128
Views
0
CrossRef citations to date
0
Altmetric
Review

Evaluating the molecular and genetic mechanisms underlying gut motility disorders

, , , &
Pages 1301-1312 | Received 12 May 2023, Accepted 14 Dec 2023, Published online: 07 Jan 2024

References

  • Chanpong A, Borrelli O, Thapar N. Recent advances in understanding the roles of the enteric nervous system. Fac Rev. 2022;11:7. doi: 10.12703/r/11-7
  • Saliakellis E, Rybak A, Borrelli O. Esophageal achalasia. In: Guandalini S Dhawan A, editors Textbook of pediatric gastroenterology, hepatology and nutrition: a comprehensive guide to practice. Cham: Springer International Publishing; 2022. p. 157–168.
  • Yeung A, Benmerzouga I. Different clinical features of idiopathic achalasia in various countries. Gastrointestinal Disorders. 2022;4(2):56–65. doi: 10.3390/gidisord4020007
  • Sadowski DC, Ackah F, Jiang B, et al. Achalasia: incidence, prevalence and survival. A population-based study. Neurogastroenterol Motil. 2010 Sep 1;22(9):e256–e261. doi: 10.1111/j.1365-2982.2010.01511.x
  • Gaber CE, Eluri S, Cotton CC, et al. Epidemiologic and Economic Burden of Achalasia in the United States. Clin Gastroenterol Hepatol. 2022 Feb;20(2):342–352.e5.
  • Palmieri O, Mazza T, Merla A, et al. Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia. Sci Rep. 2016 Aug 11;6:31549.
  • Savarino E, Bhatia S, Roman S, et al. Achalasia. Nat Rev Dis Primers. 2022 May 5;8(1):28. doi: 10.1038/s41572-022-00356-8
  • Facco M, Brun P, Baesso I, et al. T cells in the myenteric plexus of achalasia patients show a skewed TCR repertoire and react to HSV-1 antigens. Am J Gastroenterol. 2008 Jul;103(7):1598–1609.
  • Gaber CE, Cotton CC, Eluri S, et al. Autoimmune and viral risk factors are associated with achalasia: a case-control study. Neurogastroenterol Motil. 2022 Jul;34(7):e14312.
  • Liu ZQ, Chen WF, Wang Y, et al. Mast cell infiltration associated with loss of interstitial cells of Cajal and neuronal degeneration in achalasia. Neurogastroenterol Motil. 2019 May;31(5):e13565.
  • Storch WB, Eckardt VF, Junginger T. Complement components and terminal complement complex in oesophageal smooth muscle of patients with achalasia. Cell Mol Biol (Noisy-le-Grand). 2002 May;48(3):247–252.
  • Wu XY, Liu ZQ, Wang Y, et al. The etiology of achalasia: an immune-dominant disease. J Dig Dis. 2021 Mar 1;22(3):126–135.doi: 10.1111/1751-2980.12973
  • Jia X, Chen S, Zhuang Q, et al. Achalasia: the Current clinical dilemma and possible pathogenesis. J Neurogastroenterol Motil. 2023 Apr 30;29(2):145–155. doi: 10.5056/jnm22176
  • Sinagra E, Pellegatta G, Maida M, et al. Could chronic idiopatic intestinal pseudo-obstruction be related to viral infections? J Clin Med. 2021 Jan 13;10(2):268. doi: 10.3390/jcm10020268
  • Gockel I, Becker J, Wouters MM, et al. Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nature Genet. 2014 Aug 1;46(8):901–904. doi: 10.1038/ng.3029
  • Gockel HR, Schumacher J, Gockel I, et al. Achalasia: will genetic studies provide insights? Hum Genet. 2010 Oct;128(4):353–364.
  • Annahazi A, Schemann M. The enteric nervous system: “A little brain in the gut”. Neuroforum. 2020;26(1):31–42.
  • Shteyer E, Edvardson S, Wynia-Smith SL, et al. Truncating mutation in the nitric oxide synthase 1 gene is associated with infantile achalasia. Gastroenterology. 2015 Mar;148(3):533–536.e4.
  • Santiago JL, Martínez A, Benito MS, et al. Gender-specific association of the PTPN22 C1858T polymorphism with achalasia. Hum Immunol. 2007 Oct;68(10):867–870.
