200
Views
0
CrossRef citations to date
0
Altmetric
Review

First-line immunotherapy in non-small cell lung cancer: how to select and where to go

, ORCID Icon, , , , , , , & show all
Pages 1191-1206 | Received 11 Jun 2023, Accepted 03 Jan 2024, Published online: 09 Feb 2024

References

  • Alesha AT, Benjamin JS, Lecia VS, et al. Lung cancer. Lancet. 2021. doi: 10.1016/S0140-6736(21)00312-3
  • Papaioannou NE, Beniata OV, Vitsos P, et al. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4(14):261.
  • Baxter D. Active and passive immunization for cancer. Hum Vaccin Immunother. 2014;10(7):2123–2129.
  • Tang S, Chao Q, Haiyang H, et al. Immune checkpoint inhibitors in non-small cell lung cancer: progress, challenges, and prospects. Cells. 2022;11(3):320.
  • Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8. eCollection 2018. doi: 10.3389/fonc.2018.00086
  • Bai R, Zheng L, Dongsheng X, et al. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res. 2020;8(1). doi: 10.1186/s40364-020-00209-0
  • Reck M, Rodríguez-Abreu D, Robinson G A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016. doi: 10.1056/NEJMoa1606774
  • Mok TSK, Yi-Long W, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial Gilberto Lopes and Investigators, KEYNOTE-042. Lancet. 2019;393. doi: 10.1016/S0140-6736(18)32409–7
  • Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020;383(14):1328–1339.
  • Sezer A, Kilickap S, Gümüş M, et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet. 2021;397(10274):592–604.
  • Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Leena Gandhi and investigators, KEYNOTE-021. Lancet Oncol. 2016;17(11):1497–1508.
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in metastatic non-small-cell lung cancer and investigators, KEYNOTE-189. N Engl J Med. 2018;378(22):2078–2092.
  • Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus Chemotherapy for squamous non-small-cell lung cancer and investigators, KEYNOTE-407. N Engl J Med. 2018;379(21):2040–2051.
  • Novello S, Kowalski DM, Luft A, et al. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J Clin Oncol. 2023;41(11):1999–2006. doi: 10.1200/JCO.22.01990
  • Jotte R, Cappuzzo F, Vynnychenko I, et al. Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase iii trial. J Thorac Oncol. 2020;15(8):1351–1360.
  • Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–2031.
  • Paz-Ares L, Ciuleanu T-E, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211.
  • Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC and group, impower150 study. N Engl J Med. 2018;378(24):2288–2301. doi: 10.1056/NEJMoa1716948
  • Ming Lee S, Schulz C, Prabhash K, et al. First-line atezolizumab monotherapy versus single-agent chemotherapy in patients with non-small-cell lung cancer ineligible for treatment with a platinum-containing regimen (IPSOS): a phase 3, global, multicentre, open-label, randomised controlled study. Lancet. 2023;402(10400):451–463.
  • McLean L, Leal JL, Solomon BJ, et al. Immunotherapy in oncogene addicted non-small cell lung cancer – mcLean. Transl Lung Cancer Res. 2021;10(6):2736–2751.
  • Lisberg A, Cummings A, Goldman JW, et al. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor (TKI) naïve patients with advanced NSCLC – lisberg. J Thorac Oncol. 2018;13(8):1138–1145. doi: 10.1016/j.jtho.2018.03.035
  • Chiara Garassino M, Cho B-C, Kim J-H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study and Investigators, ATLANTIC. Lancet Oncol. 2018;19(4):521–536.
  • Gettinger S, Hellmann MD, Chow LQM, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol. 2018;13(9):1363–1372. doi: 10.1016/j.jtho.2018.05.015
  • Chih-Hsin Yang J, Gadgeel SM, VanDam Sequist L, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol. 2019. doi: 10.1016/j.jtho.2018.11.028
  • Ahn M-J, Chul Cho B, Xiaoling O, et al. Osimertinib plus durvalumab in patients with EGFR-mutated, advanced NSCLC: a phase 1b, open-label, multicenter trial. J Thorac Oncol. 2022;17(5):718–723.
