1,363
Views
0
CrossRef citations to date
0
Altmetric
Review

Demystification of artificial intelligence for respiratory clinicians managing patients with obstructive lung diseases

, , , , &
Pages 1207-1219 | Received 13 Jul 2023, Accepted 04 Jan 2024, Published online: 25 Jan 2024

References

  • Prins C, Sheikh H, Schrijvers E, et al. Mission AI: The New System Technology. The Hague: The Netherlands Scientific Council for Government Policy (WRR); 2021.
  • Hazarika I. Artificial intelligence: opportunities and implications for the health workforce. Int Health. 2020 Jul 1;12(4):241–245. doi: 10.1093/inthealth/ihaa007
  • Diagnostic Image Analysis Group. AI for radiology: an implementation guide. Available from: https://grand-challenge.org/aiforradiology/?subspeciality=Chest&modality=All&search
  • Global Initiative for Asthma (GINA). 2022 GINA report - global strategy for asthma management and prevention. 2022
  • Global Initiative for Chronic Obstructive Lung Disease (GOLD). GOLD report - global strategy for the diagnosis, management and prevention of COPD. 2022. 2022.
  • Nikolaou V, Massaro S, Fakhimi M, et al. COPD phenotypes and machine learning cluster analysis: a systematic review and future research agenda. Respir Med. 2020 Sep;171:106093. doi: 10.1016/j.rmed.2020.106093
  • Cunha F, Amaral R, Jacinto T, et al. A systematic review of asthma phenotypes derived by data-driven methods. Diagnostics. 2021 Apr 2;11(4):644. doi: 10.3390/diagnostics11040644
  • Exarchos KP, Beltsiou M, Votti CA, et al. Artificial intelligence techniques in asthma: a systematic review and critical appraisal of the existing literature. Eur Respir J. 2020 Sep;56(3):2000521. doi: 10.1183/13993003.00521-2020
  • Exarchos KP, Aggelopoulou A, Oikonomou A, et al. Review of artificial intelligence techniques in chronic obstructive lung disease. IEEE J Biomed Health Inform. 2022 Dec 16;26(5):2331–2338. doi: 10.1109/JBHI.2021.3135838
  • Pucchio A, Eisenhauer EA, Moraes FY. Medical students need artificial intelligence and machine learning training. Nat Biotechnol. 2021 Mar 01;39(3):388–389.
  • Shmueli G. To explain or to predict? Stat Sci. 2010;25(3):289–310. doi: 10.1214/10-STS330
  • Esteban C, Arostegui I, Moraza J, et al. Development of a decision tree to assess the severity and prognosis of stable COPD. Eur Respir J. 2011;38(6):1294–300. doi: 10.1183/09031936.00189010
  • Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys. 2011 Apr;38(4):1844–58. doi: 10.1118/1.3561504
  • Olier I, Zhan Y, Liang X, et al. Causal inference and observational data. BMC Med Res Methodol. 2023 Oct 11;23(1):227. doi: 10.1186/s12874-023-02058-5
  • Bica I, Alaa AM, Lambert C, et al. From real-world patient data to individualized treatment effects using machine learning: Current and future methods to address underlying challenges. Clin Pharmacol Ther. 2021 Jan;109(1):87–100.
  • Prosperi M, Guo Y, Sperrin M, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell. 2020 Jun 01;2(7):369–375. doi: 10.1038/s42256-020-0197-y
  • Sanchez P, Voisey JP, Xia T, et al. Causal machine learning for healthcare and precision medicine. R Soc Open Sci. 2022 Aug;9(8):220638.
  • Verstraete K, Gyselinck I, Huts H, et al. Estimating individual treatment effects on COPD exacerbations by causal machine learning on randomised controlled trials. Thorax. 2023 Oct;78(10):983–989.
  • WD JG, Hastie T, Tibshirani R. An introduction to statistical learning. (New York): Springer; 2013.
  • Islam MA, Bandyopadhyaya I, Bhattacharyya P, et al. Multichannel lung sound analysis for asthma detection. Comput Methods Programs Biomed. 2018 Jun;159:111–123.
  • Alam MZ, Simonetti A, Brillantino R, et al. Predicting pulmonary function from the analysis of voice: a machine learning approach. Front Digit Health. 2022;4:750226. doi: 10.3389/fdgth.2022.750226
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 01;521(7553):436–444.
  • Tomita K, Nagao R, Touge H, et al. Deep learning facilitates the diagnosis of adult asthma. Allergol Int. 2019 Oct;68(4):456–461.
  • Srivastava A, Jain S, Miranda R, et al. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput Sci. 2021;7:e369. doi: 10.7717/peerj-cs.369
  • Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets. 2021 Sep 01;31(3):685–695.