  • De León AR, De La Serna JP, Santiago JL, et al. Association between idiopathic achalasia and IL23R gene. Neurogastroenterol Motil. 2010 Jul 1;22(7):734–e218. doi: 10.1111/j.1365-2982.2010.01497.x
  • Chanpong A, Borrelli O, Thapar N. The potential role of microorganisms on enteric nervous system development and disease. Biomolecules. 2023;13(3):447. doi: 10.3390/biom13030447
  • Li Q, Chen W, Wang C, et al. Whole-exome sequencing reveals common and rare variants in immunologic and neurological genes implicated in achalasia. Am J Hum Genet. 2021;108(8):1478–1487. doi: 10.1016/j.ajhg.2021.06.004
  • Chen S, Xing X, Hou X, et al. The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study. Gastroenterol Rep. 2023;11:goad031. doi: 10.1093/gastro/goad031
  • Liu Z-Q, Dai H, Yao L, et al. A single-cell transcriptional landscape of immune cells shows disease-specific changes of T cell and macrophage populations in human achalasia. Nat Commun. 2023 Aug 4;14(1):4685. doi: 10.1038/s41467-023-39750-5
  • Sodikoff JB, Lo AA, Shetuni BB, et al. Histopathologic patterns among achalasia subtypes. Neurogastroenterol Motil. 2016 Jan 1;28(1):139–145. doi: 10.1111/nmo.12711
  • Jarzębicka D, Czubkowski P, Sieczkowska-Gołub J, et al. Achalasia in children—clinical presentation, diagnosis, long-term treatment outcomes, and quality of life. J Clin Med. 2021;10(17):3917. doi: 10.3390/jcm10173917
  • Gaiani F, Gismondi P, Minelli R, et al. Case report of a familial triple: a syndrome and review of the literature. Medicine. 2020;99(22). doi: 10.1097/MD.0000000000020474
  • Lowenstein ED, Ruffault PL, Misios A, et al. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron. 2023 Jul 19;111(14):2184–2200.e7. doi: 10.1016/j.neuron.2023.04.025
  • Coverdell TC, Abraham-Fan RJ, Wu C, et al. Genetic encoding of an esophageal motor circuit. Cell Rep. 2022 Jun 14;39(11):110962. doi: 10.1016/j.celrep.2022.110962
  • Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol. 1997 Oct;11(4):407–427. doi: 10.1046/j.1365-3016.1997.d01-32.x
  • Vanderwinden JM, Mailleux P, Schiffmann SN, et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med. 1992 Aug 20;327(8):511–515. doi: 10.1056/NEJM199208203270802
  • Vanderwinden JM, Liu H, De Laet MH, et al. Study of the interstitial cells of cajal in infantile hypertrophic pyloric stenosis. Gastroenterology. 1996 Aug;111(2):279–288.
  • Peeters B, Benninga MA, Hennekam RCM. Infantile hypertrophic pyloric stenosis—genetics and syndromes. Nat Rev Gastroenterol Hepatol. 2012 Sep 1;9(11):646–660. doi: 10.1038/nrgastro.2012.133
  • Boybeyi-Turer O, Celik HT, Arslan UE, et al. Environmental exposure in the etiology of infantile hypertrophic pyloric stenosis: a systematic review and meta-analysis. Pediatr Surg Int. 2022 Jul;38(7):951–961.
  • Chung E, Curtis D, Chen G, et al. Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis. Am J Hum Genet. 1996 Feb;58(2):363–370.
  • Everett KV, Chioza BA, Georgoula C, et al. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet. 2008 Mar;82(3):756–762.
  • Kim H, Kim J, Jeon JP, et al. The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels (Austin). 2012 Sep;6(5):333–343.