  • Otano I, Ucero AC, Zugazagoitia J, et al. At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol. 2023;20. doi: 10.1038/s41571-022-00718-x
  • Dong Z-Y, Si-Pei W, Liao R-Q, et al. Potential biomarker for checkpoint blockade immunotherapy and treatment strategy. Tumor Biol. 2016;37. doi: 10.1007/s13277-016-4812-9
  • Mei J, Liu Y, Qing L, et al. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol Ther. 2016. doi: 10.1080/15384047.2016.1156256
  • Chen N, Fang W, Zhan J, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10(6):910–923.
  • Wood K, Hensing T, Malik R, et al. Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2016.0405
  • Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384(25):2371–2381. doi: 10.1056/NEJMoa2103695
  • Calles A, Liao X, Sholl LM, et al. Expression of PD-1 and its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol. 2015;10(12):1726–1735.
  • Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639.
  • Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321–1328. doi: 10.1093/annonc/mdz167
  • Herbst RS, Baas P, Perez-Gracia JL, et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: an updated analysis of KEYNOTE-010 trial. Ann Oncol. 2019;30(2):281–289. doi: 10.1093/annonc/mdy545
  • Sun L, Hsu M, Cohen RB, et al. Association between KRAS variant status and outcomes with first-line immune checkpoint inhibitor–based therapy in patients with advanced non–small-cell lung cancer. JAMA Oncol. 2021;7(6):937.
  • Lee CK, Man J, Lord S, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non–small cell lung carcinoma. JAMA Oncol. 2018;4(2):210.
  • Landre T, Justeau G, Assié J-B, et al. Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: a meta-analysis of randomized-controlled trials. Cancer Immunol Immunother. 2022;71(3):719–726.
  • Bange E, Marmarelis ME, Hwang W-T, et al. Impact of KRAS and TP53 co-mutations on outcomes after first-line systemic therapy among patients with STK11 -mutated advanced non–small-cell lung cancer. JCO Precis Oncol. 2019;3:1–11. doi: 10.1200/PO.18.00326
  • Dong Z-Y, Zhong W-Z, Zhang X-C, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–3024. doi: 10.1158/1078-0432.CCR-16-2554
  • Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS -mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–835.
  • Chen N, Fang W, Lin Z, et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother. 2017;66(9):1175–1187.
  • Liu C, Zheng S, Jin R, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 2020. doi: 10.2139/ssrn.3444378
  • Kerr EM, Martins CP. Metabolic rewiring in mutant Kras lung cancer. FEBS J. 2018;285(1):28–41. doi: 10.1111/febs.14125
  • Di Federico A, De Giglio A, Parisi C, et al. STK11/LKB1 and KEAP1 mutations in non-small cell lung cancer: prognostic rather than predictive? Eur J Cancer. 2021;157:108–113.
  • Guisier F, Dubos-Arvis C, Viñas F, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01-2018. J Thorac Oncol. 2020;15(4):628–636. doi: 10.1016/j.jtho.2019.12.129
  • Hui L, Zhang Y, Yanjun X, et al. Tumor immune microenvironment and immunotherapy efficacy in BRAF mutation non-small-cell lung cancer. Cell Death Dis. 2022;13. doi: 10.1038/s41419-022-05510-4
  • Wang Y, Beydoun MA. The obesity epidemic in the United States–gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29(1):6–28.
  • Wang Z, Aguilar EG, Luna JI, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25. doi: 10.1038/s41591-018-0221-5
  • Rassy EE, Ghosn M, Rassy NA, et al. Do immune checkpoint inhibitors perform identically in patients with weight extremes? Immunotherapy. Immunotherapy. 2018;10(9):733–736. doi: 10.2217/imt-2018-0053
  • Cortellini A, Ricciuti B, Tiseo M, et al. Baseline BMI and BMI variation during first line pembrolizumab in NSCLC patients with a PD-L1 expression ≥ 50%: a multicenter study with external validation. J Immunother Cancer. 2020;69(11):2209–2221.
