143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stress-history impact on yielding, shear and energy dissipation response of earthen dam soil under static and cyclic loading conditions

, &
Pages 162-182 | Received 28 Aug 2022, Accepted 24 Apr 2023, Published online: 01 May 2023

References

  • Abdulhadi, N.O., Germaine, J.T., and Whittle, A.J. 2012. Stress-dependent behavior of saturated clay. Canadian Geotechnical Journal, 49 (8), 907–916. doi:10.1139/t2012-057.
  • Abhijith, T.K., Hussain, M., and Sachan, A. 2020. “Effect of stress history on stress–strain and volumetric response of laterite soil under undrained and drained conditions.” In the Proceedings of the Symposium on International Association for Computer Methods and Advances in Geomechanics (IACMAG Symposium 2019), 1, 91–103.
  • ASTM. 2019. Standard test method for consolidated undrained cyclic direct simple shear test under constant volume with load control or displacement control. West Conshohocken, PA: ASTM; D8296–8319.
  • Budhu, M. 1984. On comparing simple shear and triaxial test results. Journal of Geotechnical Engineering, 110 (12), 1809–1814. doi:10.1061/(ASCE)0733-9410(1984)110:12(1809).
  • Castro, G. 1975. Liquefaction and cyclic mobility of saturated sands. Journal of the Geotechnical Engineering Division, 101 (6), 551–569. doi:10.1061/AJGEB6.0000173.
  • Cavallaro, A., Presti, D.C.L., and Maugeri, M., 2001. The degradation behaviour of Fabriano soil during cyclic loading. Rivista Italiana Di Geotecnica, 2, 107–117.
  • Della, N., Arab, A., and Belkhatir, M. 2011. Laboratory investigation on the effects of overconsolidation and saturation on undrained monotonic shear behavior of granular material. Marine Georesources & Geotechnology, 29 (3), 218–229. doi:10.1080/1064119X.2011.555708.
  • Dyvik, R., et al. 1987. Comparison of truly undrained and constant volume direct simple shear tests. Géotechnique, 37 (1), 3–10. doi:10.1680/geot.1987.37.1.3.
  • Fahoum, K., Aggour, M.S., and Amini, F. 1996. Dynamic properties of cohesive soils treated with lime. Journal of Geotechnical Engineering, 122 (5), 382–389. doi:10.1061/(ASCE)0733-9410(1996)122:5(382).
  • Graham, J., Noonan, M.L., and Lew, K.V. 1983. Yield states and stress–strain relationships in a natural plastic clay. Canadian Geotechnical Journal, 20 (3), 502–516. doi:10.1139/t83-058.
  • Hanzawa, H. 1980. Undrained strength and stability analysis for a quick sand. Soils and Foundations, 20 (2), 17–29. doi:10.3208/sandf1972.20.2_17.
  • Hussain, M. and Sachan, A. 2019a. Dynamic behaviour of Kutch soils under cyclic triaxial and cyclic simple shear testing conditions. International Journal of Geotechnical Engineering, 14 (8), 1–17. doi:10.1080/19386362.2019.1608715.
  • Hussain, M. and Sachan, A. 2019b. Effect of loading conditions and stress history on cyclic behavior of Kutch soil. Geomechanics and Geoengineering, 15 (4), 233–251. doi:10.1080/17486025.2019.1635716.
  • Igwe, O., Fukuoka, H., and Sassa, K. 2012. The effect of relative density and confining stress on shear properties of sands with varying grading. Geotechnical and Geological Engineering, 30 (5), 1207–1229. doi:10.1007/s10706-012-9533-2.
  • Ishihara, K. and Okada, S. 1978. Yielding of overconsolidated sand and liquefaction model under cyclic stresses. Soils and Foundations, 18 (1), 57–72. doi:10.3208/sandf1972.18.57.
  • Ishihara, K., Tatsuoka, F., and Yasuda, S. 1975. Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 15 (1), 29–44. doi:10.3208/sandf1972.15.29.
