601
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Influence of N-acetyltransferase 2 polymorphisms and clinical variables on liver function profile of tuberculosis patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 263-274 | Received 27 Jul 2023, Accepted 24 Jan 2024, Published online: 01 Feb 2024

References

  • Kumar R, Shalimar S, Bhatia V, et al. Antituberculosis therapy–induced acute liver failure: magnitude, profile, prognosis, and predictors of outcome. Hepatology. 2010;51(5):1665–1674.
  • Devarbhavi H, Singh R, Patil M, et al. Outcome and determinants of mortality in 269 patients with combination anti-tuberculosis drug-induced liver injury. J Gastroenterol Hepatol. 2013;28(1):161–167. doi: 10.1111/j.1440-1746.2012.07279.x
  • Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis drug therapy. Clin Chim Acta. 2013;415:215–219. doi: 10.1016/j.cca.2012.10.030
  • Shang P, Xia Y, Liu F, et al. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI) in China. Plos One. 2011;6(7):e21836. doi: 10.1371/journal.pone.0021836
  • Huang D, Peng J, Lei L, et al. Time of liver function abnormal identification on prediction of the risk of anti-tuberculosis-induced liver injury. J Clin Transl Hepatol. 2023;11(2):425–432. doi: 10.14218/JCTH.2022.00077
  • Abbara A, Chitty S, Roe JK, et al. Drug-induced liver injury from antituberculous treatment: a retrospective study from a large TB centre in the UK. BMC Infect Dis. 2017;17(1):231. doi: 10.1186/s12879-017-2330-z
  • Gutiérrez-Virgen JE, Piña-Pozas M, Hernández-Tobías EA, et al. NAT2 global landscape: genetic diversity and acetylation statuses from a systematic review. Plos One. 2023;18(4):e0283726. doi: 10.1371/journal.pone.0283726
  • Adole PS, Kharbanda PS, Sharma S. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - a pilot study. Indian J Med Res. 2016;143(5):581–590. doi: 10.4103/0971-5916.187106
  • Singh N, Dubey S, Chinnaraj S, et al. Study of NAT2 gene polymorphisms in an Indian population: association with plasma isoniazid concentration in a cohort of tuberculosis patients. Mol Diagn Ther. 2009;13(1):49–58. doi: 10.1007/BF03256314
  • Walker K, Ginsberg G, Hattis D, et al. Genetic polymorphism in N-Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev. 2009;12(5–6):440–472.
  • McDonagh EM, Boukouvala S, Aklillu E, et al. PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genom. 2014;24(8):409–425. doi: 10.1097/FPC.0000000000000062
  • Conway LP, Rendo V, Correia MS, et al. Unexpected acetylation of endogenous aliphatic amines by arylamine N-Acetyltransferase NAT2. Angew Chem Int Ed Engl. 2020;59(34):14342–14346.
  • Tanira MO, Simsek M, Al Balushi K, et al. Distribution of arylamine N-acetyltransferase 2 (nat2) genotypes among omanis. J Sci Res Med Sci. 2003;5(1–2):9–14.
  • Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9(1):29–42.