  • Cortellini A, Ricciuti B, Vaz VR, et al. Prognostic effect of body mass index in patients with advanced NSCLC treated with chemoimmunotherapy Combinations. J Immunother Cancer. 2022;10(2):e004374.
  • Cortellini A, Bersanelli M, Santini D, et al. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1)/ Programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors:A multicentre analysis of immune-related. Eur J Cancer. 2020;128:17–26.
  • Liu J, Chen S-J, Hsu S-W, et al. MARCKS cooperates with NKAP to activate NF-kB signaling in smoke-related lung cancer. Theranostic. 2021;11. doi: 10.7150/thno.53558
  • Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–128.
  • Yang DC, Chen C-H. igarette smoking-mediated macrophage reprogramming: mechanistic insights and therapeutic implications. J Nat Sci. 2018;4:6383770.
  • Takamochi K, Oh S, Suzuki K. Differences in EGFR and KRAS mutation spectra in lung adenocarcinoma of never and heavy smokers. Oncol Lett. 2013;6(5):1207–1212. doi: 10.3892/ol.2013.1551
  • Norum J, Nieder C. Tobacco smoking and cessation and PD-L1 inhibitors in non-small cell lung cancer (NSCLC): a review of the literature. ESMO open. 2018;3. doi: 10.1136/esmoopen-2018-000406
  • Gainor JF, Shaw AT, Sequist LV, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non–small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22(18):4585–4593.
  • Zhao W, Jiang W, Wang H, et al. Impact of smoking history on response to immunotherapy in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.703143
  • Nasser NJ, Gorenberg M, Agbarya A. First line immunotherapy for non-small cell lung cancer. Pharmaceuticals (Basel). 2020;13(11):373. doi: 10.3390/ph13110373
  • Hong L, Negrao MV, Dibaj SS, et al. Programmed death-ligand 1 heterogeneity and its impact on benefit from immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2022;17(3):399–410.
  • Tsao MS, Kerr AKM, Kockx BM, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–1311.
  • Cheng Y, Wang C, Wang Y, et al. Soluble PD-L1 as a predictive biomarker in lung cancer: a systematic review and meta-analysis. Future Oncol. 2022;18(5). doi: 10.2217/fon-2021-0641
  • Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–638.
  • Yingcheng W, Qianqian J, Jia K, et al. Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int J Cancer. 2018. Epub 2018 Mar 8;143(1):45–51. doi: 10.1002/ijc.31301
  • Catino A, Pizzutilo P, Longo V, et al. Gender differences and immunotherapy outcome in advanced lung cancer. Tiziana vavalà. Int J Mol Sci. 2021;22(21):11942. doi: 10.3390/ijms222111942
  • Gupta S, Artomov M, Goggins W, et al. Gender disparity and mutation burden in metastatic melanoma. J Natl Cancer Inst. 2015;107(11):djv221.
  • Cortellini A, Tucci M, Adamo V, et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J Immunother Cancer. 2020;8(2). doi: 10.1136/jitc-2020-001361
  • Pinato DJ. Concomitant medications and immune checkpoint inhibitor therapy for cancer: causation or association? Nadiya Hussain, Muntaha Naeem. Hum Vaccines Immunother. 2020;17(1):55–61.
  • Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36(28):2872–2878. doi: 10.1200/JCO.2018.79.0006
  • Hakozaki T, Richard C, Elkrief A, et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non–small cell lung cancer. Cancer Immunol Res. 2020;8(10):1243–1250.
