722
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Climatic controls on the water balance of a pilot-scale oil sands mining pit lake in the Athabasca oil sands region, Canada

, ORCID Icon & ORCID Icon
Pages 306-323 | Received 26 May 2023, Accepted 08 Oct 2023, Published online: 30 Oct 2023

References

  • Alberta Energy Regulator, Directive 85: Fluid tailings management for oil sands mining projects. Alberta Energy Regulator, 2017.
  • Golder Associates, Literature review of global pit lakes: Pit lake-case studies, (2017) pp. 1–28.
  • F.F. Risacher, P.K. Morris, D. Arriaga, C. Goad, T.C. Nelson, G.F. Slater, L.A. Warren, et al., The interplay of methane and ammonia as key oxygen consuming constituents in early stage development of base Mine lake, the first demonstration oil sands pit lake, Appl. Geochem. 93 (2018), pp. 49–59. doi:10.1016/j.apgeochem.2018.03.013.
  • D.T. Bowman, L.A. Warren, and G.F. Slater, Isomer-specific monitoring of naphthenic acids at an oil sands pit lake by comprehensive two-dimensional gas chromatography–mass spectrometry, Sci. Total Environ. 746 (2020), pp. 140985. doi:10.1016/j.scitotenv.2020.140985.
  • X. Yu, K. Lee, and A.C. Ulrich, Model naphthenic acids removal by microalgae and base Mine lake cap water microbial inoculum, Chemosphere 234 (2019), pp. 796–805. doi:10.1016/j.chemosphere.2019.06.110.
  • D. Arriaga, T.C. Nelson, F.F. Risacher, P.K. Morris, C. Goad, G.F. Slater, L.A. Warren, et al., The co-importance of physical mixing and biogeochemical consumption in controlling water cap oxygen levels in base Mine lake, Appl. Geochem. 111 (2019), pp. 104442. doi:10.1016/j.apgeochem.2019.104442.
  • K.A. Dompierre, M.B.J. Lindsay, P. Cruz-Hernández, and G.M. Halferdahl, Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake, Sci. Total Environ. 556 (2016), pp. 196–206. doi:10.1016/j.scitotenv.2016.03.002.
  • E. Tedford, G. Halferdahl, R. Pieters, and G.A. Lawrence, Temporal variations in turbidity in an oil sands pit lake, Environ. Fluid Mech 19 (2) (2019), pp. 457–473. doi:10.1007/s10652-018-9632-6.
  • H.Y. Poon, J.T. Brandon, X. Yu, and A.C. Ulrich, Turbidity mitigation in an oil sands pit lake through pH reduction and freshwater addition, J. Environ. Eng. 144 (12) (2018), pp. 1–7. doi:10.1061/(ASCE)EE.1943-7870.0001472.
  • K.B. White and K. Liber, Chronic toxicity of surface water from a Canadian oil sands end pit lake to the freshwater Invertebrates Chironomus dilutus and ceriodaphnia dubia, Arch. Environ. Contam. Toxicol. 78 (3) (2020), pp. 439–450. doi:10.1007/s00244-020-00720-3.
  • M.G. Clark, G.B. Drewitt, and S.K. Carey, Energy and carbon fluxes from an oil sands pit lake, Sci. Total Environ. 752 (2021), pp. 141966. doi:10.1016/j.scitotenv.2020.141966.
  • S. Chang, Heat budget of an oil sands pit lake. University of British Columbia, 2020.
  • L.K. Kabwe, J.D. Scott, N.A. Beier, G.W. Wilson, and S. Jeeravipoolvarn, Environmental implications of end pit lakes at oil sand mines in Alberta, Canada, Environ. Geotech 6 (2) (2019), pp. 67–74. doi:10.1680/jenge.17.00110.
  • J. Hrynyshyn, et al. End pit lakes guidance document. Cumulative Environmental Management Association, AB, 2012.
