1,383
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester

ORCID Icon & ORCID Icon
Pages 1393-1403 | Received 24 Jun 2021, Accepted 19 Nov 2021, Published online: 27 Dec 2021

References

  • van der Woude LH, de Groot G, Hollander AP, et al. Wheelchair ergonomics and physiological testing of prototypes. Ergonomics. 1986;29(12):1561–1573.
  • van der Woude LH, Hendrich KM, Veeger HE, et al. Manual wheelchair propulsion: effects of power output on physiology and technique. Med Sci Sports Exerc. 1988;20(1):70–78.
  • Boninger ML, Dicianno BE, Cooper RA, et al. Shoulder magnetic resonance imaging abnormalities, wheelchair propulsion, and gender. Arch Phys Med Rehabil. 2003;84(11):1615–1620.
  • Brose SW, Boninger ML, Fullerton B, et al. Shoulder ultrasound abnormalities, physical examination findings, and pain in manual wheelchair users with spinal cord injury. Arch Phys Med Rehabil. 2008;89(11):2086–2093.
  • Lin YS, Boninger M, Worobey L, et al. Effects of repetitive shoulder activity on the subacromial space in manual wheelchair users. Biomed Res Int. 2014;2014:1–9.
  • Bascou J, Sauret C, Pillet H, et al. A method for the field assessment of rolling resistance properties of manual wheelchairs. Comput Methods Biomech Biomed Engin. 2013;16(4):381–391.
  • Chan FHN, Eshraghi M, Alhazmi MA, et al. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces. Assist Technol. 2018;30(4):176–182.
  • Hoffman MD, Millet GY, Hoch AZ, et al. Assessment of wheelchair drag resistance using a coasting deceleration technique. Am J Phys Med Rehabil. 2003;82(11):880–889.
  • Kauzlarich JJ, Thacker JG. Wheelchair tire rolling resistance and fatigue. J Rehabil Res Dev. 1985;22(3):25–41.
  • Sprigle S, Huang M, Misch J. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters. Assist Technol. 2019:1–13. DOI:10.1080/10400435.2019.1697907
  • Sauret C, Bascou J, de Saint Remy N, et al. Assessment of field rolling resistance of manual wheelchairs. J Rehabil Res Dev. 2012;49(1):63–74.
  • de Groot S, Vegter RJ, van der Woude LH. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique. Med Eng Phys. 2013;35(10):1476–1482.
  • Kwarciak AM, Yarossi M, Ramanujam A, et al. Evaluation of wheelchair tire rolling resistance using dynamometer-based coast-down tests. J Rehabil Res Dev. 2009;46(7):931–938.
  • Bascou J, Fallot C, Pillet H, et al. Assessment of power losses due to ground contact forces during usual manual wheelchair movements. Comput Methods Biomech Biomed Engin. 2017;20(sup1):7–8.
  • Misch J, Huang M, Sprigle S. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories. PLOS One. 2020;15(6):e0234742.
  • Sprigle S, Huang M. Impact of mass and weight distribution on manual wheelchair propulsion torque. Assist Technol. 2015;27(4):226–235.
  • Sprigle S, Huang M. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers. J Rehabil Assist Technol Eng. 2020;7. DOI:10.1177/2055668320907819
  • Parziale JR. Standard V lightweight wheelchair propulsion in spinal cord injured patients. Am J Phys Med Rehabil. 1991;70(2):76–80.
  • Beekman CE, Miller-Porter L, Schoneberger M. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. Phys Ther. 1999;79(2):146–158.
  • Oyster ML, Karmarkar AM, Patrick M, et al. Investigation of factors associated with manual wheelchair mobility in persons with spinal cord injury. Arch Phys Med Rehabil. 2011;92(3):484–490.
  • Oliveira N, Blochlinger S, Ehrenberg N, et al. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs. Disabil Rehabil Assist Technol. 2019;14(3):209–216.
  • Bascou J, Pillet H, Kollia K, et al. Turning resistance of a manual wheelchair: a theoretical study. Comput Methods Biomech Biomed Engin. 2014;17(sup1):94–95.
  • Chénier F, Bigras P, Aissaoui R, editors. A new dynamic model of the manual wheelchair for straight and curvilinear 2011 IEEE International Conference on Rehabilitation Robotics (ICORR); Zurich (Switzerland): IEEE; 2011.
  • Lin J-T, Huang M, Sprigle S. Evaluation of wheelchair resistive forces during straight and turning trajectories across  different wheelchair configurations using free-wheeling coast-down test. J Rehab Res Develop. 2015;52(7):1–22.
  • Center for Medicare and Medicaid Services. Local Coverage Determination (LCD): Manual Wheelchair Bases (L33788). 2020. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=33788&ContrId=389
  • Liles H, Huang M, Caspall J, et al. Design of a robotic system to measure propulsion work of over-ground wheelchair maneuvers. IEEE Trans Neural Syst Rehabil Eng. 2015;23(6):983–991.
  • Medola FO, Dao PV, Caspall JJ, et al. Partitioning kinetic energy during freewheeling wheelchair maneuvers. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):326–333.
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.
  • Wellek S. Testing statistical hypotheses of equivalence and noninferiority. 2nd ed. Boca Raton: CRC Press; 2010.
  • Hilbers PA, White TP. Effects of wheelchair design on metabolic and heart rate responses during propulsion by persons with paraplegia. Phys Ther. 1987;67(9):1355–1358.
  • Lui J, MacGillivray MK, Sheel AW, et al. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion. J Rehabil Res Dev. 2013;50(10):1363–1372.
  • Pavlidou E, Kloosterman MGM, Buurke JH, et al. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs. Med Eng Phys. 2015;37(11):1105–1110.
  • Sagawa Y, Jr., Watelain E, Lepoutre FX, et al. Effects of wheelchair mass on the physiologic responses, perception of exertion, and performance during various simulated daily tasks. Arch Phys Med Rehabil. 2010;91(8):1248–1254.
  • Sawatzky BJ, Kim WO, Denison I. The ergonomics of different tyres and tyre pressure during wheelchair propulsion. Ergonomics. 2004;47(14):1475–1483.
  • Hughes B, Sawatzky BJ, Hol AT. A comparison of spinergy versus standard steel-spoke wheelchair wheels. Arch Phys Med Rehabil. 2005;86(3):596–601.
  • Center for Medicare and Medicaid Services. Part B National Summary Data File. Center for Medicare and Medicaid Services; 2020. Available from: https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/Part-B-National-Summary-Data-File/Overview