307
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices?

, &
Pages 309-321 | Received 26 Oct 2023, Accepted 07 Feb 2024, Published online: 21 Feb 2024

References

  • WHO. WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2016;62(4):e1–50. doi: 10.1093/cid/civ933
  • Husain S, Camargo JF. Invasive aspergillosis in solid-organ transplant recipients: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019 [cited 2022 Jun 21];33(9). doi: 10.1111/ctr.13544
  • Hoenigl M, Salmanton-García J, Walsh TJ, et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect Dis. 2021;21:e246–e257. [cited 2022 Jun 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/33606997/
  • Boyer J, Kriegl L, Krause R, et al. Dark mold infections in solid organ transplant recipients. Curr Fungal Infect Rep. 2022;16:107–115. doi: 10.1007/s12281-022-00436-y
  • Bartoletti M, Pascale R, Cricca M, et al. Epidemiology of invasive pulmonary aspergillosis among intubated patients with COVID-19: a prospective study. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2021;73(11):e3606–e3614. doi: 10.1093/cid/ciaa1065
  • Lewis RE, Andes DR. Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions. Curr Opin Infect Dis. 2021;34(4):288–296. doi: 10.1097/QCO.0000000000000740
  • McCreary EK, Davis MR, Narayanan N, et al. Utility of triazole antifungal therapeutic drug monitoring: insights from the society of infectious diseases pharmacists: endorsed by the mycoses study group Education and Research Consortium. Pharmacotherapy. 2023;43(10):1043–1050. doi: 10.1002/phar.2850
  • Abdul-Aziz MH, Alffenaar J-W, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper(). Intensive care Med. 2020;46(6):1127–1153. doi: 10.1007/s00134-020-06050-1
  • Kim HY, Baldelli S, Märtson A-G, et al. Therapeutic drug monitoring of the echinocandin antifungal agents: is there a role in clinical practice? A position statement of the Anti-Infective drugs Committee of the International Association of therapeutic drug monitoring and clinical toxicology. Ther Drug Monit. 2022;44(1):198–214. doi: 10.1097/FTD.0000000000000931
  • Chau MM, Daveson K, Alffenaar J-W, et al. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J. 2021;51(Suppl 7):37–66. doi: 10.1111/imj.15587
  • Ashbee HR, Barnes RA, Johnson EM, et al. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69(5):1162–1176. doi: 10.1093/jac/dkt508
  • Denning DW. Echinocandin antifungal drugs. Lancet (London, England). 2003;362:1142–1151. doi: 10.1016/S0140-6736(03)14472-8
  • Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol. 2001;39(Suppl 1):55–66. doi: 10.1080/mmy.39.1.55.66
  • Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals. Ann Pharmacother. 2009;43(10):1647–1657. doi: 10.1345/aph.1M237
  • Deshkar S, Patil N, Amberkar S, et al. Identification and antifungal drug susceptibility pattern of Candida auris in India. J Glob Infect Dis. 2022;14(4):131–135. doi: 10.4103/jgid.jgid_44_22
  • Maphanga TG, Naicker SD, Kwenda S, et al. In vitro antifungal resistance of Candida auris isolates from bloodstream infections, South Africa. Antimicrob Agents Chemother. 2021;65(9):e0051721. doi: 10.1128/AAC.00517-21
  • Cornely OA, Bassetti M, Calandra T, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18(Suppl 7):19–37. doi: 10.1111/1469-0691.12039
  • Tissot F, Agrawal S, Pagano L, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 2017;102(3):433–444. doi: 10.3324/haematol.2016.152900
  • Aslam S, Rotstein C. Candida infections in solid organ transplantation: guidelines from the American Society of transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9):1–11. doi: 10.1111/ctr.13623
  • Gómez-López A. Antifungal therapeutic drug monitoring: focus on drugs without a clear recommendation. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020;26(11):1481–1487. doi: 10.1016/j.cmi.2020.05.037
  • Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2002;46(6):1857–1869. doi: 10.1128/AAC.46.6.1857-1869.2002
  • Gumbo T, Drusano GL, Liu W, et al. Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia. Antimicrob Agents Chemother. 2007;51(3):968–974. doi: 10.1128/AAC.01337-06
  • Andes DR, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52(10):3497–3503. doi: 10.1128/AAC.00478-08
  • Nguyen KT, Ta P, Hoang BT, et al. Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother. 2009;53:3347–3352. doi: 10.1128/AAC.01480-08
  • Lepak AJ, Zhao M, VanScoy B, et al. Pharmacodynamics of a long-acting echinocandin, CD101, in a neutropenic invasive-candidiasis murine model using an Extended-Interval dosing design. Antimicrob Agents Chemother. 2018;62(2):62. doi: 10.1128/AAC.02154-17
  • Lepak AJ, Zhao M, Andes DR. Pharmacodynamic evaluation of rezafungin (CD101) against Candida auris in the neutropenic mouse invasive candidiasis model. Antimicrob Agents Chemother. 2018;62(11):62. doi: 10.1128/AAC.01572-18
  • van Vianen W, de Marie S, ten Kate MT, et al. Caspofungin: antifungal activity in vitro, pharmacokinetics, and effects on fungal load and animal survival in neutropenic rats with invasive pulmonary aspergillosis. J Antimicrob Chemother. 2006;57(4):732–740. doi: 10.1093/jac/dkl015
  • Andes D, Diekema DJ, Pfaller MA, et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against candida species. Antimicrob Agents Chemother. 2010;54(6):2497–2506. doi: 10.1128/AAC.01584-09
  • van der Elst KCM, Veringa A, Zijlstra JG, et al. Low caspofungin exposure in patients in intensive care units. Antimicrob Agents Chemother. 2017;61(2):61. doi: 10.1128/AAC.01582-16
  • Adembri C, Villa G, Rosi E, et al. Caspofungin PK in critically ill patients after the first and fourth doses: suggestions for therapeutic drug monitoring? J Chemother. 2020;32(3):124–131. doi: 10.1080/1120009X.2020.1737783
  • Lempers VJ, Schouten JA, Hunfeld NG, et al. Altered micafungin Pharmacokinetics in intensive care unit patients. Antimicrob Agents Chemother. 2015;59(8):4403–4409. doi: 10.1128/AAC.00623-15
  • Brüggemann RJM, Middel-Baars V, de Lange DW, et al. Pharmacokinetics of Anidulafungin in critically ill intensive care unit patients with suspected or proven invasive fungal infections. Antimicrob Agents Chemother. 2017;61(2):61. doi: 10.1128/AAC.01894-16
  • Sinnollareddy MG, Roberts JA, Lipman J, et al. Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: Data from multinational Defining Antibiotic Levels in Intensive care unit (DALI) patients Study. Crit Care. 2015;19(1):33. doi: 10.1186/s13054-015-0758-3
  • Boonstra JM, van der Elst KC, Veringa A, et al. Pharmacokinetic properties of micafungin in critically ill patients diagnosed with invasive candidiasis. Antimicrob Agents Chemother. 2017;61(12):61. doi: 10.1128/AAC.01398-17
  • Wasmann RE, Smit C, Ter Heine R, et al. Pharmacokinetics and probability of target attainment for micafungin in normal-weight and morbidly obese adults. J Antimicrob Chemother. 2019;74(4):978–985. doi: 10.1093/jac/dky554
  • Wasmann RE, Ter Heine R, van Dongen EP, et al. Pharmacokinetics of Anidulafungin in obese and normal-weight adults. Antimicrob Agents Chemother. 2018;62(7):62. doi: 10.1128/AAC.00063-18
  • Hoenigl M, Sprute R, Arastehfar A, et al. Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs. 2022;31(8):795–812. doi: 10.1080/13543784.2022.2086120
  • Märtson A-G, van der Elst KCM, Veringa A, et al. Caspofungin Weight-Based dosing supported by a population Pharmacokinetic model in critically ill patients. Antimicrob Agents Chemother. 2020;64(9):64. doi: 10.1128/AAC.00905-20
  • Strenger V, Farowski F, Müller C, et al. Low penetration of caspofungin into cerebrospinal fluid following intravenous administration of standard doses. Int J Antimicrob Agents. 2017;50(2):272–275. doi: 10.1016/j.ijantimicag.2017.02.024
