et al. Development of a 27-color panel for the detection of measurable residual disease in patients diagnosed with acute myeloid leukemia. Cytometry Pt A. 2022;101(11):970–983. doi:10.1002/cyto.a.24667
  • Voso MT, Buccisano F. AML: making residual disease more measurable. Blood. 2022;140(5):415–417. doi:10.1182/blood.2022017138
  • Bazinet A, Wang A, Li X, et al. Automated quantification of measurable residual disease in chronic lymphocytic leukemia using an artificial intelligence-assisted workflow. Cytometry B Clin Cytom. 2023. doi:10.1002/cyto.b.22116
  • Canali A, Vergnolle I, Bertoli S, et al. Prognostic Impact of unsupervised early assessment of bulk and leukemic stem cell measurable residual disease in acute myeloid leukemia. Clin Cancer Res. 2023;29(1):134–142. doi: 10.1158/1078-0432.CCR-22-2237
  • Grob T, Sanders MA, Vonk CM, et al. Prognostic value of FLT3-internal tandem duplication residual disease in acute myeloid leukemia. J Clin Oncol. 2023;41(4):756–765. doi: 10.1200/JCO.22.00715
  • Hoffmann J, Thrun MC, Rohnert MA, et al. Identification of critical hemodilution by artificial intelligence in bone marrow assessed for minimal residual disease analysis in acute myeloid leukemia: the Cinderella method. Cytometry Pt A. 2023;103(4):304–312. doi: 10.1002/cyto.a.24686
  • Maurillo L, Buccisano F, Del Principe MI, et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008;26(30):4944–4951.
  • Dvorakova D, Racil Z, Jeziskova I, et al. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations. Am J Hematol. 2010;85(12):926–929. doi: 10.1002/ajh.21879
  • Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–552. doi: 10.1016/S1470-2045(10)70090-5
  • Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a “moving target” for detection of residual disease. Cytometry B Clin Cytom. 2014;86(1):3–14.
  • Araki D, Wood BL, Othus M, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34(4):329–336.
  • Skou AS, Juul-Dam KL, Ommen HB, et al. Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse. Br J Haematol. 2021;195(3):310–327. doi:10.1111/bjh.17449
  • Bazinet A, Kadia T, Short NJ, et al. Undetectable measurable residual disease is associated with improved outcomes in AML irrespective of treatment intensity. Blood Adv. 2023;7(13):3284–3296.
  • Klco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314(8):811–822. doi: 10.1001/jama.2015.9643
  • Yan CH, Liu DH, Liu KY, et al. Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood. 2012;119(14):3256–3262.
  • Othus M, Gale RP, Hourigan CS, et al. Statistics and measurable residual disease (MRD) testing: uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant. 2020;55(5):843–850. doi:10.1038/s41409-019-0729-4
  • Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/Measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–1291. doi: 10.1182/blood-2017-09-801498
  • Potter N, Miraki-Moud F, Ermini L, et al. Single cell analysis of clonal architecture in acute myeloid leukaemia. Leukemia. 2019;33(5):1113–1123. doi: 10.1038/s41375-018-0319-2
  • Beneyto-Calabuig S, Merbach AK, Kniffka JA, et al. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell. 2023;30(5):706–721 e708.
  • Ediriwickrema A, Aleshin A, Reiter JG, et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 2020;4(5):943–952.
  • Miles LA, Bowman RL, Merlinsky TR, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587(7834):477–482. doi: 10.1038/s41586-020-2864-x
  • Morita K, Wang F, Jahn K, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020;11(1):5327. doi: 10.1038/s41467-020-19119-8
  • Petti AA, Williams SR, Miller CA, et al. A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun. 2019;10(1):3660. doi: 10.1038/s41467-019-11591-1
  • Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32(7):1598–1608. doi: 10.1038/s41375-018-0034-z
  • van Galen P, Hovestadt V, Ii MH W, et al. Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176(6):1265–1281 e1224.
  • Langebrake C, Brinkmann I, Teigler-Schlegel A, et al. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1–9.
  • Voskova D, Schoch C, Schnittger S, et al. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic, and molecular genetic findings. Cytometry B Clin Cytom. 2004;62(1):25–38.