  • Hopkins AM, Badaoui S, Kichenadasse G, et al. Efficacy of atezolizumab in patients with advanced NSCLC receiving concomitant antibiotic or proton pump inhibitor treatment: pooled analysis of five randomized control trials. J Thorac Oncol. 2022;17(6):758–767. doi: 10.1016/j.jtho.2022.02.003
  • Chalabi M, Cardona A, Nagarkar DR, et al. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials and investigators, imCORE working group of early career. Ann Oncol. 2020;31(4):525–531. doi: 10.1016/j.annonc.2020.01.006
  • Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–1444.
  • Lurienne L, Cervesi J, Duhalde L, et al. NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis. J Thorac Oncol. 2020;15(7):1147–1159. doi: 10.1016/j.jtho.2020.03.002
  • Sebastian NT, Stokes WA, Behera M, et al. The association of improved overall survival with NSAIDs in non-small cell lung cancer patients receiving immune checkpoint inhibitors. Clin Lung Cancer. 2023;24(3):287–294. doi: 10.1016/j.cllc.2022.12.013
  • Prasetya RA, Metselaar-Albers M, Engels F. Concomitant use of analgesics and immune checkpoint inhibitors in non-small cell lung cancer: a pharmacodynamics perspective. Eur J Pharmacol. 2021;906:174284. doi: 10.1016/j.ejphar.2021.174284
  • Taniguchi Y, Tamiya A, Matsuda Y, et al. Opioids impair nivolumab outcomes: a retrospective propensity score analysis in non-small-cell lung cancer. BMJ Support Palliat Care. 2020;13. doi: 10.1136/bmjspcare-2020-002480
  • Iglesias-Santamaría A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. Clin Transl Oncol. 2020;22(9):1481–1490. doi: 10.1007/s12094-019-02282-w
  • Mercadante S. Opioid-induced neurotoxicity in patients with cancer pain. Curr Treat Options Oncol. 2023;24(10):1367–1377.
  • Jardim DL, Goodman A, de Melo Gagliato D, et al. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154–173.
  • Addeo A, Friedlaender A, Banna GL, et al. TMB or not TMB as a biomarker: that is the question. Crit Rev Oncol Hematol. 2021;163:103374. doi: 10.1016/j.critrevonc.2021.103374
  • Addeo A, Banna GL, Weiss GJ. Tumor mutation burden-from hopes to doubts. JAMA Oncol. 2019. doi: 10.1001/jamaoncol.2019.0626
  • Ling T, Zhang L, Peng R, et al. Prognostic value of 18F-FDG PET/CT in patients with advanced or metastatic non-small-cell lung cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.1014063
  • Shirasawa M, Yoshida T, Shimoda Y, et al. Differential immune-related microenvironment determines programmed cell death protein-1/programmed death-ligand 1 blockade efficacy in patients with advanced NSCLC. J Thorac Oncol. 2021;16(12):2078–2090. doi: 10.1016/j.jtho.2021.07.027
  • Friedlaender A, Bauml J, Luigi Banna G, et al. Identifying successful biomarkers for patients with non-small-cell lung cancer. Lung Cancer Management. 2019;8(3):LMT17.
  • Palmeri M, Mehnert J, Silk AW, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open. 2022;7(1):100336.
  • Valero C, Lee M, Hoen D, et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-20935-9
  • Elena Rebuzzi S, Prelaj A, Friedlaender A, et al. Prognostic scores including peripheral blood-derived inflammatory indices in patients with advanced non-small-cell lung cancer treated with immune checkpoint inhibitors. Crit Rev Oncol Hematol. 2022;179. doi: 10.1016/j.critrevonc.2022.103806
  • Alessi JV, Elkrief A, Ricciuti B, et al. Clinicopathologic and genomic factors impacting efficacy of first-line chemoimmunotherapy in advanced NSCLC. J Thorac Oncol. 2023;18(6):731–743.
  • Huang RSP, Carbone DP, Gerald L, et al. Durable responders in advanced NSCLC with elevated TMB and treated with 1L immune checkpoint inhibitor: a real-world outcomes analysis. J Immunother Cancer. 2023;11(1):e005801.
