76
Views
0
CrossRef citations to date
0
Altmetric
Review

The effect of immunomodulatory drugs on bone metabolism of patients with multiple myeloma

, , , &
Pages 47-54 | Received 27 Sep 2023, Accepted 05 Feb 2024, Published online: 12 Feb 2024

References

  • Heider M, Nickel K, Hogner M, et al. Multiple myeloma: molecular pathogenesis and disease evolution. Oncol Res Treat. 2021;44(12):672–681. doi: 10.1159/000520312
  • Terpos E, Zamagni E, Lentzsch S, et al. Treatment of multiple myeloma-related bone disease: recommendations from the bone working group of the international myeloma working group. Lancet Oncol. 2021;22(3):e119–e130. doi: 10.1016/S1470-2045(20)30559-3
  • Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33. doi: 10.4065/78.1.21
  • Cowan AJ, Green DJ, Kwok M, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327(5):464–477. doi: 10.1001/jama.2022.0003
  • Zhang F, Zhuang J. Pathophysiology and therapeutic advances in myeloma bone disease. Chronic Dis Transl Med. 2022;8(4):264–270. doi: 10.1002/cdt3.35
  • Rasch S, Lund T, Asmussen JT, et al. Multiple myeloma associated bone disease. Cancers (Basel). 2020;12(8):2113. doi: 10.3390/cancers12082113
  • Terpos E, Christoulas D, Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism. 2018;80:80–90. doi: 10.1016/j.metabol.2017.11.012
  • Mukkamalla S, Malipeddi D. Myeloma bone disease: a comprehensive review. Int J Mol Sci. 2021;22(12):6208. doi: 10.3390/ijms22126208
  • Morris EV, Edwards CM. Morphogens and growth factor signalling in the myeloma bone-lining niche. Cell Mol Life Sci. 2021;78(9):4085–4093. doi: 10.1007/s00018-021-03767-0
  • Padala SA, Barsouk A, Barsouk A, et al. Epidemiology, staging, and management of multiple myeloma. Med Sci (Basel). 2021;9(1):3. doi: 10.3390/medsci9010003
  • Lonial S, Popat R, Hulin C, et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 2022;9(11):e822–e832. doi: 10.1016/S2352-3026(22)00290-3
  • Bjorklund CC, Kang J, Amatangelo M, et al. Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia. 2020;34(4):1197–1201. doi: 10.1038/s41375-019-0620-8
  • Richardson PG, Trudel S, Popat R, et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N Engl J Med. 2023;389(11):1009–1022. doi: 10.1056/NEJMoa2303194
  • Andersen NF, Vogel U, Klausen TW, et al. Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. Int J Cancer. 2012;131(5):E636–E642. doi: 10.1002/ijc.27387
  • Kulig P, Milczarek S, Bakinowska E, et al. Lenalidomide in multiple myeloma: review of resistance mechanisms, current treatment strategies and future perspectives. Cancers (Basel). 2023;15(3):963. doi: 10.3390/cancers15030963
  • Liu S, Chen T, Wang R, et al. Exploring the effect of the “quaternary regulation” theory of “peripheral nerve-angiogenesis-osteoclast-osteogenesis” on osteoporosis based on neuropeptides. Front Endocrinol. 2022;13:908043. doi: 10.3389/fendo.2022.908043
  • Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021;17(10):608–620. doi: 10.1038/s41584-021-00682-3
  • Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–328. doi: 10.1038/nature13145
  • Watanabe T. Realization of osteolysis, angiogenesis, immunosuppression, and drug resistance by extracellular vesicles: roles of RNAs and proteins in their cargoes and of ectonucleotidases of the immunosuppressive adenosinergic noncanonical pathway in the bone marrow niche of multiple myeloma. Cancers (Basel). 2021;13(12):2969. doi: 10.3390/cancers13122969
  • Palta A, Kaur M, Tahlan A, et al. Evaluation of angiogenesis in multiple myeloma by VEGF immunoexpression and microvessel density. J Lab Physicians. 2020;12(1):38–43. doi: 10.1055/s-0040-1714933
  • Tanaka Y, Abe M, Hiasa M, et al. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res. 2007;13(3):816–823. doi: 10.1158/1078-0432.CCR-06-2258
  • Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep. 2019;11:100225. doi: 10.1016/j.bonr.2019.100225
  • Gau YC, Yeh TJ, Hsu CM, et al. Pathogenesis and treatment of myeloma-related bone disease. Int J Mol Sci. 2022;23(6):3112. doi: 10.3390/ijms23063112
  • Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. doi: 10.1007/s00774-020-01162-6
  • Deligiorgi MV, Panayiotidis MI, Griniatsos J, et al. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis. 2020;37(1):13–30. doi: 10.1007/s10585-019-09997-8
  • Terpos E, Efstathiou E, Christoulas D, et al. RANKL inhibition: clinical implications for the management of patients with multiple myeloma and solid tumors with bone metastases. Expert Opin Biol Ther. 2009;9(4):465–479. doi: 10.1517/14712590902845610
  • Xu Y, Hu J, Lv Q, et al. Endometrium-derived mesenchymal stem cells suppress progression of endometrial cancer via the DKK1-wnt/beta-catenin signaling pathway. Stem Cell Res Ther. 2023;14(1):159. doi: 10.1186/s13287-023-03387-4
  • Kuljanin M, Bell GI, Sherman SE, et al. Proteomic characterisation reveals active wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation. Diabetologia. 2017;60(10):1987–1998. doi: 10.1007/s00125-017-4355-7
  • Nierste BA, Glackin CA, Kirshner J. Dkk-1 and IL-7 in plasma of patients with multiple myeloma prevent differentiation of mesenchymal stem cells into osteoblasts. Am J Blood Res. 2014;4(2):73–85.