  • Kamimura H, Setsu T, Kimura N, et al. Analysis of drug-induced liver-related adverse event trend reporting between 1997 and 2019. Hepatol Res. 2023;53(6):556–568. doi: 10.1111/hepr.13883
  • Rana P, Aleo MD, Wen X, et al. Hepatotoxicity reports in the FDA adverse event reporting system database: a comparison of drugs that cause injury via mitochondrial or other mechanisms. Acta Pharm Sin B. 2021;11(12):3857–3868. doi: 10.1016/j.apsb.2021.05.028
  • Wang P, Pradhan K, Zhong XB, et al. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 2016;6(5):384–392. doi: 10.1016/j.apsb.2016.07.014
  • Klein DJ, Boukouvala S, McDonagh EM, et al. PharmGKB summary: isoniazid pathway, pharmacokinetics. Pharmacogenet Genom. 2016;26(9):436–444. doi: 10.1097/FPC.0000000000000232
  • Thomas L, Raju AP, Chaithra, et al. Influence of N-acetyltransferase 2 (NAT2) genotype/single nucleotide polymorphisms on clearance of isoniazid in tuberculosis patients: a systematic review of population pharmacokinetic models. Eur J Clin Pharmacol. 2022;78(10):1535–1553. doi: 10.1007/s00228-022-03362-7
  • Zhang M, Wang S, Wilffert B, et al. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol. 2018;84(12):2747–2760. doi: 10.1111/bcp.13722
  • Gaude GS, Chaudhury A, Hattiholi J. Drug-induced hepatitis and the risk factors for liver injury in pulmonary tuberculosis patients. J Family Med Prim Care. 2015;4(2):238–243. doi: 10.4103/2249-4863.154661
  • Ali N, Gupta N, Saravu K. Malnutrition as an important risk factor for drug-induced liver injury in patients on anti-tubercular therapy: an experience from a tertiary care center in South India. Drug Discov Ther. 2020;14(3):135–138. doi: 10.5582/ddt.2020.03029
  • Wu S, Xia Y, Lv X, et al. Effect of scheduled monitoring of liver function during anti-tuberculosis treatment in a retrospective cohort in China. BMC Public Health. 2012;12:454. doi: 10.1186/1471-2458-12-454
  • Singanayagam A, Sridhar S, Dhariwal J, et al. A comparison between two strategies for monitoring hepatic function during antituberculous therapy. Am J Respir Crit Care Med. 2012;185(6):653–659. doi: 10.1164/rccm.201105-0850OC
  • Human NAT2 alleles (haplotypes) [internet]. Alexandroupolis: department of molecular biology and genetics, Democritus University of Thrace. [cited 2023 Jun 13]. Available from: http://nat.mbg.duth.gr/Human%20NAT2%20alleles_2013.htm
  • Saukkonen JJ, Cohn DL, Jasmer RM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006;174(8):935–952. doi: 10.1164/rccm.200510-1666ST
  • Nahid P, Dorman SE, Alipanah N, et al. Official American thoracic society/centers for disease control and prevention/infectious diseases society of america clinical practice guidelines: treatment of drug-Susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–e195. doi: 10.1093/cid/ciw376
  • Chalasani N, Bonkovsky HL, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148(7):1340–1352.e7.
  • R Core Team. R: a language and environment for statistical computing. Vienna (AT): R Foundation for Statistical Computing; 2023. Available from: https://www.R-project.org/
  • Wickham H, Averick M, Bryan J, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686.
  • Aragon TJ, Fay MP, Wollschlaeger D, et al. Epitools: epidemiology tools. R Package Version 0.5-10.1. 2020. Available from: https://cran.r-project.org/web/packages/epitools/index.html
  • Gordon M, Lumley T. Forestplot: advanced forest plot using ‘grid’ graphics. R Package Version 3.1.1. 2022. Available from: https://CRAN.R-project.org/package=forestplot
  • Metushi I, Cai P, Zhu X, et al. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin Pharmacol Ther. 2011;89(6):911–914. doi: 10.1038/clpt.2010.355
  • Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol. 2016;81(6):1030–1036. doi: 10.1111/bcp.12885
  • Nakayama S, Atsumi R, Takakusa H, et al. A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab Dispos. 2009;37(9):1970–1977. doi: 10.1124/dmd.109.027797
  • Clinton JW, Kiparizoska S, Aggarwal S, et al. Drug-induced liver injury: highlights and controversies in the recent literature. Drug Saf. 2021;44(11):1125–1149. doi: 10.1007/s40264-021-01109-4
  • Huerta-García AP, Medellín-Garibay SE, Ortiz-Álvarez A, et al. Population pharmacokinetics of isoniazid and dose recommendations in Mexican patients with tuberculosis. Int J Clin Pharm. 2020;42(4):1217–1226. doi: 10.1007/s11096-020-01086-1
  • Sundell J, Bienvenu E, Janzén D, et al. Model-based assessment of variability in isoniazid pharmacokinetics and metabolism in patients Co-infected with tuberculosis and HIV: implications for a novel dosing strategy. Clin Pharmacol Ther. 2020;108(1):73–80. doi: 10.1002/cpt.1806
  • Kumar AH, Ramesh K, Kannan T, et al. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis. Indian J Med Res. 2017;145(1):118–123.
