192
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Laboratory investigation on liquefaction of sands and cemented sand mixes

, &
Pages 97-109 | Received 18 Aug 2021, Accepted 13 Mar 2023, Published online: 22 Mar 2023

References

  • ASTM D5311M-13, 2013. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. 1–11
  • Banerjee, A., Puppala, A.J., and Hoyos, L.R., 2022. Liquefaction assessment in unsaturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 148 (9), 04022067. doi:10.1061/(ASCE)GT.1943-5606.0002851.
  • Bernard, R.W., et al. 2012. Guidelines for Estimation of Shear Wave Velocity Profiles. PEER Report, Pacific Earthquake Engineering Research Center Headquarters at the University of California: 1–62.
  • Boulanger, R.W., Mejia, L.H., and Idriss, I.M., 1997. Liquefaction at Moss Landing during Loma Prieta earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 123 (5), 453–467. doi:10.1061/(ASCE)1090-0241(1997)123:5(453).
  • Chakrabortty, P., Roshan, A.R., and Das, A., 2020. Evaluation of dynamic properties of partially saturated sands using cyclic triaxial tests. Indian Geotechnical Journal, 50 (6), 948–962. doi:10.1007/s40098-020-00433-3.
  • Clough, G.W., et al., 1989. Influence of cementation on liquefaction of sands. Journal of Geotechnical Engineering, 115 (8), 1102–1117. doi:10.1061/(ASCE)0733-9410(1989)115:8(1102).
  • Consoli, N.C., Rotta, G.V., and Prietto, P.D.M., 2000. Influence of curing under stress on the triaxial response of cemented soils. Geotechnique, 50 (1), 99–105. doi:10.1680/geot.2000.50.1.99.
  • D’appolonia, E., Miller, C.E., Jr, and Ware, T.M., 1955. Sand compaction by vibroflotation. Transactions of the American Society of Civil Engineers, 120 (1), 154–168. doi:10.1061/TACEAT.0007147.
  • Dobry, R., et al., 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. In: National Bureau of standards, Department of Commerce Washington, D.C. Gaithersburg, MD: , Vol. 138, 150.
  • Gandhi, S.R., Dey, A.K., and Selvam, S., 1999. Densification of pond ash by blasting. Journal of Geotechnical and Geoenvironmental Engineering, 125 (10), 889–899. doi:10.1061/(ASCE)1090-0241(1999)125:10(889).
  • Huang, J.T. and Airey, D.W., 1998. Properties of artificially cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering, 124 (6), 492–499. doi:10.1061/(ASCE)1090-0241(1998)124:6(492).
  • Indian Standards, 1980. IS: 2720 (Part III, Sec 1) – 1980 (reaffirmed 2002). Determination of Specific gravity – fine grained soils.
  • Indian Standards, 1983. IS 2720 (Part 14) – 1983. Determination of relative density of cohesion less soils.
  • Indian Standards, 1985. IS 2720 (Part 4) – 1985 (reaffirmed 2006). Grain size analysis.
  • Indian Standards, 2002. IS 1893 (Part 1) – 2002. Criteria for earthquake resistant design of structures.
  • Ishihara, K., 1996. Soil behaviour in earthquake geotechnics. 1st ed. Oxford: Clarendon Press.
  • Jain, A., Mittal, S., and Shukla, S.K., 2022. Cyclic behaviour of stratified soil under liquefied states. Marine Georesources & Geotechnology, 1–22. doi:10.1080/1064119X.2022.2095946.
  • Karol, R.H., 1968. Chemical grouting technology. Journal of the Soil Mechanics and Foundations Division, ASCE, 94 (1), 175–204. doi:10.1061/JSFEAQ.0001082.
  • Khan, M.M., et al., 2020. Seismic hazard curves for warangal city in peninsular India. Asian Journal of Civil Engineering, 21 (3), 543–554. doi:10.1007/s42107-019-00210-5.
  • Knittel, L., et al., 2020. Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measurements. Acta Geotechnica, 15 (8), 2075–2088. doi:10.1007/s11440-019-00893-9.
  • Kumar, S.S., Dey, A., and Krishna, A.M., 2020a. Liquefaction potential assessment of Brahmaputra sand based on regular and irregular excitations using stress-controlled cyclic triaxial test. KSCE Journal of Civil Engineering, 24 (4), 1070–1082. doi:10.1007/s12205-020-0216-x.
  • Kumar, S.S., Murali Krishna, A., and Dey, A., 2020b. Assessment of dynamic response of cohesionless soil using strain-controlled and stress-controlled cyclic triaxial tests. Geotechnical and Geological Engineering, 38 (2), 1431–1450. doi:10.1007/s10706-019-01100-y.