  • Kammerer, A.M., et al. 2001. “Use of cyclic simple shear testing in evaluation of the deformation potential of liquefiable soils”. In Proc., 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, Missouri, USA. Paper No.16: 1–7. Rolla: University of Missouri.
  • Kramer, S.L. 1996. Geotechnical earthquake engineering. Englewood Cliffs, NJ: Prentice Hall.
  • Ladd, C.C. and Foott, R. 1974. New design procedure for stability of soft clays. Journal of the Geotechnical Engineering Division, 100 (7), 763–786. doi:10.1061/AJGEB6.0000066.
  • Lade, P.V. 1990. Single-hardening model with application to NC clay. Journal of Geotechnical Engineering, 116 (3), 394–414. doi:10.1061/(ASCE)0733-9410(1990)116:3(394).
  • Lade, P.V. and Yamamuro, J.A. 1997. Effects of nonplastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34 (6), 918–928. doi:10.1139/t97-052.
  • Le, K.N. and Ghayoomi, M. 2017. Cyclic direct simple shear test to measure strain-dependent dynamic properties of unsaturated sand. Geotechnical Testing Journal, 40 (3), 381–395. doi:10.1520/GTJ20160128.
  • Mahmoudi, Y., et al. 2018. Laboratory study on undrained shear behaviour of overconsolidated sand–silt mixtures: effect of the fines content and stress state. International Journal of Geotechnical Engineering, 12 (2), 118–132. doi:10.1080/19386362.2016.1252140.
  • Mahmoudi, Y., et al. 2019. Packing Density and Overconsolidation Ratio Effects on the Mechanical Response of Granular Soils. Geotechnical and Geological Engineering, 38 (1), 723–742. doi:10.1007/s10706-019-01061-2.
  • Manmatharajan, V. and Sivathayalan, S. 2011. “Effect of overconsolidation on cyclic resistance correction factors Kσ and Kα.” In the Proceedings of Fourteenth Pan-American Conference on Soil Mechanics and Geotechnical Engineering and the Sixty-Fourth Canadian Geotechnical Conference, Toronto, Canada.
  • Mitchell, J.K. and Soga, K. 2005. Fundamentals of soil behaviorVol. 3. New York: John Wiley & Sons.
  • Mitchell, R.J. 1970. On the yielding and mechanical strength of Leda clays. Canadian Geotechnical Journal, 7 (3), 297–312. doi:10.1139/t70-036.
  • Mukherjee, M. and Sachan, A. 2008. “Evolution of dilatancy angle during shearing of kaolin clay with different microfabrics”. In Proc., 12th Int. Conf. International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India. 805–812.
  • Nagase, H., et al. 2004. “Effects of overeconsolidation on liquefaction strength characteristics of sand samples under ko-stress condition.” In the Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada. 50–55.
  • Nagase, H., et al. 2000. “Effects of overconsolidation on liquefaction strength of sandy soil samples.” In the Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zeland. 1–8.
  • Nong, Z.Z., Park, S.S., and Lee, D.E. 2021. Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61 (4), 1071–1085. doi:10.1016/j.sandf.2021.05.002.
  • Peacock, W.H. and Seed, H.B. 1968. Sand liquefaction under cyclic loading simple shear conditions. Journal of the Soil Mechanics and Foundations Division, 94 (3), 689–708. doi:10.1061/JSFEAQ.0001135.
  • Polito, C.P. and Martin, J.R., II. 2001. Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127 (5), 408–415. doi:10.1061/(ASCE)1090-0241(2001)127:5(408).
  • Prashant, A. and Penumadu, D. 2005. Effect of overconsolidation and anisotropy of kaolin clay using true triaxial testing. Soils and Foundations, 45 (3), 71–82. doi:10.3208/sandf.45.3_71.
  • Prashant, A. and Penumadu, D. 2015. Uncoupled dual hardening model for clays considering the effect of overconsolidation and intermediate principal stress. Acta Geotechnica, 10 (5), 607–622. doi:10.1007/s11440-015-0377-9.