  • Terpos E, Ntanasis-Stathopoulos I, Dimopoulos MA. Myeloma bone disease: from biology findings to treatment approaches. Blood. 2019;133(14):1534–1539. doi: 10.1182/blood-2018-11-852459
  • Zhang F, Zhang Z, Sun D, et al. EphB4 promotes osteogenesis of CTLA4-modified bone marrow-derived mesenchymal stem cells through cross talk with wnt pathway in xenotransplantation. Tissue Eng Part A. 2015;21(17–18):2404–2416. doi: 10.1089/ten.tea.2015.0012
  • Atsuta I, Liu S, Miura Y, et al. Mesenchymal stem cells inhibit multiple myeloma cells via the fas/fas ligand pathway. Stem Cell Res Ther. 2013;4(5):111. doi: 10.1186/scrt322
  • Akhmetzyanova I, Aaron T, Galbo P, et al. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFalpha. Blood Adv. 2021;5(18):3592–3608. doi: 10.1182/bloodadvances.2021005327
  • Tai YT, Cho SF, Anderson KC. Osteoclast immunosuppressive effects in multiple myeloma: role of programmed cell death ligand 1. Front Immunol. 2018;9:1822. doi: 10.3389/fimmu.2018.01822
  • Zhang XX, Zhang LF, Liu L, et al. Effect of bone marrow mesenchymal stem cells in patients with multiple myeloma on migration of myeloma cells in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(2):484–488. doi: 10.7534/j.issn.1009-2137.2018.02.030
  • Bouyssou JM, Ghobrial IM, Roccaro AM. Targeting SDF-1 in multiple myeloma tumor microenvironment. Cancer Lett. 2016;380(1):315–318. doi: 10.1016/j.canlet.2015.11.028
  • Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15(12):1950–1961. doi: 10.1038/sj.leu.2402295
  • Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54(4):683–687. doi: 10.3109/10428194.2012.728597
  • Krejcik J, Barnkob MB, Nyvold CG, et al. Harnessing the immune system to fight multiple myeloma. Cancers (Basel). 2021;13(18):4546. doi: 10.3390/cancers13184546
  • Ria R, Vacca A. Bone marrow stromal cells-induced drug resistance in multiple myeloma. Int J Mol Sci. 2020;21(2):613. doi: 10.3390/ijms21020613
  • Fernandez-Lazaro D, Fernandez-Lazaro CI, Caballero GA, et al. Immunomodulator drugs for the treatment of multiple myeloma. Rev Med Chil. 2018;146(12):1444–1451. doi: 10.4067/s0034-98872018001201444
  • Yasui K, Yashiro M, Tsuge M, et al. Thalidomide dramatically improves the symptoms of early-onset sarcoidosis/blau syndrome: its possible action and mechanism. Arthritis Rheum. 2010;62(1):250–257. doi: 10.1002/art.25035
  • Mercurio A, Adriani G, Catalano A, et al. A mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem. 2017;24(25):2736–2744. doi: 10.2174/0929867324666170601074646
  • Breitkreutz I, Vallet S, Raab MS, et al. Lenalidomide and bortezomib inhibit osteoclast differentiation and activation in multiple myeloma: clinical implications. Blood. 2006;108(11):3485. doi: 10.1182/blood.V108.11.3485.3485
  • Qu X, Mei J, Yu Z, et al. Lenalidomide regulates osteocytes fate and related osteoclastogenesis via IL-1beta/NF-kappaB/RANKL signaling. Biochem Biophys Res Commun. 2018;501(2):547–555. doi: 10.1016/j.bbrc.2018.05.035
  • Bolzoni M, Storti P, Bonomini S, et al. Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules. Exp Hematol. 2013;41(4):387–97.e1. doi: 10.1016/j.exphem.2012.11.005
  • Holstein SA, Suman VJ, McCarthy PL. Update on the role of lenalidomide in patients with multiple myeloma. Ther Adv Hematol. 2018;9(7):175–190. doi: 10.1177/2040620718775629
  • Heider U, Kaiser M, Muller C, et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol. 2006;77(3):233–238. doi: 10.1111/j.1600-0609.2006.00692.x
  • Bolomsky A, Schreder M, Meissner T, et al. Immunomodulatory drugs thalidomide and lenalidomide affect osteoblast differentiation of human bone marrow stromal cells in vitro. Exp Hematol. 2014;42(7):516–525. doi: 10.1016/j.exphem.2014.03.005
  • Knobloch J, Shaughnessy JJ, Ruther U. Thalidomide induces limb deformities by perturbing the bmp/Dkk1/Wnt signaling pathway. FASEB J. 2007;21(7):1410–1421. doi: 10.1096/fj.06-7603com
  • Munemasa S, Sakai A, Kuroda Y, et al. Osteoprogenitor differentiation is not affected by immunomodulatory thalidomide analogs but is promoted by low bortezomib concentration, while both agents suppress osteoclast differentiation. Int J Oncol. 2008;33(1):129–36. doi: 10.3892/ijo.33.1.129
