67
Views
0
CrossRef citations to date
0
Altmetric
Review

Hypercapnia and its relationship with respiratory infections

, , , &
Pages 41-47 | Received 13 Nov 2023, Accepted 13 Mar 2024, Published online: 19 Mar 2024

References

  • Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol. 2006 Jun;72(6):567–576.
  • Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, et al. Hypercapnia from physiology to practice. Int J Clin Pract. 2022;2022:2635616. doi: 10.1155/2022/2635616
  • Mirabile VS, Shebl E, Sankari A, et al. Respiratory Failure in Adults. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing. 2024 [cited 2024 Feb 28]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK526127/
  • MacIntyre NR. Acute Hypercapnic Respiratory Failure in COPD. Respir Care. 2023 Jul;68(7):973–982. doi: 10.4187/respcare.10560
  • Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006 May 15;173(10):1114–1121. doi: 10.1164/rccm.200506-859OC
  • Celli BR, Barnes PJ. Exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 2007 Jun;29(6):1224–1238. doi: 10.1183/09031936.00109906
  • Barnes PJ, Burney PGJ, Silverman EK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015 03;1(1):15076. doi: 10.1038/nrdp.2015.76
  • Chung Y, Garden FL, Marks GB, et al. Causes of hypercapnic respiratory failure and associated in-hospital mortality. Respirology. 2023 Feb;28(2):176–182.
  • Morales-Quinteros L, Schultz MJ, Bringué J, et al. Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. Ann Intensive Care. 2019 Nov 21;9(1):128. doi: 10.1186/s13613-019-0601-0
  • Torres A, Motos A, Riera J, et al. The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. Crit Care. 2021 Sep 13;25(1):331. doi: 10.1186/s13054-021-03727-x
  • Budweiser S, Hitzl AP, Jörres RA, et al. Health-related quality of life and long-term prognosis in chronic hypercapnic respiratory failure: a prospective survival analysis. Respir Res. 2007 Dec 17;8(1):92. doi: 10.1186/1465-9921-8-92
  • Curley G, Laffey JG, Kavanagh BP. Bench-to-bedside review: carbon dioxide. Crit Care. 2010;14(2):220. doi: 10.1186/cc8926
  • Martínez-García MÁ, Faner R, Oscullo G, et al. Chronic bronchial infection is associated with more rapid lung function decline in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2022 Nov;19(11):1842–1847.
  • Kolsum U, Damera G, Pham TH, et al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol. 2017 Oct 1;140(4):1181–1184.e7. doi: 10.1016/j.jaci.2017.04.027
  • Solarat B, Perea L, Faner R, et al. Pathophysiology of chronic bronchial infection in Bronchiectasis. Arch Bronconeumol. 2023 Feb;59(2):101–108. doi: 10.1016/j.arbres.2022.09.004
  • Estirado C, Ceccato A, Guerrero M, et al. Microorganisms resistant to conventional antimicrobials in acute exacerbations of chronic obstructive pulmonary disease. Respir Res. 2018 Jun 15;19(1):119. doi: 10.1186/s12931-018-0820-1
  • Monsó E. Microbiome in chronic obstructive pulmonary disease. Ann translat Med. 2017 Jun;5(12):251–251. doi: 10.21037/atm.2017.04.20
  • Brandt JP, Mandiga P. Histology, alveolar cells. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing. 2023 [cited 2023 Nov 10]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557542/
  • Cummins EP, Oliver KM, Lenihan CR, et al. NF-κB links CO2 sensing to innate immunity and inflammation in mammalian cells. J Immunol. 2010 Oct 1;185(7):4439–4445. doi: 10.4049/jimmunol.1000701
  • Oliver KM, Lenihan CR, Bruning U, et al. Hypercapnia induces cleavage and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. J Biol Chem. 2012 Apr 20;287(17):14004–14011. doi: 10.1074/jbc.M112.347971
  • Wang N, Gates KL, Trejo H, et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 2010 Jul;24(7):2178–2190.
  • Lang CJ, Dong P, Hosszu EK, et al. Effect of CO2 on LPS-induced cytokine responses in rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2005 Jul;289(1):L96–103.