  • Kummeneje, O. and Eide, O., 1961. Investigation of loose sand deposits by blasting. Proc., 5th international conference on soil mechanics and foundation engineering, ISSMFE, London, pp.491–497.
  • Li, L. and Mitchell, R., 1988. Effects of reinforcing elements on the behavior of weakly cemented sands. Canadian Geotechnical Journal, 25 (2), 389–395. doi:10.1139/t88-040.
  • Lyman, A.K.B., 1942. Compaction of cohesionless foundation soils by explosives. Transactions of the American Society of Civil Engineers, 107 (1), 1330–1341. doi:10.1061/TACEAT.0005509.
  • Menard, L. and Broise, Y., 1975. Theoretical and practical aspect of dynamic consolidation. Geotechnique, 25 (1), 3–18. doi:10.1680/geot.1975.25.1.3.
  • Nong, Z.Z., Park, S.S., and Lee, D.E., 2021. Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61 (4), 1071–1085. doi:10.1016/j.sandf.2021.05.002.
  • Pease, J.W., O’rourke, T.D., and Stewart, H.E., 1995. Liquefaction hazards in the San Francisco Bay region: site investigation, modeling, and hazard assessment at areas most seriously affected by the 1989 Loma Prieta earthquake. Ithaca, New York: School of Civil and Environmental Engineering, Cornell University.
  • Porcino, D., Marcianò, V., and Granata, R., 2011. Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes. Geomechanics and Geoengineering: An International Journal, Taylor and Francis Group, 6 (3), 155–170. doi:10.1080/17486025.2011.560287.
  • Rangaswamy, K., Boominathan, A., and Rajagopal, K., 2010. Influence of initial conditions on liquefaction resistance of silty sands. Geomechanics and Geoengineering: An International Journal, 5 (3), 199–211. doi:10.1080/17486021003706572.
  • Reddy, K.R. and Saxena, S.K., 1992. Liquefaction resistance of cemented sands under multidirectional cyclic loading. Canadian Geotechnical Journal, 29 (6), 989–993. doi:10.1139/t92-108.
  • Ross, G.A., Seed, H.B., and Migliaccio, R.R., 1969. Bridge foundation behavior in Alaska earthquake. Journal of the Soil Mechanics and Foundations Division, 95 (4), 1007–1036. doi:10.1061/JSFEAQ.0001302.
  • Saxena, S.K., Avramidis, A.S., and Reddy, K.R., 1988. Dynamic moduli and damping ratios for cemented sands at low strains. Canadian Geotechnical Journal, 25 (2), 353–368. doi:10.1139/t88-036.
  • Seed, H.B., Arango, I., and Chan, C.K. 1975. Evaluation of Soil Liquefaction Potential during Earthquakes. Report No. EERC 75-28, Earthquake Engineering Research Center, University of California, Berkeley.
  • Seed, H.B., 1979. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the Geotechnical Engineering Division, 105 (2), 201–255. doi:10.1061/AJGEB6.0000768.
  • Seed, H.B. and Idriss, I.M., 1967. Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93 (3), 83–108. doi:10.1061/JSFEAQ.0000981.
  • Seed, H.B. and Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97 (9), 1249–1273. doi:10.1061/JSFEAQ.0001662.
  • Shinde, N.S. and Kumar, J., 2022. Assessing the liquefaction potential of a sand specimen by using resonant column test. Soil Dynamics and Earthquake Engineering, 159, 107343. doi:10.1016/j.soildyn.2022.107343
  • Silver, M.L., et al., 1976. Cyclic triaxial strength of standard test sand. Journal of the Geotechnical Engineering Division, 102 (5), 511–523. doi:10.1061/AJGEB6.0000272.
  • Sitharam, T.G., Govinda Raju, L., and Srinivasa Murthy, B.R., 2004. Cyclic and monotonic undrained shear response of silty sand from Bhuj region in India. ISET Journal of Earthquake Technology, 41 (2–4), 249–260.
  • Welsh, J.P., 1986. In situ testing for ground modification techniques. In: ASCE geotechnical special publication No. 6. use of in situ tests in geotechnical engineering. Reston, VA, USA: ASCE, 322–335.
  • Zhu, Z., et al., 2021. Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests. Soil Dynamics and Earthquake Engineering, 147, 106779. doi:10.1016/j.soildyn.2021.106779

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.