  • Z. Burkus, J. Wheler, S. Pletcher. GHG emissions from oil sands tailings ponds: overview and modelling based on fermentable substrates. Alberta Environment and Sustainable Resource Developement, 2014.
  • K. Devito, C. Mendoza, and C. Qualizza, Conceptualizing water movement in the boreal Plains. Implications for watershed reconstruction. Canadian Oil Sands Network for Research and Developement, Environmental and Recelamation Research Group, 2012.
  • M.M. Fenton, B.T. Schreiner, E. Nielsen, and J.G. Pawlowicz. Quaternary geology of the western plains, in atlas of the western Canada sedimentary basin. in G.D. Mossip and I. Shesten eds. Canadian Society of Petroleum Geologists and Alberta Research Council. Alberta Geological Survey, 1994.
  • J.J. Gibson, E.E. Prepas, and P. Mceachern, Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of boreal lakes, J. Hydrol. 262 (1–4) (2002), pp. 128–144. doi:10.1016/S0022-1694(02)00022-7.
  • K.E. Bennett, J.J. Gibson, and P.M. McEachern, Water-yield estimates for critical loadings assessment: Comparisons of gauging methods versus an isotopic approach, Can J Fish Aquat Sci 65 (1) (2008), pp. 83–99. doi:10.1139/f07-155.
  • A. Schmidt, J.J. Gibson, I.R. Santos, M. Schubert, K. Tattrie, and H. Weiss, The contribution of groundwater discharge to the overall water budget of two typical boreal lakes in Alberta/Canada estimated from a radon mass balance, Hydrol. Earth Syst. Sci 14 (1) (2010), pp. 79–89. doi:10.5194/hess-14-79-2010.
  • J.M. Ferone and K.J. Devito, Shallow groundwater–surface water interactions in pond–peatland complexes along a boreal Plains topographic gradient, J Hydrol (Amst) 292 (1–4) (2004), pp. 75–95. doi:10.1016/j.jhydrol.2003.12.032.
  • B.D. Smerdon, K.J. Devito, and C.A. Mendoza, Interaction of groundwater and shallow lakes on outwash sediments in the sub-humid boreal Plains of Canada, J Hydrol (Amst) 314 (1–4) (2005), pp. 246–262. doi:10.1016/j.jhydrol.2005.04.001.
  • J.J. Gibson, S.J. Birks, Y. Yi, and D.H. Vitt, Runoff to boreal lakes linked to land cover, watershed morphology and permafrost thaw: A 9-year isotope mass balance assessment, Hydrol Process 29 (18) (2015), pp. 3848–3861. doi:10.1002/hyp.10502.
  • K.J. Devito, K.J. Hokanson, P.A. Moore, N. Kettridge, A.E. Anderson, L. Chasmer, Landscape controls on long-term runoff in subhumid heterogeneous boreal Plains catchments, Hydrol Process 31 (15) (2017), pp. 2737–2751. doi:10.1002/hyp.11213.
  • J.J. Gibson, Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance, J Hydrol (Amst) 264 (1–4) (2002), pp. 242–261. doi:10.1016/S0022-1694(02)00091-4.
  • R.M. Petrone, U. Silins, and K.J. Devito, Dynamics of evapotranspiration from a riparian pond complex in the Western boreal forest, Alberta, Canada, Hydrol Process 21 (11) (2007), pp. 1391–1401. doi:10.1002/hyp.6298.
  • A.M. Ireson, A.G. Barr, J.F. Johnstone, S.D. Mamet, G. van der Kamp, C.J. Whitfield, N.L. Michel, R.L. North, C.J. Westbrook, C. DeBeer, K.P. Chun, A. Nazemi, and J. Sagin, et al., The changing water cycle: The boreal Plains ecozone of Western Canada, WIREs Water 2 (5) (2015), pp. 505–521. doi:10.1002/wat2.1098.
  • R. Wetzel, Limnology: Lake and River Ecosystems, 3rd Edition, 3rd ed.Elsevier ed., Academic Press, San Diego, California, USA, 2001.