  • Yang DT, Greenwood JH, Hartung L, et al. Flow cytometric analysis of different CD14 epitopes can help identify immature monocytic populations. Am J Clin Pathol. 2005;124(6):930–936. doi:10.1309/T903Y1FY5WKK9EEY
  • Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood. 2023;141(4):345–355. doi:10.1182/blood.2021014670
  • Laboratory Diagnosis Group CSoHCMA. Chinese consensus on minimal residual disease detection and interpretation of patients with acute myeloid leukemia (2021). Zhonghua Xue Ye Xue Za Zhi. 2021;42(11):889–897.
  • Duan W, Liu X, Jia J, et al. The loss or absence of minimal residual disease of <0.1% at any time after two cycles of consolidation chemotherapy in CBFB-MYH11-positive acute myeloid leukaemia indicates poor prognosis. Br J Haematol. 2021;192(2):265–271.
  • Ngai LL, Hanekamp D, Janssen F, et al. Prospective validation of the prognostic relevance of CD34+CD38- AML stem cell frequency in the HOVON-SAKK132 trial. Blood. 2023;141(21):2657–2661. doi: 10.1182/blood.2022019160
  • Mullighan CG, Phillips LA, Su X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322(5906):1377–1380. doi: 10.1126/science.1164266
  • Houtsma R, SM H, JJ S. CombiFlow: flow cytometry-based identification and characterization of genetically and functionally distinct AML subclones. STAR Protoc. 2021;2(4):100864.
  • Simoes C, Chillon MC, Martinez-Cuadron D, et al. Integrated flow cytometry and sequencing to reconstruct evolutionary patterns from dysplasia to acute myeloid leukemia. Blood Adv. 2023;7(1):167–173.
  • Tsai CH, Tang JL, Tien FM, et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021;5(10):2456–2466.
  • Zhai Y, Singh P, Dolnik A, et al. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer. 2022;21(1):166. doi: 10.1186/s12943-022-01635-4
  • Gerber JM, Smith BD, Ngwang B, et al. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood. 2012;119(15):3571–3577.
  • Quek L, Otto GW, Garnett C, et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med. 2016;213(8):1513–1535.
  • van Rhenen A, Moshaver B, Kelder A, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21(8):1700–1707.
  • Vergez F, Green AS, Tamburini J, et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96(12):1792–1798. doi: 10.3324/haematol.2011.047894
  • Zeijlemaker W, Grob T, Meijer R, et al. CD34(+)CD38(-) leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia. 2019;33(5):1102–1112.
  • Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia. 2016;30(2):439–446. doi: 10.1038/leu.2015.252
  • Li SQ, Xu LP, Wang Y, et al. An LSC-based MRD assay to complement the traditional MFC method for prediction of AML relapse: a prospective study. Blood. 2022;140(5):516–520. doi: 10.1182/blood.2021014604
  • Boyd AL, Lu J, Hollands CG, et al. Leukemic progenitor compartment serves as a prognostic measure of cancer stemness in patients with acute myeloid leukemia. Cell Rep Med. 2023;4(7):101108.
  • Li K, Du Y, Cai Y, et al. Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia. 2023;37(2):308–325. doi: 10.1038/s41375-022-01789-6
  • Lim J, Chin V, Fairfax K, et al. Transitioning single-cell genomics into the clinic. Nat Rev Genet. 2023;24(8):573–584. doi: 10.1038/s41576-023-00613-w
  • Naldini MM, Casirati G, Barcella M, et al. Longitudinal single-cell profiling of chemotherapy response in acute myeloid leukemia. Nat Commun. 2023;14(1):1285. doi: 10.1038/s41467-023-36969-0
  • Tislevoll BS, Hellesoy M, Fagerholt OHE, et al. Early response evaluation by single cell signaling profiling in acute myeloid leukemia. Nat Commun. 2023;14(1):115. doi: 10.1038/s41467-022-35624-4
  • van der Werf I, Mondala PK, Steel SK, et al. Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells. Cell Rep Med. 2023;4(3):100962.
