803
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Development of an unpowered ankle exoskeleton for walking assist

, , &
Pages 1-13 | Received 05 Oct 2017, Accepted 25 Jun 2018, Published online: 22 Aug 2018

References

  • Westerterp KR. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol. 2013;4:90.
  • Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009;41:1384–1391.
  • Kirtley C. Clinical gait analysis theory and practice. 1st ed. Edinburgh (NY): Elsevier; 2006.
  • Herr H. Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroengineering Rehabil. 2009;6:21.
  • Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015;522:212–215.
  • Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroengineering Rehabil. 2014;11:80.
  • Rome LC, Flynn L, Yoo TD. Biomechanics: rubber bands reduce the cost of carrying loads. Nature. 2006; 444:1023–1024.
  • Malcolm P, Derave W, Galle S, et al. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PloS One. 2013;8:e56137.
  • Winter DA. Biomechanics and motor control of human movement. 4th ed. Hoboken, New Jersey: John Wiley & Sons; 2009.
  • Roberts D. Winter’s gait data in Excel form | Dustyn Robots. 27 Mar 2012.
  • Whittle M. Gait analysis an introduction. 4th ed. Edinburgh/New York: Butterworth-Heinemann; 2007.
  • Cherelle P, Matthys A, Grosu V, et al. The AMP-Foot 2.0: mimicking intact ankle behavior with a powered transtibial prosthesis. In 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2012. p. 544–549.
  • Versluys R, Van Ham R, Vanderniepen I, et al. Successful walking with a biologically-inspired below-knee prosthesis. IEEE International Conference on Rehabilitation Robotics, 2009 (ICORR 2009); 2009. p. 652–657.
  • Ferris DP, Sawicki GS, Domingo A. Powered lower limb orthoses for gait rehabilitation. Top Spinal Cord Inj Rehabil. 2005;11:34–49.
  • Hitt J, Oymagil AM, Sugar T, et al. Dynamically controlled ankle-foot orthosis (DCO) with regenerative kinetics: incrementally attaining user portability. 2007 IEEE International Conference on Robotics and Automation; 2007. p. 1541–1546.
  • Carberry J, Hinchly G, BuckerfieldJ, et al. Parametric design of an active ankle foot orthosis with passive compliance. 2011 24th International Symposium on Computer-Based Medical Systems (CBMS); 2011. p. 1–6.
  • Zhu J, Wang Q, Huang Y, et al. Adding compliant joints and segmented foot to bio-inspired below-knee exoskeleton. 2011 IEEE International Conference on Robotics and Automation (ICRA); 2011. p. 605–610.
  • Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J Appl Physiol. 2003;95:172–183.
  • Marieb EN, Hoehn K. Human anatomy & physiology. Boston: Pearson; 2013.
  • Bartel DL, Davy DT, Keaveny TM. Orthopaedic biomechanics: mechanics and design in musculoskeletal systems. 1st ed. Upper Saddle River, N.J.: Prentice Hall; 2006.
  • Doumit M, Fahim A, Munro M. Analytical modeling and experimental validation of the braided pneumatic muscle. IEEE Trans Robot. 2009;25:1282–1291.
  • Doumit M, Leclair J. Development and testing of stiffness model for pneumatic artificial muscle. Int J Mech Sci. 2017;120:30–41.
  • Leclair J, Doumit M, McAllister G. Analytical stiffness modeling and experimental validation for a pneumatic artificial muscle, November 2014. p. V009T12A089.
  • Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. PloS One. 2010;5:e9307.
  • Cherelle P, Grosu V, Matthys A, et al. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Trans Neural Syst Rehabil Eng. 2014;22:138–148.
  • Lee JD, Mooney LM, Rouse EJ. Design and characterization of a quasi-passive pneumatic foot-ankle prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2017;25:823–831.
  • Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans Robot. 2009;25:51–66.
  • Bishop D, Moore A, Chandrashekar N. A new ankle foot orthosis for running. Prosthet Orthot Int. 2009;33:192–197.
  • Hirai H, et al. Development of an ankle-foot orthosis with a pneumatic passive element. ROMAN 2006 – The 15th IEEE International Symposium on Robot and Human Interactive Communication; 2006. p. 220–225.
  • Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005;21:189–197.
  • Sawicki GS, Ferris DP. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol. 2009;212:21–31.
  • Agrawal A, Banala SK, Agrawal SK, et al. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. 9th International Conference on Rehabilitation Robotics, 2005 (ICORR 2005); 2005. p. 41–44.
  • Wiggin MB, Sawicki GS, Collins SH. An exoskeleton using controlled energy storage and release to aid ankle propulsion. 2011 IEEE International Conference on Rehabilitation Robotics (ICORR); 2011. p. 1–5.
  • Walsh CJ, Pasch K, Herr H. An autonomous, underactuated exoskeleton for load-carrying augmentation. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006. p. 1410–1415.
  • Walsh CJ, Paluska D, Pasch K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. Presented at the Proceedings – IEEE International Conference on Robotics and Automation 2006; 2006. p. 3485–3491.
  • Walsh CJ, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Human Robot. 2007;04:487–506.
  • Endo K, Herr H. A model of muscle-tendon function in human walking. IEEE International Conference on Robotics and Automation; 2009. p. 1909–1915.
  • Endo K, Paluska D, Herr HM. A quasi-passive model of human leg function in level-ground walking. Presented at the IEEE International Conference on Robotics and Automation; 2006.
  • Banala SK, Agrawal SK, Fattah A, et al. Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans Robot. 2006;22:1228–1239.
  • Agrawal SK, Banala SK, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2007;15:410–420.
  • Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005. p. 3465–3472.
  • Zoss A, Kazerooni H. Design of an electrically actuated lower extremity exoskeleton. Adv Robot. 2006;20:967–988.
  • Ekso Bionics – an exoskeleton bionic suit or a wearable robot that helps people walk again. [Internet]; [cited 2015 Nov 20]. Available from: http://intl.eksobionics.com/
  • Honda Body Weight Support Assist | ASIMO Innovations. [Internet]; [cited 2018 May 25]. Available from: http://asimo.honda.com/innovations/feature/body-weight-support-assist/
  • Ikeuchi Y, Ashihara J, Hiki Y, et al. Walking assist device with bodyweight support system. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009 (IROS 2009); 2009. p. 4073–4079.
  • Ashihara J, Matsuoka Y, Matsuda Y, et al. Walking assist device. 19 Jan 2010.
  • Honda. Walking Assist Device with Stride Management Assist. Honda 2009–2008.
  • Endo Y, Kikuchi K, Hara R. Assist Device. 25 Feb 2010.
  • Tsagaraki N, Caldwell GD, Medrano-Cerda AG. A 7 DOF pneumatic muscle actuator (PMA) powered exoskeleton. 8th IEEE International Workshop on Robot and Human Interation; 1999. p. 327–333.
  • Costa N, Caldwell DG. Control of a Biomimetic ‘Soft-actuated’ 10DoF Lower Body Exoskeleton. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006 (BioRob 2006); 2006. p. 495–501.
  • Ikehara T, et al. Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. IEEE Int. Conf. Rehabil. Robot. Proc 2011; 2011. p. 5975449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.