  • Gupta VH, Amarapurkar DN, Singh M, et al. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol. 2013;28(8):1368–1374. doi: 10.1111/jgh.12194
  • Yuliwulandari R, Prayuni K, Susilowati RW, et al. NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in indonesian population. Pharmacogenomics. 2019;20(18):1303–1311. doi: 10.2217/pgs-2019-0131
  • Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis. 2016;20(10):1364–1369. doi: 10.5588/ijtld.15.0310
  • Ben Mahmoud L, Ghozzi H, Kamoun A, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris). 2012;60(5):324–330. doi: 10.1016/j.patbio.2011.07.001
  • Cavaco MJ, Alcobia C, Oliveiros B, et al. Clinical and genetic risk factors for drug-induced liver injury associated with anti-tuberculosis treatment-A study from Patients of Portuguese Health Centers. J Pers Med. 2022;12(5):790.
  • Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, et al. N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. Int J Tuberc Lung Dis. 2013;17(4):499–504. doi: 10.5588/ijtld.12.0645
  • Pourmohamadi N, Pour Abdollah Toutkaboni M, Hayati Roodbari N, et al. Association of cytochrome P450 2E1 and N-Acetyltransferase 2 genotypes with serum isoniazid level and anti-tuberculosis drug-induced hepatotoxicity: a cross-sectional study. Iran J Med Sci. 2023;48(5):474–483. doi: 10.30476/ijms.2023.96145.2765
  • Ungcharoen U, Sriplung H, Mahasirimongkol S, et al. The influence of NAT2 genotypes on isoniazid plasma concentration of pulmonary tuberculosis patients in Southern Thailand. Tuberc Respir Dis (Seoul). 2020;83(Supple 1):S55–S62. doi: 10.4046/trd.2020.0068
  • Mushiroda T, Yanai H, Yoshiyama T, et al. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients. Hum Genome Var. 2016;3:16014. doi: 10.1038/hgv.2016.14
  • Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol. 2007;13(45):6003–6008.
  • Suvichapanich S, Fukunaga K, Zahroh H, et al. NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: a genotype-based meta-analysis. Pharmacogenet Genom. 2018;28(7):167–176. doi: 10.1097/FPC.0000000000000339
  • Tilak AV, Iyer SN, Mukherjee MS, et al. Full-gene-sequencing analysis of N-acetyltransferase-2 in an adult Indian population. Genet Test Mol Biomarkers. 2013;17(3):188–194. doi: 10.1089/gtmb.2012.0258
  • Possuelo LG, Castelan JA, de Brito TC, et al. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur J Clin Pharmacol. 2008;64(7):673–681. doi: 10.1007/s00228-008-0484-8
  • Zhao H, Wang Y, Zhang T, et al. Drug-induced liver injury from anti-tuberculosis treatment: a retrospective cohort study. Med Sci Monit. 2020;26:e920350. doi: 10.12659/MSM.920350
  • Okamura K, Nagata N, Wakamatsu K, et al. Hypoalbuminemia and lymphocytopenia are predictive risk factors for in-hospital mortality in patients with tuberculosis. Intern Med. 2013;52(4):439–444. doi: 10.2169/internalmedicine.52.8158
  • Gezahegn LK, Argaw E, Assefa B, et al. Magnitude, outcome, and associated factors of anti-tuberculosis drug-induced hepatitis among tuberculosis patients in a tertiary hospital in North Ethiopia: a cross-sectional study. PloS One. 2020;15(11):e0241346. doi: 10.1371/journal.pone.0241346
  • Matos E, Moreira Lemos A. Association between serum albumin levels and in-hospital deaths due to tuberculosis. Int J Tuberc Lung Dis. 2006;10(12):1360–1366.