  • Casalino-Matsuda SM, Berdnikovs S, Wang N, et al. Hypercapnia selectively modulates LPS-induced changes in innate immune and DNA replication-related gene transcription in the macrophage. Interface Focus. 2021 Apr 6;11(2):20200039. doi: 10.1098/rsfs.2020.0039
  • Taylor CT, Cummins EP. Regulation of gene expression by carbon dioxide. J Physiol. 2011 Feb 15;589(Pt 4):797–803. doi: 10.1113/jphysiol.2010.201467
  • Keogh CE, Scholz CC, Rodriguez J, et al. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. J Biol Chem. 2017 Jul 7;292(27):11561–11571. doi: 10.1074/jbc.M116.755090
  • Casalino-Matsuda SM, Nair A, Beitel GJ, et al. Hypercapnia inhibits autophagy and bacterial killing in human macrophages by increasing expression of bcl-2 and bcl-xL. J Immunol. 2015 Jun 1;194(11):5388–5396. doi: 10.4049/jimmunol.1500150
  • Norozian FM, Leoncio M, Torbati D, et al. Therapeutic hypercapnia enhances the inflammatory response to endotoxin in the lung of spontaneously breathing rats. Crit Care Med. 2011 Jun;39(6):1400–1406.
  • Ding HG, Deng YY, Yang RQ, et al. Hypercapnia induces IL-1β overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats. J Neuroinflammation. 2018 Jan 5;15(1):4. doi: 10.1186/s12974-017-1051-y
  • Suki B, Hubmayr R. Epithelial and endothelial damage induced by mechanical ventilation modes. Curr Opin Crit Care. 2014 Feb;20(1):17–24. doi: 10.1097/MCC.0000000000000043
  • Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, et al. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp. 2019 Jul 25;7(Suppl 1):39. doi: 10.1186/s40635-019-0239-0
  • Masterson C, O’Toole D, Leo A, et al. Effects and mechanisms by which hypercapnic acidosis inhibits sepsis-induced canonical nuclear factor-κB signaling in the lung. Crit Care Med. 2016 Apr;44(4):e207–217.
  • Horie S, Ansari B, Masterson C, et al. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway. Intensive Care Med Exp. 2016 Dec;4(1):8.
  • O’Toole D, Hassett P, Contreras M, et al. Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax. 2009 Nov;64(11):976–982.
  • Chen J, Lecuona E, Briva A, et al. Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia. Am J Respir Cell Mol Biol. 2008 Jan;38(1):32–37.
  • Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal. 2023 Oct 10;21(1):280. doi: 10.1186/s12964-023-01306-x
  • Galganska H, Jarmuszkiewicz W, Galganski L. Carbon dioxide inhibits COVID-19-type proinflammatory responses through extracellular signal-regulated kinases 1 and 2, novel carbon dioxide sensors. Cell Mol Life Sci. 2021 Dec;78(24):8229–8242. doi: 10.1007/s00018-021-04005-3
  • Kuo NT, Agani FH, Haxhiu MA, et al. A possible role for protein kinase C in CO2/H±induced c-fos mRNA expression in PC12 cells. Respir Physiol. 1998 Feb;111(2):127–135. doi: 10.1016/S0034-5687(97)00115-1
  • Hypercapnia impairs ENaC cell surface stability by promoting phosphorylation, polyubiquitination and endocytosis of β-ENaC in a human alveolar epithelial cell line - PubMed [internet]. [cited 2024 Feb 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/28588583/
  • Dada LA, Trejo Bittar HE, Welch LC, et al. High CO2 leads to Na,K-ATPase endocytosis via c-Jun Amino-Terminal kinase-induced LMO7b phosphorylation. Mol Cell Biol. 2015 Dec;35(23):3962–3973.
  • Laffey JG, Tanaka M, Engelberts D, et al. Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med. 2000 Dec;162(6):2287–2294.
  • Shibata K, Cregg N, Engelberts D, et al. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1578–1584.10.1164/ajrccm.158.5.9804039
  • Sinclair SE, Kregenow DA, Lamm WJE, et al. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med. 2002 Aug 1;166(3):403–408. doi: 10.1164/rccm.200112-117OC
  • Contreras M, Ansari B, Curley G, et al. Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB-dependent mechanism. Crit Care Med. 2012 Sep;40(9):2622–2630.
  • Otulakowski G, Engelberts D, Gusarova GA, et al. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17. J Physiol. 2014 Oct 15;592(20):4507–4521. doi: 10.1113/jphysiol.2014.277616
  • Laffey JG, Engelberts D, Duggan M, et al. Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation. Crit Care Med. 2003 Nov;31(11):2634–2640.