  • Svenningsson A, Söderhäll C, Persson S, et al. Genome-wide linkage analysis in families with infantile hypertrophic pyloric stenosis indicates novel susceptibility loci. J Hum Genet. 2012 Feb 1;57(2):115–121. doi: 10.1038/jhg.2011.137
  • Feenstra B, Geller F, Krogh C, et al. Common variants near MBNL1 and NKX2-5 are associated with infantile hypertrophic pyloric stenosis. Nat Genet. 2012 Feb 5;44(3):334–337. doi: 10.1038/ng.1067
  • Feenstra B, Geller F, Carstensen L, et al. Plasma lipids, genetic variants near APOA1, and the risk of infantile hypertrophic pyloric stenosis. JAMA. 2013 Aug 21;310(7):714–721. doi: 10.1001/jama.2013.242978
  • Fadista J, Skotte L, Geller F, et al. Genome-wide meta-analysis identifies BARX1 and EML4-MTA3 as new loci associated with infantile hypertrophic pyloric stenosis. Hum Mol Genet. 2019 Jan 15;28(2):332–340. doi: 10.1093/hmg/ddy347
  • Kusafuka T, Puri P. Altered messenger RNA expression of the neuronal nitric oxide synthase gene in infantile hypertrophic pyloric stenosis. Pediatr Surg Int. 1997;12(8):576–579. doi: 10.1007/BF01371902
  • Saur D, Vanderwinden JM, Seidler B, et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci USA. 2004 Feb 10;101(6):1662–1667. doi: 10.1073/pnas.0305473101
  • Serra A, Schuchardt K, Genuneit J, et al. Genomic variants in the coding region of neuronal nitric oxide synthase (NOS1) in infantile hypertrophic pyloric stenosis. J Pediatr Surg. 2011 Oct;46(10):1903–1908.
  • Sivarao DV, Mashimo H, Goyal RK. Pyloric sphincter dysfunction in nNOS-/- and W/Wv mutant mice: animal models of gastroparesis and duodenogastric reflux. Gastroenterology. 2008 Oct;135(4):1258–1266. doi: 10.1053/j.gastro.2008.06.039
  • Grisoni E, Dusleag D, Super D. Nitric oxide synthesis inhibition: the effect on rabbit pyloric muscle. J Pediatr Surg. 1996 Jun;31(6):800–804. doi: 10.1016/S0022-3468(96)90137-2
  • Voelker CA, Miller MJ, Zhang XJ, et al. Perinatal nitric oxide synthase inhibition retards neonatal growth by inducing hypertrophic pyloric stenosis in rats. Pediatr Res. 1995 Nov;38(5):768–774.
  • Sánchez MP, Silos-Santiago I, Frisén J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):70–73. doi: 10.1038/382070a0
  • Kovacic K, Elfar W, Rosen JM, et al. Update on pediatric gastroparesis: a review of the published literature and recommendations for future research. Neurogastroenterol Motil. 2020 Mar;32(3):e13780. doi: 10.1111/nmo.13780
  • Camilleri M, Sanders KM. Gastroparesis. Gastroenterology. 2022 Jan;162(1):68–87.e1. doi: 10.1053/j.gastro.2021.10.028
  • Rodriguez L, Irani K, Jiang H, et al. Clinical presentation, response to therapy, and outcome of gastroparesis in children. J Pediatr Gastroenterol Nutr. 2012 Aug;55(2):185–190.
  • Grover M, Bernard CE, Pasricha PJ, et al. Clinical-histological associations in gastroparesis: results from the gastroparesis clinical research consortium. Neurogastroenterol Motil. 2012 Jun;24(6):531–9, e249.