  • Gioia F, Gomez-Lopez A, Alvarez ME, et al. Pharmacokinetics of echinocandins in suspected candida peritonitis: a potential risk for resistance. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;101:24–28. doi: 10.1016/j.ijid.2020.09.019
  • Pound MW, Townsend ML, Drew RH. Echinocandin pharmacodynamics: review and clinical implications. J Antimicrob Chemother. 2010;65(6):1108–1118. doi: 10.1093/jac/dkq081
  • Cornely OA, Vehreschild JJ, Vehreschild MJGT, et al. Phase II dose escalation study of caspofungin for invasive aspergillosis. Antimicrob Agents Chemother. 2011;55(12):5798–5803. doi: 10.1128/AAC.05134-11
  • Sirohi B, Powles RL, Chopra R, et al. A study to determine the safety profile and maximum tolerated dose of micafungin (FK463) in patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38(1):47–51. doi: 10.1038/sj.bmt.1705398
  • Wagener J, Loiko V. Recent insights into the paradoxical effect of echinocandins. J Fungi. 2017;4(1):5. (Basel, Switzerland). doi: 10.3390/jof4010005
  • Boyer J, Feys S, Zsifkovits I, et al. Treatment of invasive aspergillosis: how It’s going, where It’s heading. Mycopathologia. 2023;188(5):667–681. doi: 10.1007/s11046-023-00727-z
  • Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–934. doi: 10.1007/s40265-013-0069-4
  • Aigner M, Lass-Flörl C. Encochleated amphotericin B: is the oral availability of amphotericin B finally reached? J Fungi. 2020;6(2):66. (Basel, Switzerland). doi: 10.3390/jof6020066
  • Egger M, Bellmann R, Krause R, et al. Salvage Treatment for Invasive Aspergillosis and Mucormycosis: challenges, recommendations and future considerations. Infect Drug Resist. 2023;16:2167–2178. doi: 10.2147/IDR.S372546
  • Groll AH, Rijnders BJA, Walsh TJ, et al. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2019;68(Supplement_4):S260–S274. doi: 10.1093/cid/ciz076
  • Wirth F, Ishida K. Antifungal drugs: an updated review of central nervous system pharmacokinetics. Mycoses. 2020;63(10):1047–1059. doi: 10.1111/myc.13157
  • Strenger V, Meinitzer A, Donnerer J, et al. Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. J Antimicrob Chemother. 2014;69(9):2522–2526. doi: 10.1093/jac/dku148
  • van der Voort PHJ, Boerma EC, Yska JP. Serum and intraperitoneal levels of amphotericin B and flucytosine during intravenous treatment of critically ill patients with Candida peritonitis. J Antimicrob Chemother. 2007;59(5):952–956. doi: 10.1093/jac/dkm074
  • Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014;27(1):68–88.
  • Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45(3):922–926. doi: 10.1128/AAC.45.3.922-926.2001
  • Wiederhold NP, Tam VH, Chi J, et al. Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50(2):469–473. doi: 10.1128/AAC.50.2.469-473.2006
  • Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother. 1989;33(9):1544–1548. doi: 10.1128/AAC.33.9.1544
  • Adler-Moore JP, Chiang SM, Satorius A, et al. Treatment of murine candidosis and cryptococcosis with a unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother. 1991;28(Suppl B):63–71. doi: 10.1093/jac/28.suppl_B.63
  • Karyotakis NC, Anaissie EJ. Efficacy of escalating doses of liposomal amphotericin B (AmBisome) against hematogenous Candida lusitaniae and Candida krusei infection in neutropenic mice. Antimicrob Agents Chemother. 1994;38(11):2660–2662. doi: 10.1128/AAC.38.11.2660
  • Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiload trial). Clin Infect Dis An Off Publ Infect Dis Soc Am. 2007;44(10):1289–1297. doi: 10.1086/514341
  • Ellis M, Spence D, de Pauw B, et al. An EORTC international multicenter randomized trial (EORTC number 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis An Off Publ Infect Dis Soc Am. 1998;27(6):1406–1412. doi: 10.1086/515033
  • Duschinsky R, Pleven E, Heidelberger C. The synthesis of 5-fluoropyrimidines. J Am Chem Soc. 1957;79:4559–4560. doi: 10.1021/ja01573a087
  • Benson JM, Nahata MC. Clinical use of systemic antifungal agents. Clin Pharm. 1988;7(6):424–438.