  • C.G. Eger, D.G. Chandler, B.K. Roodsari, C.I. Davidson, and C.T. Driscoll, Water budget triangle: A new conceptual framework for comparison of green and gray infrastructure, in ICSI 2014: Creating Infrastructure for a Sustainable World - Proceedings of the 2014 International Conference on Sustainable Infrastructure, November 6–8, 2014 ,Long Beach, California, 2014, pp. 1010–1017.
  • D.J. Walker, Modelling residence time in stormwater ponds, Ecol Eng 10 (3) (1998), pp. 247–262. doi:10.1016/S0925-8574(98)00016-0.
  • C.H. Gammons, M. Tech, L.N. Harris, J.M. Castro, P.A. Cott, and B.W. Hanna, Creating lakes from open pit mines: Processes and considerations, emphasis on northern environments, Can Tech Rep Fish Aquat Sci 2826 (2009), pp. 1–116.
  • J.M. Castro and J.N. Moore, Pit lakes: Their characteristics and the potential for their remediation, Environ. Geol. 39 (11) (2000), pp. 1254–1260. doi:10.1007/s002549900100.
  • C.D. McCullough, G. Marchand, and J. Unseld, 坑后的坑湖作水文循点: 无的最佳?, Mine Water Environ. 32 (4) (2013), pp. 302–313. doi:10.1007/s10230-013-0235-7.
  • L.E. Eary, Predicting the effects of evapoconcentration on water quality in mine pit lakes, J. Geochem. Explor. 64 (1–3) (1998), pp. 223–236. doi:10.1016/S0375-6742(98)00035-1.
  • C. Mccullough, G. Marchant, J. Unseld, M. Robinson, and B. O’grady, Pit lakes as evaporative “terminal” sinks: An approach to best available practice mine closure, in Proceedings of the International Mine Water Association Symposium, Bunbury, Austrailia, 2012, pp. 167–174.
  • C. Brinker, M. Symbaluk, and R.-L. Boorman, Constructing habitat for a sustainable native fisheries in the Sphinx lake end pit lake system, in Proceedings of the Sixth International Conference on Mine Closure, Lake Louise, Canada, 2011, pp. 525–534.
  • C. Mccullough, N. Radhakrishnan, M. Lund, M. Newport, E. Ballot, and D. Short, Riverine breach and subsequent decant of an acidic pit lake: Evaluating the effects of riverine flow-through on lake stratification and chemistry, in Proceedings of the International Mine Waters Conference, Bunbury, Austrailia, 2012, pp. 533–540.
  • C.D. McCullough and M. Schultze, Engineered river flow-through to improve mine pit lake and river values, Sci. Total Environ. 640–641 640-641 (2018), pp. 217–231. doi:10.1016/j.scitotenv.2018.05.279.
  • M. Lund, E. van Etten, J. Polifka, M.Q. Vasquez, R. Ramessur, D. Yangzom, M.L. Blanchette, The importance of catchments to Mine-pit lakes: Implications for closure, Mine Water Environ. 39 (3) (2020), pp. 572–588. doi:10.1007/s10230-020-00704-8.
  • S.J. Ketcheson and J.S. Price, A comparison of the hydrological role of two reclaimed slopes of different age in the Athabasca oil sands region, Alberta, Canada, Can. Geotech. J. 53 (9) (2016), pp. 1533–1546. doi:10.1139/cgj-2015-0391.
  • N.E. Monsen, J.E. Cloern, L.V. Lucas, and S.G. Monismith, A comment on the use of flushing time, residence time, and age as transport time scales, Limnol. Oceanogr. 475 (5) (2002), pp. 1545–1553. doi:10.4319/lo.2002.47.5.1545.
  • W. Ambrosetti, L. Barbanti, and N. Sala, Residence time and physical processes in lakes, J. Limnol. 62 (1s) (2003), pp. 1–15. doi:10.4081/jlimnol.2003.s1.1.
  • S.L. Dingman, Physical Hydrology, 3rd ed., Waveland Press, Long Grove, Illinois, 1993.