  • Bernard CE, Gibbons SJ, Mann IS, et al. Association of low numbers of CD 206-positive cells with loss of ICC in the gastric body of patients with diabetic gastroparesis. Neurogastroenterology Motil. 2014 Sep 1;26(9):1275–1284. doi: 10.1111/nmo.12389
  • Heckert J, Thomas RM, Parkman HP. Gastric neuromuscular histology in patients with refractory gastroparesis: relationships to etiology, gastric emptying, and response to gastric electric stimulation. Neurogastroenterol Motil. 2017 Aug;29(8). doi: 10.1111/nmo.13068
  • Grover M, Bernard CE, Pasricha PJ, et al. Diabetic and idiopathic gastroparesis is associated with loss of CD 206-positive macrophages in the gastric antrum. Neurogastroenterology Motil. 2017 Jun 1;29(6):e13018. doi: 10.1111/nmo.13018
  • Grover M, Dasari S, Bernard CE, et al. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am J Physiol Gastrointest Liver Physiol. 2019 Nov 1;317(5):G716–g726. doi: 10.1152/ajpgi.00115.2019
  • Choi KM, Gibbons SJ, Nguyen TV, et al. Heme oxygenase-1 protects interstitial cells of cajal from oxidative stress and reverses diabetic Gastroparesis. Gastroenterology. 2008 Dec 1;135(6):2055–2064.e2. doi: 10.1053/j.gastro.2008.09.003
  • Smieszek SP, Carlin JL, Xiao C, et al. Enrichment of motilin receptor loss-of-function variants in Gastroparesis. Clin Transl Gastroenterol. 2022 Apr 1;13(4):e00474. doi: 10.14309/ctg.0000000000000474
  • Sanger GJ, Furness JB. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol. 2016 Jan;13(1):38–48. doi: 10.1038/nrgastro.2015.163
  • Kato S, Takahashi A, Shindo M, et al. Characterization of the gastric motility response to human motilin and erythromycin in human motilin receptor-expressing transgenic mice. PLoS One. 2019;14(2):e0205939. doi: 10.1371/journal.pone.0205939
  • Brosens E, Burns AJ, Brooks AS, et al. Genetics of enteric neuropathies. Dev Biol. 2016 Sep 15;417(2):198–208. doi: 10.1016/j.ydbio.2016.07.008
  • Thapar N, Saliakellis E, Benninga MA, et al. Paediatric intestinal pseudo-obstruction: evidence and consensus-based recommendations from an ESPGHAN-Led expert group. J Pediatr Gastroenterol Nutr. 2018 Jun;66(6):991–1019. doi: 10.1097/MPG.0000000000001982
  • Chanpong A, Borrelli O, Thapar N. Hirschsprung disease and paediatric intestinal pseudo-obstruction. Best Pract Res Clin Gastroenterol 2022 Feb;56-57:101765. doi: 10.1016/j.bpg.2021.101765
  • Knowles CH, De Giorgio R, Kapur RP, et al. The london classification of gastrointestinal neuromuscular pathology: report on behalf of the gastro 2009 international working group. Gut. 2010 Jul;59(7):882–887.
  • Turcotte M-C, Faure C. Pediatric intestinal pseudo-obstruction: progress and challenges [systematic review]. Front Pediatr. 2022;10. doi: 10.3389/fped.2022.837462
  • Di Nardo G, Di Lorenzo C, Lauro A, et al. Chronic intestinal pseudo-obstruction in children and adults: diagnosis and therapeutic options. Neurogastroenterol Motil. 2017 Jan;29(1): doi: 10.1111/nmo.12945
  • Gamboa HE, Sood M. Pediatric intestinal pseudo-obstruction in the Era of Genetic Sequencing. Curr Gastroenterol Rep. 2019 Dec 17;21(12):70.
  • Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol. 2021 Jun 1;320(6):G919–g935. doi: 10.1152/ajpgi.00066.2021
  • Pingault V, Girard M, Bondurand N, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002 Aug;111(2):198–206.
  • Matera I, Rusmini M, Guo Y, et al. Variants of the ACTG2 gene correlate with degree of severity and presence of megacystis in chronic intestinal pseudo-obstruction. Eur J Hum Genet. 2016 Aug;24(8):1211–1215.
  • Dong W, Baldwin C, Choi J, et al. Identification of a dominant MYH11 causal variant in chronic intestinal pseudo-obstruction: results of whole-exome sequencing. Clin Genet. 2019 Nov;96(5):473–477.
  • Bonora E, Bianco F, Cordeddu L, et al. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology. 2015 Apr;148(4):771–782.e11.
  • Chetaille P, Preuss C, Burkhard S, et al. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nature Genet. 2014 Sep 1;46(11):1245–1249. doi: 10.1038/ng.3113
  • Yadak R, Breur M, Bugiani M. Gastrointestinal dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of cajal. Orphanet J Rare Dis. 2019 Feb 8;14(1):33.
  • Abrahamsson H, Ahlfors F, Fransson S, et al. Familial intestinal degenerative neuropathy with chronic intestinal pseudo-obstruction linked to a gene locus with duplication in chromosome 9. Scand J Gastroenterol. 2019 Dec;54(12):1441–1447.