  • Polak A, Scholer HJ. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy. 1975;21(3–4):113–130. doi: 10.1159/000221854
  • Waldorf AR, Polak A. Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother. 1983;23(1):79–85. doi: 10.1128/AAC.23.1.79
  • Sigera LSM, Denning DW. Flucytosine and its clinical usage. Ther Adv Infect Dis. 2023;10:20499361231161388. doi: 10.1177/20499361231161387
  • Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016;30(1):51–83. doi: 10.1016/j.idc.2015.10.012
  • Andes D, van Ogtrop M. In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother. 2000;44(4):938–942. doi: 10.1128/AAC.44.4.938-942.2000
  • Hope WW, Warn PA, Sharp A, et al. Derivation of an in vivo drug exposure breakpoint for flucytosine against Candida albicans and impact of the MIC, growth rate, and resistance genotype on the antifungal effect. Antimicrob Agents Chemother. 2006;50(11):3680–3688. doi: 10.1128/AAC.00369-06
  • Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53(1):24–34. doi: 10.1128/AAC.00705-08
  • Stamm AM, Diasio RB, Dismukes WE, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med. 1987;83(2):236–242. doi: 10.1016/0002-9343(87)90691-7
  • Kauffman CA, Frame PT. Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob Agents Chemother. 1977;11(2):244–247. doi: 10.1128/AAC.11.2.244
  • Vermes A, van Der Sijs H, Guchelaar HJ. Flucytosine: correlation between toxicity and pharmacokinetic parameters. Chemotherapy. 2000;46(2):86–94. doi: 10.1159/000007260
  • Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med. 1979;301(3):126–131. doi: 10.1056/NEJM197907193010303
  • Normark S, Schönebeck J. In vitro studies of 5-fluorocytosine resistance in Candida albicans and torulopsis glabrata. Antimicrob Agents Chemother. 1972;2(3):114–121. doi: 10.1128/AAC.2.3.114
  • Stott KE, Hope WW. Therapeutic drug monitoring for invasive mould infections and disease: pharmacokinetic and pharmacodynamic considerations. J Antimicrob Chemother. 2017;72(suppl_1):i12–i18. doi: 10.1093/jac/dkx029
  • Cutler RE, Blair AD, Kelly MR. Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther. 1978;24(3):333–342. doi: 10.1002/cpt1978243333
  • Jenks JD, Mehta SR, Hoenigl M. Broad spectrum triazoles for invasive mould infections in adults: which drug and when? Med Mycol. 2019;57(Supplement_2):S168–S178. doi: 10.1093/mmy/myy052
  • Fera MT, La Camera E, De Sarro A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev Anti Infect Ther. 2009;7(8):981–998. doi: 10.1586/eri.09.67
  • Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–663. doi: 10.2165/00003088-200645070-00002
  • Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47(10):3165–3169. doi: 10.1128/AAC.47.10.3165-3169.2003
  • Han K, Capitano B, Bies R, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54(10):4424–4431. doi: 10.1128/AAC.00504-10
  • Seyedmousavi S, Mouton JW, Melchers WJG, et al. The role of azoles in the management of azole-resistant aspergillosis: from the bench to the bedside. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2014;17(3):37–50. doi: 10.1016/j.drup.2014.06.001
  • Patterson TF, GR T 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2016;63(4):e1–e60. doi: 10.1093/cid/ciw326
  • Purkins L, Wood N, Ghahramani P, et al. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46(8):2546–2553. doi: 10.1128/AAC.46.8.2546-2553.2002
  • Ohbuchi M, Yoshinari K, Kaneko H, et al. Coordinated roles of pregnane X receptor and constitutive androstane receptor in autoinduction of voriconazole metabolism in mice. Antimicrob Agents Chemother. 2013;57(3):1332–1338. doi: 10.1128/AAC.01900-12
  • Shen J, Wang B, Wang S, et al. Effects of Voriconazole on the pharmacokinetics of Vonoprazan in rats. Drug Des Devel Ther. 2020;14:2199–2206. doi: 10.2147/DDDT.S255427
  • Lee J-S, Kim H-S, Jung Y-S, et al. Pharmacokinetic drug interaction between tofacitinib and voriconazole in rats. Pharmaceutics. 2021;13(5):740. doi: 10.3390/pharmaceutics13050740
  • Dolton MJ, Ray JE, Chen S-A, et al. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793–4799. doi: 10.1128/AAC.00626-12