  • Vanfleteren LE, Spruit MA, Groenen M, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013 Apr 1;187(7):728–735. doi: 10.1164/rccm.201209-1665OC
  • Sutton RS, Barto AG. Reinforcement learning: an introduction. 2nd ed. Cambridge: The MIT Press; 2018.
  • Peine A, Hallawa A, Bickenbach J, et al. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med. 2021 Feb 19;4(1):32. doi: 10.1038/s41746-021-00388-6
  • Yu C, Liu J, Nemati S, et al. Reinforcement learning in healthcare: a survey. ACM Comput Surv. 2023;55(1):1–36. doi: 10.1145/3477600
  • Padmanabhan R, Meskin N, Haddad WM. Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment. Math Biosci. 2017 Nov;293:11–20. doi: 10.1016/j.mbs.2017.08.004
  • Zheng H, Ryzhov IO, Xie W, et al. Personalized multimorbidity management for patients with type 2 diabetes using reinforcement learning of electronic health records. Drugs. 2021 Mar;81(4):471–482.
  • Braido F, Santus P, Corsico AG, et al. Chronic obstructive lung disease “expert system”: validation of a predictive tool for assisting diagnosis. Int J Chron Obstruct Pulmon Dis. 2018;13:1747–1753. doi: 10.2147/COPD.S165533
  • Hafke-Dys H, Kuźnar-Kamińska B, Grzywalski T, et al. Artificial Intelligence Approach to the monitoring of respiratory sounds in asthmatic patients. Front Physiol. 2021;12:745635. doi: 10.3389/fphys.2021.745635
  • Buekers J, Theunis J, De Boever P, et al. Wearable finger pulse oximetry for continuous oxygen saturation measurements during daily home routines of patients with chronic obstructive pulmonary disease (COPD) over one week: observational study. JMIR mHealth uHealth. 2019 Jun 6;7(6):e12866. doi: 10.2196/12866
  • Mesquita R, Spina G, Pitta F, et al. Physical activity patterns and clusters in 1001 patients with COPD. Chron Respir Dis. 2017 Aug;14(3):256–269.
  • de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022 Jan 10;5(1):2. doi: 10.1038/s41746-021-00549-7
  • Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. doi: 10.1167/tvst.9.2.14
  • Badillo S, Banfai B, Birzele F, et al. An introduction to machine learning. Clin Pharmacol Ther. 2020 Apr;107(4):871–885.
  • Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. 2nd ed. Switzerland: Springer; 2019.
  • Naser MZ, Alavi AH. Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences. Archit Struct Constr. 2023 Nov 24;3(4):499–517.
  • Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 1991 Jul 01;37(1):35–46.
  • Power M, Fell G, Wright M. Principles for high-quality, high-value testing. Evid Based Med. 2013 Feb;18(1):5–10. doi: 10.1136/eb-2012-100645
  • Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. (New York): John Wiley and Sons; 2000.
  • MacNeil J, Loves RH, Aaron SD. Addressing the misdiagnosis of asthma in adults: where does it go wrong? Expert Rev Respir Med. 2016 Nov;10(11):1187–1198. doi: 10.1080/17476348.2016.1242415
  • Singh OP, Palaniappan R, Malarvili M. Automatic quantitative analysis of human respired carbon dioxide waveform for asthma and non-asthma classification using support vector machine. IEEE Access. 2018;6:55245–55256. doi: 10.1109/ACCESS.2018.2871091
  • Ullah R, Khan S, Ali H, et al. A comparative study of machine learning classifiers for risk prediction of asthma disease. Photodiagnosis Photodyn Ther. 2019 Dec;28:292–296.
  • Kisiel MA, Zhou X, Sundh J, et al. Data-driven questionnaire-based cluster analysis of asthma in Swedish adults. NPJ Prim Care Respir Med. 2020 Apr 6;30(1):14. doi: 10.1038/s41533-020-0168-0
  • Oh JH, Ahn KM, Chung SJ, et al. Usefulness of routine blood test-driven clusters for predicting acute exacerbation in patients with asthma. Respir Med. 2020 Aug;170:106042.
  • Zein JG, Wu CP, Attaway AH, et al. Novel Machine Learning Can Predict Acute Asthma Exacerbation. Chest. 2021 May;159(5):1747–1757.