  • Bonora E, Chakrabarty S, Kellaris G, et al. Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2021 Jun 22;144(5):1451–1466. doi: 10.1093/brain/awab056
  • Le TL, Galmiche L, Levy J, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J Clin Invest. 2021 Mar 15;131(6). doi: 10.1172/JCI145837
  • Billon C, Molin A, Poirsier C, et al. Fetal megacystis-microcolon: genetic mutational spectrum and identification of PDCL3 as a novel candidate gene. Clin Genet. 2020 Sep;98(3):261–273.
  • Giordano C, Powell H, Leopizzi M, et al. Fatal congenital myopathy and gastrointestinal pseudo-obstruction due to POLG1 mutations. Neurology. 2009 Mar 24;72(12):1103–1105. doi: 10.1212/01.wnl.0000345002.47396.e1
  • Mori M, Clause AR, Truxal K, et al. Autosomal recessive ACTG2-related visceral myopathy in brothers. JPGN Rep. 2022 Nov;3(4):e258.
  • van der Werf CS, Sribudiani Y, Verheij JB, et al. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations. Genet Med. 2013 Apr;15(4):310–313.
  • Gargiulo A, Auricchio R, Barone MV, et al. Filamin a is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet. 2007 Apr;80(4):751–758.
  • Jenkins ZA, Macharg A, Chang CY, et al. Differential regulation of two FLNA transcripts explains some of the phenotypic heterogeneity in the loss-of-function filaminopathies. Hum Mutat. 2018 Jan;39(1):103–113.
  • Southard-Smith EM, Angrist M, Ellison JS, et al. The Sox10(Dom) mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res. 1999 Mar;9(3):215–225.
  • Ashworth M, Rampling D. Paediatric gastrointestinal motility disorders. Diagnostic Histopathology. 2015 Jun 01;21(6):223–231.
  • Piché J, Van Vliet PP, Pucéat M, et al. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle. 2019 Nov;18(21):2828–2848.
  • Piché J, Gosset N, Legault L-M, et al. Molecular signature of CAID syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and epigenomics. Cell Mol Gastroenterol Hepatol. 2019 Jan 1;7(2):411–431. doi: 10.1016/j.jcmgh.2018.10.011
  • Bianco F, Lattanzio G, Lorenzini L, et al. Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction. Biomolecules. 2022 Dec 10;12(12). doi: 10.3390/biom12121849
  • Jenkins ZA, Macharg A, Chang C-Y, et al. Differential regulation of two FLNA transcripts explains some of the phenotypic heterogeneity in the loss-of-function filaminopathies. Human Mutation. 2018 Jan 1;39(1):103–113. doi: 10.1002/humu.23355
  • Zada A, Zhao Y, Halim D, et al. The long filamin-A isoform is required for intestinal development and motility: implications for chronic intestinal pseudo-obstruction. Hum Mol Genet. 2023 Jan 1;32(1):151–160. doi: 10.1093/hmg/ddac199
  • Boschetti E, D’Angelo R, Tardio ML, et al. Evidence of enteric angiopathy and neuromuscular hypoxia in patients with mitochondrial neurogastrointestinal encephalomyopathy. Am J Physiol Gastrointest Liver Physiol. 2021 May 1;320(5):G768–g779. doi: 10.1152/ajpgi.00047.2021
  • Yadak R, Boot MV, van Til NP, et al. Transplantation, gene therapy and intestinal pathology in MNGIE patients and mice. BMC Gastroenterol. 2018 Oct 19;18(1):149. doi: 10.1186/s12876-018-0881-0
  • Zhou Y, Yang J, Watkins DJ, et al. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res Ther. 2013;4(6):157. doi: 10.1186/scrt387
  • Wedel T, Krammer HJ, Kühnel W, et al. Alterations of the enteric nervous system in neonatal necrotizing enterocolitis revealed by whole-mount immunohistochemistry. Pediatr Pathol Lab Med. 1998 Jan;18(1):57–70.
  • Bianco F, Lattanzio G, Lorenzini L, et al. Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility. Eur J Histochem. 2021 Nov 25:65(s1). doi: 10.4081/ejh.2021.3289
  • Karim A, Tang CS, Tam PK. The emerging genetic landscape of Hirschsprung Disease and its potential clinical applications. Front Pediatr. 2021;9:638093. doi: 10.3389/fped.2021.638093
  • Heuckeroth RO. Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):152–167. doi: 10.1038/nrgastro.2017.149
  • Fu M, Sato Y, Lyons-Warren A, et al. Vitamin a facilitates enteric nervous system precursor migration by reducing pten accumulation. Development. 2010 Feb;137(4):631–640.