  • Ganesan H, Gopinath P. Prevalence of hypoalbuminemia among tuberculosis patients receiving anti tuberculosis therapy: a cross sectional study. Int J Adv Biochem Res. 2019;3(2):09–13. doi: 10.33545/26174693.2019.v3.i2a.34
  • Kibirige D, Mutebi E, Ssekitoleko R, et al. Vitamin D deficiency among adult patients with tuberculosis: a cross sectional study from a national referral hospital in Uganda. BMC Res Notes. 2013;6(1):293.
  • Freire ID, Fielding KL, Moore DA. Does diabetes mellitus comorbidity increase the risk of drug-induced liver injury during tuberculosis treatment? Plos One. 2023;18(5):e0286306. doi: 10.1371/journal.pone.0286306
  • Patterson B, Abbara A, Collin S, et al. Predicting drug-induced liver injury from anti-tuberculous medications by early monitoring of liver tests. J Infect. 2021;82(2):240–244. doi: 10.1016/j.jinf.2020.09.038
  • Thompson NP, Caplin ME, Hamilton MI, et al. Anti-tuberculosis medication and the liver: dangers and recommendations in management. Eur Respir J. 1995;8(8):1384–1388. doi: 10.1183/09031936.95.08081384
  • Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–1101. doi: 10.1007/s00228-012-1429-9
  • Clendenen T, Zeleniuch-Jacquotte A, Wirgin I, et al. Genetic variants in hormone-related genes and risk of breast cancer. Plos One. 2013;8(7):e69367. doi: 10.1371/journal.pone.0069367
  • Lundin E, Wirgin I, Lukanova A, et al. Selected polymorphisms in sex hormone-related genes, circulating sex hormones and risk of endometrial cancer. Cancer Epidemiol. 2012;36(5):445–452. doi: 10.1016/j.canep.2012.04.006
  • Clendenen TV, Rendleman J, Ge W, et al. Genotyping of single nucleotide polymorphisms in DNA isolated from serum using sequenom MassARRAY technology. Plos One. 2015;10(8):e0135943. doi: 10.1371/journal.pone.0135943
  • Rounge TB, Lauritzen M, Erlandsen SE, et al. Ultralow amounts of DNA from long-term archived serum samples produce quality genotypes. Eur J Hum Genet. 2020;28(4):521–524. doi: 10.1038/s41431-019-0543-x
  • Vuilleumier N, Rossier MF, Chiappe A, et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol. 2006;62(6):423–429. doi: 10.1007/s00228-006-0111-5
  • Nicoletti P, Devarbhavi H, Goel A, et al. Genetic risk factors in drug-induced liver injury due to isoniazid-containing antituberculosis drug regimens. Clin Pharmacol Ther. 2021;109(4):1125–1135. doi: 10.1002/cpt.2100
  • Santos EA, Gonçalves JCS, Fleury MK, et al. Relationship of anti-tuberculosis drug-induced liver injury and genetic polymorphisms in CYP2E1 and GST. Braz J Infect Dis. 2019;23(6):381–387. doi: 10.1016/j.bjid.2019.09.003
  • Sun Q, Liu HP, Zheng RJ, et al. Genetic polymorphisms of SLCO1B1, CYP2E1 and UGT1A1 and susceptibility to anti-tuberculosis drug-induced hepatotoxicity: a Chinese population-based prospective case-control study. Clin Drug Investig. 2017;37(12):1125–1136.