  • Xiang Y, Ji H, Zhou Y, et al. Asthma exacerbation prediction and risk factor analysis based on a time-sensitive, attentive neural network: retrospective cohort study. J Med Internet Res. 2020 Jul 31;22(7):e16981. doi: 10.2196/16981
  • Luo G, He S, Stone BL, et al. Developing a model to predict hospital encounters for asthma in asthmatic patients: secondary analysis. JMIR Med Inform. 2020 Jan 21;8(1):e16080. doi: 10.2196/16080
  • Khasha R, Sepehri MM, Mahdaviani SA. An ensemble learning method for asthma control level detection with leveraging medical knowledge-based classifier and supervised learning. J Med Syst. 2019 Apr 26;43(6):158. doi: 10.1007/s10916-019-1259-8
  • Halner A, Beer S, Pullinger R, et al. Predicting treatment outcomes following an exacerbation of airways disease. PLoS One. 2021;16(8):e0254425. doi: 10.1371/journal.pone.0254425
  • Inbar O, Inbar O, Reuveny R, et al. A machine learning approach to the interpretation of cardiopulmonary exercise tests: development and validation. Pulm Med. 2021;2021:5516248–5516248. doi: 10.1155/2021/5516248
  • González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018 Jan 15;197(2):193–203. doi: 10.1164/rccm.201705-0860OC
  • Tang LYW, Coxson HO, Lam S, et al. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health. 2020 May;2(5):e259–e267.
  • Haider NS, Singh BK, Periyasamy R, et al. Respiratory sound based classification of chronic obstructive pulmonary disease: a risk stratification approach in machine learning paradigm. J Med Syst. 2019 Jun 28;43(8):255. doi: 10.1007/s10916-019-1388-0
  • Van Berkel JJ, Dallinga JW, Möller GM, et al. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med. 2010 Apr;104(4):557–563.
  • B VA, Subramoniam M, Mathew L. Detection of COPD and lung cancer with electronic nose using ensemble learning methods. Clin Chim Acta. 2021 Dec 01;523:231–238.
  • Mariani S, Metting E, Lahr MMH, et al. Developing an ML pipeline for asthma and COPD: the case of a Dutch primary care service. Int J Intell Syst. 2021;36(11):6763–6790. doi: 10.1002/int.22568
  • Amaral JL, Lopes AJ, Faria AC, et al. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2015 Feb;118(2):186–197.
  • Garcia-Aymerich J, Gómez FP, Benet M, et al. Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax. 2011 May;66(5):430–7.
  • Marques A, Souto-Miranda S, Machado A, et al. COPD profiles and treatable traits using minimal resources: identification, decision tree and stability over time. Respir Res. 2022 Feb 14;23(1):30. doi: 10.1186/s12931-022-01954-6
  • Burgel P-R, Paillasseur J-L, Janssens W, et al. A simple algorithm for the identification of clinical COPD phenotypes. Eur Respir J. 2017;50(5):1701034. doi: 10.1183/13993003.01034-2017
  • Augustin IML, Spruit MA, Houben-Wilke S, et al. The respiratory physiome: clustering based on a comprehensive lung function assessment in patients with COPD. PLoS One. 2018;13(9):e0201593. doi: 10.1371/journal.pone.0201593
  • Cavailles A, Melloni B, Motola S, et al. Identification of patient profiles with high risk of hospital re-admissions for acute COPD exacerbations (AECOPD) in France using a machine learning model. Int J Chron Obstruct Pulmon Dis. 2020;15:949–962. 10.2147/COPD.S236787
  • Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors. 2015;15(10):26978–26996. doi: 10.3390/s151026978
  • Aguilaniu B, Hess D, Kelkel E, et al. A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data. PloS One. 2021;16(8):e0255977. doi: 10.1371/journal.pone.0255977
  • Moll M, Qiao D, Regan EA, et al. Machine learning and prediction of all-cause mortality in COPD. Chest. 2020 Sep;158(3):952–964.
  • Luo L, Li J, Lian S, et al. Using machine learning approaches to predict high-cost chronic obstructive pulmonary disease patients in China. Health Inform J. 2020 Sep;26(3):1577–1598.
  • Ramspek CL, Jager KJ, Dekker FW, et al. External validation of prognostic models: what, why, how, when and where? Clin Kidney J. 2021;14(1):49–58. doi: 10.1093/ckj/sfaa188
  • Aung YYM, Wong DCS, Ting DSW. The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. Br Med Bull. 2021 Sep 10;139(1):4–15. doi: 10.1093/bmb/ldab016
  • Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021 Nov;3(11):e745–e750. doi: 10.1016/S2589-7500(21)00208-9
  • Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019 May 01;1(5):206–215.
  • Martínez-Plumed F, Contreras-Ochando L, Ferri C, et al. CRISP-DM Twenty Years Later: from data mining processes to data science trajectories. IEEE Trans Knowl Data Eng. 2021;33(8):3048–3061. doi: 10.1109/TKDE.2019.2962680
  • Chapman P, Clinton J, Kerber R, et al. CRISP-DM 1.0: step-by-step data mining guide. USA: SPSS Inc; 2000.
  • Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015 Jan 7;350(4):g7594. doi: 10.1136/bmj.g7594