  • Tam PKH, Quint WGV, Van Velzen D. Hirschsprung’s Disease: A Viral Etiology? Pediatric Pathology. 1992 Jan 1;12(6):807–810.
  • Kapur RP, Reyes-Mugica M. Intestinal neuronal dysplasia type B: an updated review of a Problematic Diagnosis. Arch Pathol Lab Med. 2019 Feb;143(2):235–243. doi: 10.5858/arpa.2017-0524-RA
  • Costa M, Fava M, Seri M, et al. Evaluation of the HOX11L1 gene as a candidate for congenital disorders of intestinal innervation. J Med Genet. 2000 Jul;37(7):E9.
  • Gath R, Goessling A, Keller KM, et al. Analysis of the RET, GDNF, EDN3, and EDNRB genes in patients with intestinal neuronal dysplasia and Hirschsprung disease. Gut. 2001 May;48(5):671–675.
  • Fava M, Borghini S, Cinti R, et al. HOX11L1: a promoter study to evaluate possible expression defects in intestinal motility disorders. Int J Mol Med. 2002 Jul;10(1):101–106.
  • Angelini MC, AMe S, Felix TF, et al. Identification of potential molecular pathogenesis mechanisms modulated by microRnas in patients with intestinal neuronal dysplasia type B. Sci Rep. 2019 Nov 27;9(1):17673. doi: 10.1038/s41598-019-54245-4
  • Lourenção P, Ortolan EVP, Rosa LLM, et al. What should be the treatment for intestinal neuronal dysplasia type B? A comparative long-term follow-up study. J Pediatr Surg. 2021 Sep;56(9):1611–1617.
  • Terra SA, Gonçalves AC, Lourenção P, et al. Challenges in the diagnosis of intestinal neuronal dysplasia type B: a look beyond the number of ganglion cells. World J Gastroenterol. 2021 Nov 28;27(44):7649–7660. doi: 10.3748/wjg.v27.i44.7649
  • Rajindrajith S, Devanarayana N, Chanpong A, et al. Neurogastroenterology and motility disorders in pediatric population. In: Rao SSC, Lee YY, Ghoshal UC, editors. Clinical and Basic Neurogastroenterology and Motility. Netherlands: Elsevier; 2020. p. 535–556. doi: 10.1016/B978-0-12-813037-7.00038-8
  • Rodriguez L, Heinz N, Nurko S. Utility of colon manometry in guiding therapy and predicting need for surgery in children with defecation disorders. J Pediatr Gastroenterol Nutr. 2020;70(2). doi: 10.1097/MPG.0000000000002504
  • Cortesini C, Cianchi F, Infantino A, et al. Nitric oxide synthase and VIP distribution in enteric nervous system in idiopathic chronic constipation. Dig Dis Sci. 1995 Nov 01;40(11):2450–2455. doi: 10.1007/BF02063253
  • Hutson JM, Chow CW, Borg J. Intractable constipation with a decrease in substance P-immunoreactive fibres: is it a variant of intestinal neuronal dysplasia? J Pediatr Surg. 1996;31(4):580–583. doi: 10.1016/S0022-3468(96)90501-1
  • He CL, Burgart L, Wang L, et al. Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;118(1):14–21. doi: 10.1016/S0016-5085(00)70409-4
  • Zhao S, Chen Q, Kang X, et al. Aberrantly expressed genes and miRnas in slow transit constipation based on RNA-Seq analysis. Biomed Res Int. 2018;2018:2617432. doi: 10.1155/2018/2617432
  • Yu L, Yang X, Guan W, et al. Analysis of key genes for slow transit constipation based on RNA sequencing. Int J Gen Med. 2022;15:7569–7579. doi: 10.2147/IJGM.S380208
  • Vanuytsel T, Bercik P, Boeckxstaens G. Understanding neuroimmune interactions in disorders of gut–brain interaction: from functional to immune-mediated disorders. Gut. 2023;72(4):gutjnl-2020–320633. doi: 10.1136/gutjnl-2020-320633
  • Strege PR, Mercado-Perez A, Mazzone A, et al. SCN5A mutation G615E results in Na(V)1.5 voltage-gated sodium channels with normal voltage-dependent function yet loss of mechanosensitivity. Channels (Austin). 2019 Dec;13(1):287–298.