  • Rajendran, C.P. and Rajendran, K. 2001. Characteristics of deformation and past seismicity associated with the 1819 Kutch earthquake, northwestern India. Bulletin of the Seismological Society of America, 91 (3), 407–426. doi:10.1785/0119990162.
  • Ravishankar, B.V., Sitharam, T.G., and Govindaraju, L. 2005. “Dynamic properties of Ahmedabad sands at large strains”. In Proc., Ind. Geotechnical Conf, Ahmedabad, India. 369–372.
  • Roscoe, K.H., Schofield, A., and Thurairajah, A. 1963. Yielding of clays in states wetter than critical. Géotechnique, 13 (3), 211–240. doi:10.1680/geot.1963.13.3.211.
  • Saglam, S. and Bakır, B.S., 2014. Cyclic response of saturated silts. Soil Dynamics and Earthquake Engineering, 61-62, 164–175. doi:10.1016/j.soildyn.2014.02.011
  • Shahsavari, M. and Sivathayalan, S. 2014. “Effect of overconsolidation and the direction of initial static shear stress on the liquefaction susceptibility of sand”. In Proc., 67th Canadian Geotechnical Conference. Regina, Canada.
  • Sheahan, T.C., Ladd, C.C., and Germaine, J.T. 1996. Rate-dependent undrained shear behavior of saturated clay. Journal of Geotechnical Engineering, 122 (2), 99–108. doi:10.1061/(ASCE)0733-9410(1996)122:2(99).
  • Singh, R., Roy, D., and Jain, S.K. 2005. “Investigation of liquefaction failure in earthen dams during Bhuj Earthquake”. In Proc., special session on seismic aspects of Dam Design, 5th international R&D conference. 40–48. Bangalore, India
  • Sitharam, T.G., Govindaraju, L., and Sridharan, A. 2004. Dynamic properties and liquefaction potential of soils. Current Science, 87 (10), 1370–1378.
  • Sitharam, T.G., Govindaraju, L., and Srinivasa Murthy, B.R. 2004. Cyclic and monotonic undrained shear response of silty sand from Bhuj region in India. ISET Journal of Earthquake Tech, 41 (2–4), 249–260.
  • Strozyk, J. 2017. “The laboratory study of shear strength of the overconsolidated and quasi-overconsolidated fine-grained soil.” IOP Conference Series: Earth and Environmental Science, Dnipro, Ukraine. 95(2), 022055.
  • Stróżyk, J. and Tankiewicz, M., 2014. The undrained shear strength of overconsolidated clays. Procedia Engineering, 91, 317–321. doi:10.1016/j.proeng.2014.12.067
  • Tatsuoka, F. and Ishihara, K. 1974. Yielding of sand in triaxial compression. Soils and Foundations, 14 (2), 63–76. doi:10.3208/sandf1972.14.2_63.
  • Tatsuoka, F., et al. 1986. Some factors affecting cyclic undrained triaxial strength of sand. Soils and Foundations, 26 (3), 99–116. doi:10.3208/sandf1972.26.3_99.
  • Tavenas, F., et al. 1979. The use of strain energy as a yield and creep criterion for lightly overconsolidated clays. Géotechnique, 29 (3), 285–303. doi:10.1680/geot.1979.29.3.285.
  • Tint, K., Rae Lee, S., and Su Kim, Y. 2009. Comparison between shear behaviors of over consolidated Nakdong river sandy silt and silty sand. Marine Georesources & Geotechnology, 27 (3), 217–229. doi:10.1080/10641190902967101.
  • Tuttle, M.P., et al. 2002. Observations and comparisons of liquefaction features and related effects induced by the Bhuj earthquake. Earthquake Spectra, 18 (1_suppl), 79–100. doi:10.1193/1.2803908.
  • Yuan, H., et al. 2004. Liquefaction-induced ground failure: a study of the Chi-Chi earthquake cases. Engineering Geology, 71 (1–2), 141–155. doi:10.1016/S0013-7952(03)00130-3.
  • Zhou, J. and Gong, X. 2001. Strain degradation of saturated clay under cyclic loading. Canadian Geotechnical Journal, 38 (1), 208–212. doi:10.1139/t00-062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.