  • Loghavi S, DiNardo CD, Furudate K, et al. Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with NPM1-mutated acute myeloid leukaemia. Br J Haematol. 2021;192(6):1054–1063. doi: 10.1111/bjh.17347
  • Hourigan CS. Achieving MRD negativity in AML: how important is this and how do we get there? Hematology Am Soc Hematol Educ Program. 2022;2022(1):9–14. doi:10.1182/hematology.2022000323
  • Duncavage EJ, Bagg A, Hasserjian RP, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140(21):2228–2247. doi: 10.1182/blood.2022015853
  • Sarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest. 2011;121(1):384–395.
  • Jones CL, Stevens BM, D’Alessandro A, et al. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell. 2018;34(5):724–740 e724.
  • Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129(12):1577–1585. doi:10.1182/blood-2016-10-696054
  • Mohamed MMI, Aref S, Agdar MA, et al. Leukemic stem cell (CD34(+)/CD38(-)/TIM3(+)) frequency in patients with acute myeloid leukemia: clinical implications. Clin Lymphoma Myeloma Leuk. 2021;21(8):508–513.
  • Chen M, Fu M, Gong M, et al. Twenty-four-color full spectrum flow cytometry panel for minimal residual disease detection in acute myeloid leukemia. Open Med (Wars). 2023;18(1):20230745. doi: 10.1515/med-2023-0745
  • Guerrero C, Puig N, Cedena MT, et al. A machine learning Model based on tumor and immune biomarkers to predict undetectable MRD and survival outcomes in multiple myeloma. Clin Cancer Res. 2022;28(12):2598–2609. doi: 10.1158/1078-0432.CCR-21-3430
  • Benard BA, Leak LB, Azizi A, et al. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun. 2021;12(1):7244. doi:10.1038/s41467-021-27472-5
  • Schuringa JJ, Bonifer C. Dissecting Clonal Heterogeneity in AML. Cancer Cell. 2020;38(6):782–784. doi:10.1016/j.ccell.2020.11.011
  • Jan M, Snyder TM, Corces-Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012;4(149):149ra118. doi: 10.1126/scitranslmed.3004315
  • Petti AA, Khan SM, Xu Z, et al. Genetic and Transcriptional Contributions to Relapse in Normal Karyotype Acute Myeloid Leukemia. Blood Cancer Discov. 2022;3(1):32–49.
  • Robinson TM, Bowman RL, Persaud S, et al. Single-cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia. Sci Adv. 2023;9(38):eadg0488. doi: 10.1126/sciadv.adg0488
  • Richardson PG, Trudel S, Popat R, et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N Engl J Med. 2023;389(11):1009–1022. doi: 10.1056/NEJMoa2303194
  • Zhang X, Grimes HL. Improved detection of measurable residual disease in acute myeloid leukemia. Sci Adv. 2023;9(38):eadk2533. doi:10.1126/sciadv.adk2533
  • Tang F, Barbacioru C, Wang Y, et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–382. doi: 10.1038/nmeth.1315
  • Candelli T, Schneider P, Garrido Castro P, et al. Identification and characterization of relapse-initiating cells in MLL-rearranged infant ALL by single-cell transcriptomics. Leukemia. 2022;36(1):58–67. doi: 10.1038/s41375-021-01341-y
  • Pei S, Pollyea DA, Gustafson A, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–551. doi: 10.1158/2159-8290.CD-19-0710
  • Fennell KA, Vassiliadis D, Lam EYN, et al. Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature. 2022;601(7891):125–131. doi: 10.1038/s41586-021-04206-7
  • Heumos L, Schaar AC, Lance C, et al. Best practices for single-cell analysis across modalities. Nat Rev Genet. 2023;24(8):550–572. doi: 10.1038/s41576-023-00586-w
  • Janghorban M, Yang Y, Zhao N, et al. Single-cell analysis unveils the role of the tumor immune microenvironment and notch signaling in dormant minimal residual disease. Cancer Res. 2022;82(5):885–899. doi: 10.1158/0008-5472.CAN-21-1230
  • Glisovic-Aplenc T, Diorio C, Chukinas JA, et al. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv. 2023;7(16):4418–4430.
  • Magnani CF, Myburgh R, Brunn S, et al. Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells. Mol Ther Oncolytics. 2023;30:56–71. doi: 10.1016/j.omto.2023.07.003
  • Zhang H, Bu C, Peng Z, et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis. Leukemia. 2022;36(11):2596–2604. doi: 10.1038/s41375-022-01703-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.