  • O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New Jersey, USA, 2006.
  • J.J. Cole and M.L. Pace, Hydrologic variability of small, northern Michigan lakes measured by the addition of tracers, Ecosystems (N. Y., Print) 1 (3) (1998), pp. 310–320. doi:10.1007/s100219900024.
  • E. Petermann, J.J. Gibson, K. Knöller, T. Pannier, H. Weiß, and M. Schubert, Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances, Hydrol Process 32 (6) (2018), pp. 805–816. doi:10.1002/hyp.11456.
  • R.H. Spigel and J. Imberger, The classification of mixed-layer dynamics of lakes of small to Medium size, J Phys Oceanogr 10 (7) (1980), pp. 1104–1121. doi:10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2.
  • F.J. Rueda and E.A. Cowen, Residence time of a freshwater embayment connected to a large lake, Limnol. Oceanogr. 50 (5) (2005), pp. 1638–1653. doi:10.4319/lo.2005.50.5.1638.
  • M. Pilotti, S. Simoncelli, and G. Valerio, A simple approach to the evaluation of the actual water renewal time of natural stratified lakes, Water Resour Res 50 (4) (2014), pp. 2830–2849. doi:10.1002/2013WR014471.
  • P.C. Fiedler, Comparison of objective descriptions of the thermocline, Limnol Oceanogr Methods 8 (6) (2010), pp. 313–325. doi:10.4319/lom.2010.8.313.
  • K. Devito, I. Creed, T. Gan, C. Mendoza, R. Petrone, U. Silins, B. Smerdon, et al., A framework for broad-scale classification of hydrologic response units on the boreal plain: Is topography the last thing to consider?, Hydrol Process 19 (8) (2005), pp. 1705–1714. doi:10.1002/hyp.5881.
  • BGC Engineering Inc, Suncor Energy Inc. Demonstration Pit Lake: Tailings deposit, groundwater, and seepage monitoring instrumentation record, 2018.
  • BGC Engineering Inc, Suncor Energy Inc. Demonstration Pit Lake: Hydrogeological Instrumentation Program, 2018.
  • R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2021. https://www.R-project.org/
  • E.K. Webb, G.I. Pearman, and R. Leuning, Correction of flux measurements for density effects due to heat and water vapour transfer, Q.J Royal Met. Soc. 106 (447) (1980), pp. 85–100. doi:10.1002/qj.49710644707.
  • J.C. Kaimal and J.J. Finnigan, Atmospheric Boundary Layer Flows, Oxford University Press, Oxford, United Kingdom, 1994.
  • T. Foken and M.Y. Leclerc, Methods and limitations in validation of footprint models, Agric. For. Meteorol. 127 (3–4) (2004), pp. 223–234. doi:10.1016/j.agrformet.2004.07.015.
  • M. Aubinet, T. Vesala, and D. Papale, Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Netherlands, Dordrecht, 2012.
  • N. Kljun, P. Calanca, M.W. Rotach, and H.P. Schmid, A simple two-dimensional parameterisation for flux footprint prediction (FFP), Geosci Model Dev 8 (11) (2015), pp. 3695–3713. doi:10.5194/gmd-8-3695-2015.
  • M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm, Global Change Biol 11 (9) (2005), pp. 1424–1439. doi:10.1111/j.1365-2486.2005.001002.x.
  • R.W. Healy, T.C. Winter, J.W. LaBaugh, and O.L. Franke, Water Budgets: Foundations for effective water-resources and environmental management, Vol. 1308, U.S. Geological Survey, Reston, Virginia, 2007.
  • F.H. Quinn, Hydraulic residence time for the Laurentian Great Lakes, J. Great Lakes Res. 18 (1) (1992), pp. 22–28. doi:10.1016/S0380-1330(92)71271-4.