  • Ganesan S, Palani HK, Balasundaram N, et al. Combination lenalidomide/bortezomib treatment synergistically induces calpain-dependent ikaros cleavage and apoptosis in myeloma cells. Mol Cancer Res. 2020;18(4):529–536. doi: 10.1158/1541-7786.MCR-19-0431
  • Son E, Do H, Joo HM, et al. Induction of alkaline phosphatase activity by L-ascorbic acid in human osteoblastic cells: a potential role for CK2 and Ikaros. Nutrition. 2007;23(10):745–753. doi: 10.1016/j.nut.2007.06.013
  • Tosi P, Zamagni E, Cellini C, et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol. 2006;76(5):399–404. doi: 10.1111/j.0902-4441.2005.t01-1-EJH2520.x
  • Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRankl/osteoprotegerin ratio. Leukemia. 2005;19(11):1969–1976. doi: 10.1038/sj.leu.2403890
  • Bao L, Lu XJ, Zhang XH, et al. Effect of different regimens on bone disease of multiple myeloma. Zhonghua Xue Ye Xue Za Zhi. 2011;32(4):221–225.
  • Terpos E, Christoulas D, Kastritis E, et al. VTD consolidation, without bisphosphonates, reduces bone resorption and is associated with a very low incidence of skeletal-related events in myeloma patients post ASCT. Leukemia. 2014;28(4):928–934. doi: 10.1038/leu.2013.267
  • Terpos E, Kastritis E, Roussou M, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia. 2008;22(12):2247–2256. doi: 10.1038/leu.2008.235
  • Gavriatopoulou M, Terpos E, Ntanasis-Stathopoulos I, et al. Consolidation with carfilzomib, lenalidomide, and dexamethasone (KRd) following ASCT results in high rates of minimal residual disease negativity and improves bone metabolism, in the absence of bisphosphonates, among newly diagnosed patients with multiple myeloma. Blood Cancer J. 2020;10(3):25.
  • Terpos E, Ntanasis-Stathopoulos I, Katodritou E, et al. Carfilzomib improves bone metabolism in patients with advanced relapsed/refractory multiple myeloma: results of the CarMMa study. Cancers (Basel). 2021;13(6):1257. doi: 10.3390/cancers13061257
  • Terpos E, Christoulas D, Kastritis E, et al. The combination of lenalidomide and dexamethasone reduces bone resorption in responding patients with relapsed/refractory multiple myeloma but has no effect on bone formation: final results on 205 patients of the Greek myeloma study group. Am J Hematol. 2014;89(1):34–40. doi: 10.1002/ajh.23577
  • Terpos E, Katodritou E, Symeonidis A, et al. Effect of induction therapy with lenalidomide, doxorubicin and dexamethasone on bone remodeling and angiogenesis in newly diagnosed multiple myeloma. Int J Cancer. 2019;145(2):559–568. doi: 10.1002/ijc.32125
  • Terpos E, Kastritis E, Ntanasis-Stathopoulos I, et al. Consolidation therapy with the combination of bortezomib and lenalidomide (VR) without dexamethasone in multiple myeloma patients after transplant: effects on survival and bone outcomes in the absence of bisphosphonates. Am J Hematol. 2019;94(4):400–407. doi: 10.1002/ajh.25392
  • Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22(10):1925–1932. doi: 10.1038/leu.2008.174
  • Morgan GJ, Davies FE, Gregory WM, et al. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: the medical research council myeloma IX trial. Blood. 2012;119(23):5374–5383. doi: 10.1182/blood-2011-11-392522
  • Olszewski AJ, Barth PM, Reagan JL. Use of bone-modifying agents and clinical outcomes in older adults with multiple myeloma. Cancer Med. 2019;8(16):6945–6954. doi: 10.1002/cam4.2591
  • Bahlis NJ, Siegel DS, Schiller GJ, et al. Pomalidomide, dexamethasone, and daratumumab immediately after lenalidomide-based treatment in patients with multiple myeloma: updated efficacy, safety, and health-related quality of life results from the phase 2 MM-014 trial. Leuk Lymphoma. 2022;63(6):1407–1417. doi: 10.1080/10428194.2022.2030477
  • Soekojo CY, Kim K, Huang SY, et al. Pomalidomide and dexamethasone combination with additional cyclophosphamide in relapsed/refractory multiple myeloma (AMN001)-a trial by the Asian myeloma network. Blood Cancer J. 2019;9(10):83. doi: 10.1038/s41408-019-0245-1
  • Dimopoulos MA, Terpos E, Boccadoro M, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(6):801–812. doi: 10.1016/S1470-2045(21)00128-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.