  • Yang S, Huang Y, Zhao Q. Epigenetic alterations and inflammation as emerging use for the advancement of treatment in non-small cell lung cancer. Front Immunol. 2022. doi: 10.3389/fimmu.2022.878740 13
  • Aramini B, Masciale V, Valeria Samarelli A, et al. Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non-small cell lung cancer. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.959114
  • Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi: 10.1016/j.pharmthera.2020.107753
  • Gauthier L, Corgnac S, Boutet M, et al. Paxillin binding to the cytoplasmic domain of CD103 promotes cell adhesion and effector functions for cd8+ resident memory t cells in tumors. Cancer Res. 2017;77(24):7072–7082.
  • Corgnac S, Boutet M, Kfoury M, et al. The emerging role of cd8+ tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 Integrin. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01904
  • Gueguen P, Metoikidou C, Dupic T, et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8 + T cell populations in lung cancer. Sci Immunol. 2021;6(55). doi: 10.1126/sciimmunol.abd5778
  • Smyth MJ, Ngiow SF, Ribas A, et al. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143–158. doi: 10.1038/nrclinonc.2015.209
  • Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018. doi: 10.1038/s41591-018-0045-3
  • Sun S, Guo W, Wang Z, et al. Development and validation of an immune-related prognostic signature in lung adenocarcinoma. Cancer Med. 2020;9(16):5960–5975. doi: 10.1002/cam4.3240
  • Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30(1):36–50. doi: 10.1016/j.cmet.2019.06.001
  • Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19(6):402–421. doi: 10.1038/s41571-022-00620-6
  • Yan S, Wan G. Tumor-associated macrophages in immunotherapy. FEBS J. 2021;288(21):6174–6186. doi: 10.1111/febs.15726
  • Diem S, Schmid S, Krapf M, et al. Neutrophil-to-Lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer. 2017;111:176–181. doi: 10.1016/j.lungcan.2017.07.024
  • Feng H, Yang F, Qiao L, et al. Prognostic significance of gene signature of tertiary lymphoid structures in patients with lung adenocarcinoma. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.693234
  • Nguyen TT, Lee H-S, Burt BM, et al. A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma. Genome Med. 2022;14(1). doi: 10.1186/s13073-021-01010-w
  • Prat A, Navarro A, Paré L, et al. Immune-related gene expression profiling after pd-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 2017;77(13):3540–3550.
  • Banchereau R, Leng N, Zill O, et al. Molecular determinants of response to PD-L1 blockade across tumor types. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-24112-w
  • Haugdahl Nøst T, Alcala K, Urbarova I, et al. Systemic inflammation markers and cancer incidence in the UK biobank. Eur J Epidemiol. 2021;36(8):841–848. doi: 10.1007/s10654-021-00752-6
  • Luigi Banna G, Friedlaender A, Tagliamento M, et al. Biological rationale for peripheral blood cell-derived inflammatory indices and related prognostic scores in patients with advanced non-small-cell lung cancer. Curr Oncol Rep. 2022;24. doi: 10.1007/s11912-022-01335-8
  • Luigi Banna G, Signorelli D, Metro G, et al. Neutrophil-to-lymphocyte ratio in combination with PD-L1 or lactate dehydrogenase as biomarkers for high PD-L1 non-small cell lung cancer treated with first-line pembrolizumab. Transl Lung Cancer Res. 2020;9(4):1533–1542. doi: 10.21037/tlcr-19-583
  • Banna GL, Cortellini A, Cortinovis DL, et al. The lung immuno-oncology prognostic score (LIPS-3): a prognostic classification of patients receiving first-line pembrolizumab for PD-L1 ≥ 50% advanced non-small-cell lung cancer. ESMO Open. 2021;6(2):100078. doi: 10.1016/j.esmoop.2021.100078
  • Cortellini A, Ricciuti B, Borghaei H, et al. Differential prognostic effect of systemic inflammation in patients with non–small cell lung cancer treated with immunotherapy or chemotherapy: a post hoc analysis of the phase 3 OAK trial. Cancer. 2022;128(16):3067–3079.