  • Kurahashi K, Ota S, Nakamura K, et al. Effect of lung-protective ventilation on severe Pseudomonas aeruginosa pneumonia and sepsis in rats. Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L402–410.
  • O’Croinin DF, Hopkins NO, Moore MM, et al. Hypercapnic acidosis does not modulate the severity of bacterial pneumonia-induced lung injury. Crit Care Med. 2005 Nov;33(11):2606–2612. doi: 10.1097/01.CCM.0000186761.41090.C6
  • Chonghaile MN, Higgins BD, Costello J, et al. Hypercapnic acidosis attenuates lung injury induced by established bacterial pneumonia. Anesthesiology. 2008 Nov;109(5):837–848. doi: 10.1097/ALN.0b013e3181895fb7
  • Ni Chonghaile M, Higgins BD, Costello JF, et al. Hypercapnic acidosis attenuates severe acute bacterial pneumonia-induced lung injury by a neutrophil-independent mechanism. Crit Care Med. 2008 Dec;36(12):3135–3144.
  • O’Croinin DF, Nichol AD, Hopkins N, et al. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med. 2008 Jul;36(7):2128–2135.
  • Gates KL, Howell HA, Nair A, et al. Hypercapnia impairs lung neutrophil function and increases mortality in murine pseudomonas pneumonia. Am J Respir Cell Mol Biol. 2013 Nov;49(5):821–828.
  • Carratalà J, Rosón B, Fernández-Sevilla A, et al. Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Arch Intern Med. 1998 Apr 27;158(8):868–872. doi: 10.1001/archinte.158.8.868
  • Andrews T, Sullivan KE. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev. 2003 Oct;16(4):597–621. doi: 10.1128/CMR.16.4.597-621.2003
  • Costello J, Higgins B, Contreras M, et al. Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Crit Care Med. 2009 Aug;37(8):2412–2420.
  • El Mays TY, Choudhury P, Leigh R, et al. Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma. Respir Res. 2014 Sep 16;15(1):98. doi: 10.1186/s12931-014-0098-x
  • Helenius IT, Krupinski T, Turnbull DW, et al. Elevated CO2 suppresses specific drosophila innate immune responses and resistance to bacterial infection. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18710–18715. doi: 10.1073/pnas.0905925106
  • Johnson RA. A Quick Reference on Respiratory Acidosis. Vet Clin North Am Small Anim Pract. 2017 Mar;47(2):185–189. doi: 10.1016/j.cvsm.2016.10.012
  • Epstein SK, Singh N. Respiratory acidosis. Respir Care. 2001 Apr;46(4):366–383.
  • Laffey JG, Engelberts D, Kavanagh BP. Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med. 2000 Jan;161(1):141–146. doi: 10.1164/ajrccm.161.1.9905080
  • Dhanireddy S, Altemeier WA, Matute-Bello G, et al. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Lab Invest. 2006 Aug;86(8):790–799.
  • Amato MBP, Barbas CSV, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347–354. doi: 10.1056/NEJM199802053380602
  • Chu C. Readmission rates and life threatening events in COPD survivors treated with non-invasive ventilation for acute hypercapnic respiratory failure. Thorax. 2004 Dec;59(12):1020–1025. doi: 10.1136/thx.2004.024307
  • Almagro P, Calbo E, Ochoa de Echagüen A, et al. Mortality after hospitalization for COPD. Chest. 2002 May;121(5):1441–1448.
  • Soler-Cataluña JJ. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005 Nov;60(11):925–931. doi: 10.1136/thx.2005.040527
  • Tripathi A, Melnik AV, Xue J, et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome. mSystems. 2018;3(3):e00020–18. doi: 10.1128/mSystems.00020-18
  • Roquilly A, Torres A, Villadangos JA, et al. Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. Lancet Respir Med. 2019 Aug;7(8):710–720.
  • Ditz B, Christenson S, Rossen J, et al. Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax. 2020 Apr;75(4):338–344.
  • Dy R, Sethi S. The lung microbiome and exacerbations of COPD. Curr Opin Pulm Med. 2016 May;22(3):196–202. doi: 10.1097/MCP.0000000000000268
  • Man WH, de Steenhuijsen Piters WAA, Bogaert D, et al. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259–270. doi: 10.1038/nrmicro.2017.14
  • Braune S, Sieweke A, Brettner F, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive care Med. 2016 Sep;42(9):1437–1444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.