  • Geist MJP, Egerer G, Burhenne J, et al. Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype. Antimicrob Agents Chemother U S. 2006;50(9):3227–3228. doi: 10.1128/AAC.00551-06
  • Murayama N, Imai N, Nakane T, et al. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 2007;73(12):2020–2026. doi: 10.1016/j.bcp.2007.03.012
  • Zhang Y, Hou K, Liu F, et al. The influence of CYP2C19 polymorphisms on voriconazole trough concentrations: systematic review and meta-analysis. Mycoses. 2021;64(8):860–873. doi: 10.1111/myc.13293
  • Cronin S, Chandrasekar PH. Safety of triazole antifungal drugs in patients with cancer. J Antimicrob Chemother. 2010;65(3):410–416. doi: 10.1093/jac/dkp464
  • Koselke E, Kraft S, Smith J, et al. Evaluation of the effect of obesity on voriconazole serum concentrations. J Antimicrob Chemother. 2012;67(12):2957–2962. doi: 10.1093/jac/dks312
  • Davies-Vorbrodt S, Ito JI, Tegtmeier BR, et al. Voriconazole serum concentrations in obese and overweight immunocompromised patients: a retrospective review. Pharmacotherapy. 2013;33(1):22–30. doi: 10.1002/phar.1156
  • Gatti M, Fornaro G, Pasquini Z, et al. Impact of inflammation on voriconazole exposure in critically ill patients affected by probable COVID-19-Associated pulmonary aspergillosis. Antibiot. 2023;12(4):764. (Basel, Switzerland). doi: 10.3390/antibiotics12040764
  • Bienvenu A-L, Pradat P, Plesa A, et al. Association between voriconazole exposure and Sequential Organ Failure Assessment (SOFA) score in critically ill patients. PLoS One. 2021;16(11):e0260656. doi: 10.1371/journal.pone.0260656
  • Van Daele R, Bekkers B, Lindfors M, et al. A large retrospective assessment of voriconazole exposure in patients treated with extracorporeal membrane oxygenation. Microorganisms. 2021;9(7):1543. doi: 10.3390/microorganisms9071543
  • Ronda M, Llop-Talaveron JM, Fuset M, et al. Voriconazole pharmacokinetics in critically Ill patients and extracorporeal membrane oxygenation support: a retrospective comparative case-control study. Antibiot. 2023;12(7):1100. (Basel, Switzerland). doi: 10.3390/antibiotics12071100
  • Lyster H, Pitt T, Maunz O, et al. Variable sequestration of antifungals in an extracorporeal membrane oxygenation circuit. ASAIO J. 2023;69(3):309–314. doi: 10.1097/MAT.0000000000001802
  • Lempers VJ, Meuwese E, Mavinkurve-Groothuis AM, et al. Impact of dose adaptations following voriconazole therapeutic drug monitoring in pediatric patients. Med Mycol. 2019;57(8):937–943. doi: 10.1093/mmy/myz006
  • Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents. 2014;44(5):436–442. doi: 10.1016/j.ijantimicag.2014.07.013
  • Boglione-Kerrien C, Morcet J, Scailteux L-M, et al. Contribution of voriconazole N-oxide plasma concentration measurements to voriconazole therapeutic drug monitoring in patients with invasive fungal infection. Mycoses. 2023;66(5):396–404. doi: 10.1111/myc.13570
  • Ueda K, Nannya Y, Kumano K, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol. 2009;89(5):592–599. doi: 10.1007/s12185-009-0296-3
  • Hoenigl M, Duettmann W, Raggam RB, et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother. 2013;57(7):3262–3267. doi: 10.1128/AAC.00251-13
  • Park WB, Kim N-H, Kim K-H, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2012;55(8):1080–1087. doi: 10.1093/cid/cis599
  • Kang HM, Lee HJ, Cho EY, et al. The clinical significance of voriconazole therapeutic drug monitoring in children with invasive fungal infections. Pediatr Hematol Oncol. 2015;32(8):557–567. doi: 10.3109/08880018.2015.1088905
  • Cabral-Galeano E, Ruiz-Camps I, Len-Abad O, et al. Clinical usefulness of therapeutic drug monitoring of voriconazole in a university hospital. Enferm Infec Microbiol Clin. 2015;33(5):298–302. doi: 10.1016/j.eimc.2014.09.005
  • Karthaus M, Lehrnbecher T, Lipp H-P, et al. Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients—an evidence-based approach. Ann Hematol. 2015;94(4):547–556. doi: 10.1007/s00277-015-2333-z
  • Zhou PY, Lim TP, Tang SLS, et al. The utility of voriconazole therapeutic drug monitoring in a multi-racial cohort in Southeast Asia. J Glob Antimicrob Resist. 2020;21:427–433. doi: 10.1016/j.jgar.2019.12.004