  • Banna GL, Cantale O, Muthuramalingam S, et al. Efficacy outcomes and prognostic factors from real-world patients with advanced non-small-cell lung cancer treated with first-line chemoimmunotherapy: the Spinnaker retrospective study. Int Immunopharmacol. 2022;110:108985. doi: 10.1016/j.intimp.2022.108985
  • Banna GL, Tiseo M, Cortinovis DL, et al. Host immune-inflammatory markers to unravel the heterogeneous outcome and assessment of patients with PD-L1 ≥50% metastatic non-small cell lung cancer and poor performance status receiving first-line immunotherapy. Thorac Cancer. 2022;13. doi: 10.1111/1759–7714.14256
  • Benitez JC, Recondo G, Rassy E, et al. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors. Q J Nucl Med Mol Imaging. 2020;64(2). doi: 10.23736/S1824-4785.20.03250-1
  • Wang Y, Yina L, Chen P, et al. Prognostic value of the pretreatment systemic immune-inflammation index (SII) in patients with non-small cell lung cancer: a meta-analysis. Ann Transl Med. 2019;17(1). doi:10.21037/atm.2019.08.116
  • Derosa L, Routy B, Maltez Thomas A, et al. Intestinal akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat Med. 2022;28(2):315–324. doi: 10.1038/s41591-021-01655-5
  • Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16(1):223–249.
  • Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535.
  • Martinez M, Kim S, St Jean N, et al. Addition of anti-TIM3 or anti-TIGIT antibodies to anti-PD1 blockade augments human t cell adoptive cell transfer. Oncoimmunology. 2021;10(1). doi: 10.1080/2162402X.2021.1873607
  • Bhagwat B, Malefyt RDW, Willingham A. Investigating combination benefit of PD1 and LAG3 co-blockade using an engineered cellular bioassay. Int Immunopharmacol. 2023;119:109566.
  • Thommen DS, Schreiner J, Müller P, et al. Progression of lung cancer is associated with increased dysfunction of t cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res. 2015;3(12):1344–1355.
  • Curigliano G, Gelderblom H, Mach N, et al. Phase I/Ib clinical trial of sabatolimab, an anti-tim-3 antibody, alone and in combination with spartalizumab, an anti-pd-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021;27(13):3620–3629.
  • Herrera-Camacho I, Anaya-Ruiz M, Perez-Santos M, et al. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat. 2019;29(8):587–593.
  • Florou V, Garrido-Laguna I. Clinical development of anti-TIGIT antibodies for immunotherapy of cancer. Curr Oncol Rep. 2022;24(9):1107–1112. doi: 10.1007/s11912-022-01281-5
  • Genentech. Genentech. [ Online] May 10, 2022. https://www.gene.com/media/press-releases/14951/2022-05-10/genentech-reports-interim-results-for-ph
  • Bhagwat B, Cherwinski H, Sathe M, et al. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction. J Immunol Methods. 2018;456:7–14.
  • Chocarro L, Blanco E, Arasanz H, et al. Clinical landscape of LAG-3-targeted therapy. Immuno Oncol Tech. 2022;14:100079.
  • Marks S, Naidoo J. Antibody drug conjugates in non-small cell lung cancer: an emerging therapeutic approach. Lung Cancer. 2022;163:59–68. doi: 10.1016/j.lungcan.2021.11.016
  • Li BT, Smit EF, Goto Y, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2021;386. doi: 10.1056/NEJMoa2112431
  • Goto Y, Wu-Chou S, Philip Levy B, et al. TROPION-Lung02: datopotamab deruxtecan (Dato-DXd) plus pembrolizumab (pembro) with or without platinum chemotherapy (Pt-CT) in advanced non-small cell lung cancer (aNSCLC). J Clin Oncol. 2023;41(16_suppl):9004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.