  • Strege PR, Mazzone A, Bernard CE, et al. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am J Physiol Gastrointest Liver Physiol. 2017 Apr 1;314(4):G494–G503. doi: 10.1152/ajpgi.00016.2017
  • Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47(6):804. doi: 10.1136/gut.47.6.804
  • Aguilera-Lizarraga J, Florens MV, Van Brussel T, et al. Expression of immune-related genes in rectum and colon descendens of irritable bowel syndrome patients is unrelated to clinical symptoms. Neurogastroenterol Motil. 2019 Jul 1;31(6):e13579. doi: 10.1111/nmo.13579
  • Holland AM, Bon-Frauches AC, Keszthelyi D, et al. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci. 2021 May;78(10):4713–4733.
  • Sarnelli G, D’Alessandro A, Pesce M, et al. Genetic contribution to motility disorders of the upper gastrointestinal tract. World J Gastrointest Pathophysiol. 2013 Nov 15;4(4):65–73. doi: 10.4291/wjgp.v4.i4.65
  • Tahara T, Arisawa T, Shibata T, et al. Homozygous 825T allele of the GNB3 protein influences the susceptibility of Japanese to dyspepsia. Dig Dis Sci. 2008 Mar;53(3):642–646.
  • Tahara T, Shibata T, Nakamura M, et al. Homozygous TRPV1 315C influences the susceptibility to functional dyspepsia. J Clin Gastroenterol. 2010 Jan;44(1):e1–7.
  • Arisawa T, Tahara T, Shiroeda H, et al. Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol. 2013 Jan;48(1):73–80.
  • Tahara T, Shibata T, Wang F, et al. Genetic Polymorphisms of Molecules Associated with innate immune responses, TRL2 and MBL2 genes in Japanese subjects with functional dyspepsia. J Clin Biochem Nutr. 2010 Nov;47(3):217–223.
  • Beyder A, Mazzone A, Strege PR, et al. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome. Gastroenterology. 2014 Jun;146(7):1659–1668.
  • Poh YC, Beyder A, Strege PR, et al. Quantification of gastrointestinal sodium channelopathy. J Theor Biol. 2012 Jan 21;293:41–48.
  • Bonfiglio F, Henström M, Nag A, et al. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil. 2018 Sep 01;30(9):e13358. doi: 10.1111/nmo.13358
  • Eijsbouts C, Zheng T, Kennedy NA, et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nature Genet. 2021 Sep 1;53(11):1543–1552. doi: 10.1038/s41588-021-00950-8
  • Camilleri M, Zhernakova A, Bozzarelli I, et al. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol. 2022 Sep 1;19(11):689–702. doi: 10.1038/s41575-022-00662-2
  • Chanpong A, Thapar N. Paediatric neurogastroenterology and motility: moving rapidly into the future. J Pediatr Gastroenterol Nutr. 2023 May 1;76(5):547–552. doi: 10.1097/MPG.0000000000003721
  • Danan CH, Katada K, Parham LR, et al. Spatial transcriptomics add a new dimension to our understanding of the gut. Am J Physiol Gastrointest Liver Physiol. 2023 Feb 1;324(2):G91–g98. doi: 10.1152/ajpgi.00191.2022
  • Pan W, Goldstein AM, Hotta R. Opportunities for novel diagnostic and cell-based therapies for Hirschsprung disease. J Pediatr Surg. 2021 Nov 5;57(9):61–68. doi: 10.1016/j.jpedsurg.2021.10.049
  • McCann CJ, Borrelli O, Thapar N. Stem cell therapy in severe pediatric motility disorders. Curr Opin Pharmacol. 2018 Dec 01;43:145–149. doi: 10.1016/j.coph.2018.09.004
  • McCann CJ, Cooper JE, Natarajan D, et al. Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon. Nat Commun. 2017 Jul 3;8(1):15937. doi: 10.1038/ncomms15937
  • Lui KN, Ngan ES. Human Pluripotent Stem Cell-Based Models for Hirschsprung Disease: From 2-D Cell to 3-D Organoid Model. Cells. 2022;11(21):3428. doi: 10.3390/cells11213428

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.