  • M. Pilotti, S. Simoncelli, and G. Valerio, Computing the transport time scales of a stratified lake on the basis of Tonolli’s model, J. Limnol. 73 (3) (2014). doi:10.4081/jlimnol.2014.897
  • D.G. George and M.A. Hurley, Using a continuous function for residence time to quantify the impact of climate change on the dynamics of thermally stratified lakes, J. Limnol. 62 (1s) (2003), pp. 21–26. doi:10.4081/jlimnol.2003.s1.21.
  • R. Piontelli and V. Tonolli, Il tempo di residenza delle acque lacustri in relazione ai fenomeni di arricchimento in sostanze immesse, con particolare riguardo al Lago Maggiore, Mem. Ist. Ital. Idrobiol 17 (1964), pp. 247–266.
  • D.M. Imboden and A. Wuest, Mixing mechanisms in lakes, in Physics and Chemistry of Lakes, A. Lerman, D. M. Imboden, and J. R. Gat, eds., Berlin, Heidelberg, Springer, 1995, pp. 83–138.
  • J.S. Read, D.P. Hamilton, I.D. Jones, K. Muraoka, L.A. Winslow, R. Kroiss, C.H. Wu, E. Gaiser, et al., Derivation of lake mixing and stratification indices from high-resolution lake buoy data, Environ. Model. Softw. 26 (11) (2011), pp. 1325–1336. doi:10.1016/j.envsoft.2011.05.006.
  • J.R. Vallentyne, Principles of modern limnology, Am. Sci. 45 (1957), pp. 218–244.
  • R.J. Davies‐Colley, Mixing depths in New Zealand lakes, N Z J Mar Freshwater Res 22 (4) (1988), pp. 517–528. doi:10.1080/00288330.1988.9516322.
  • R.E. Thomson and I. V Fine, Estimating mixed layer depth from Oceanic profile data, J. Atmos. Ocean. Technol. 20 (2) (2003), pp. 319–329. doi:10.1175/1520-0426(2003)020<0319:EMLDFO>2.0.CO;2.
  • H.B. Fischer, E.J. List, R. Koh, J. Imberger, and N.H. Brooks, Mixing in Inland and Coastal Waters, Academic Press, London, 1979.
  • R. Grimaldi, Climatological characteristics, in Mine Pit Lakes: Characteristics, Predictive Modeling and Sustainability, D.N. Castendyk and L.E. Eary, eds., Society for Mining, Metallurgy and Exploration, Littleton, Colorado, 2009, pp. 19–29.
  • Aquanty Inc, Impact of climate change on surface water and groundwater Resources in the Athabasca River Basin final project report, 2020.
  • B. Wang, Y. Ma, Y. Wang, Z. Su, and W. Ma, Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes, J Hydrol (Amst) 573 (2019), pp. 220–234.
  • E. Gorham, Morphometric control of annual heat budgets in temperate lakes, Limnol. Oceanogr. 9 (4) (1964), pp. 525–529. doi:10.4319/lo.1964.9.4.0525.
  • S.J. Ketcheson and J.S. Price, Snow hydrology of a constructed watershed in the Athabasca oil sands region, Alberta, Canada, Hydrol Process 30 (14) (2016), pp. 2546–2561. doi:10.1002/hyp.10813.
  • R. Pieters and G.A. Lawrence, Physical processes and meromixis in pit lakes subject to ice cover, Can. J. Civ. Eng. 41 (6) (2014), pp. 569–578. doi:10.1139/cjce-2012-0132.
  • L. Touchart and P Bartout, Thermoclines in Ponds: A new typology by the study of continuous water temperature measurements. Water Resources and Wetlands, September 14–16, 2012, Tulcea, Romania, 2012, pp. 27–32.
  • M.A. Xenopoulos and D.W. Schindler, The environmental control of near-surface thermoclines in boreal lakes, Ecosystems (N. Y., Print) 4 (7) (2001), pp. 699–707. doi:10.1007/s10021-001-0038-8.
  • T.M. Cole and S.A. Wells, “CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.1,” Instruction Report EL-03-1, US Army Engineering and Research Development Center, Vicksburg, MS, 2003.