  • Li H, Li M, Yan J, et al. Voriconazole therapeutic drug monitoring in critically ill patients improves efficacy and safety of antifungal therapy. Basic Clin Pharmacol Toxicol. 2020;127(6):495–504. doi: 10.1111/bcpt.13465
  • Butler-Laporte G, Langevin M-C, Lemieux C, et al. Voriconazole therapeutic drug monitoring among lung transplant recipients receiving targeted therapy for invasive aspergillosis. Clin Transplant. 2022;36(8):e14709. doi: 10.1111/ctr.14709
  • Pascual A, Calandra T, Bolay S, et al. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2008;46(2):201–211. doi: 10.1086/524669
  • Luong M-L, Al-Dabbagh M, Groll AH, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother. 2016;71(7):1786–1799. doi: 10.1093/jac/dkw099
  • Lee J, Ng P, Hamandi B, et al. Effect of therapeutic drug monitoring and cytochrome P450 2C19 genotyping on clinical outcomes of voriconazole: a systematic review. Ann Pharmacother. 2021;55(4):509–529. doi: 10.1177/1060028020948174
  • Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2018;24(Suppl 1):e1–e38. doi: 10.1016/j.cmi.2018.01.002
  • Lin X-B, Hu X-G, Tang Z-X, et al. Pharmacokinetics of voriconazole in peritoneal fluid of critically ill patients. Antimicrob Agents Chemother. 2023;67(5):e0172122. doi: 10.1128/aac.01721-22
  • Matsumoto K, Abematsu K, Shigemi A, et al. Therapeutic drug monitoring of voriconazole in Japanese patients: analysis based on clinical practice data. J Chemother. 2016;28(3):198–202. doi: 10.1179/1973947815Y.0000000057
  • Kim S-H, Yim D-S, Choi S-M, et al. Voriconazole-related severe adverse events: clinical application of therapeutic drug monitoring in Korean patients. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2011;15(11):e753–8. doi: 10.1016/j.ijid.2011.06.004
  • Veringa A, Brüggemann RJ, Span LFR, et al. Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicentre, prospective, cluster randomised, crossover clinical trial. Int J Antimicrob Agents. 2023;61(2):106711. doi: 10.1016/j.ijantimicag.2023.106711
  • Gautier-Veyret E, Thiebaut-Bertrand A, Stanke-Labesque F. Comment on ‘therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicentre, prospective, cluster randomised, crossover clinical trial’. Int J Antimicrob Agents Netherlands. 2023;62(2):106853. doi: 10.1016/j.ijantimicag.2023.106853
  • Chen L, Krekels EHJ, Verweij PE, et al. Pharmacokinetics and pharmacodynamics of Posaconazole. Drugs. 2020;80(7):671–695. doi: 10.1007/s40265-020-01306-y
  • Maertens JA, Girmenia C, Brüggemann RJ, et al. European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on infections in leukaemia. J Antimicrob Chemother. 2018;73:3221–3230. doi: 10.1093/jac/dky286
  • Cornely OA, Alastruey-Izquierdo A, Arenz D. et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019 [cited 2022 Jun 20];19(12):e405–e421. doi: 10.1016/S1473-3099(19)30312-3
  • Maertens JA, Rahav G, Lee D-G, et al. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: a phase 3, randomised, controlled, non-inferiority trial. Lancet (London, England). 2021;397:499–509. doi: 10.1016/S0140-6736(21)00219-1
  • Courtney R, Pai S, Laughlin M, et al. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother. 2003;47(9):2788–2795. doi: 10.1128/AAC.47.9.2788-2795.2003
  • Courtney R, Wexler D, Radwanski E, et al. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol. 2004;57(2):218–222. doi: 10.1046/j.1365-2125.2003.01977.x
  • Krishna G, Sansone-Parsons A, Martinho M, et al. Posaconazole plasma concentrations in juvenile patients with invasive fungal infection. Antimicrob Agents Chemother. 2007;51(3):812–818. doi: 10.1128/AAC.00454-06
  • Gubbins PO, Krishna G, Sansone-Parsons A, et al. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob Agents Chemother. 2006;50(6):1993–1999. doi: 10.1128/AAC.00157-06
  • Hoenigl M, Raggam RB, Salzer HJF, et al. Posaconazole plasma concentrations and invasive mould infections in patients with haematological malignancies. Int J Antimicrob Agents. 2012;39(6):510–513. doi: 10.1016/j.ijantimicag.2012.02.002
  • Hoenigl M, Duettmann W, Raggam RB, et al. Impact of structured personal on-site patient education on low posaconazole plasma concentrations in patients with haematological malignancies. Int J Antimicrob Agents. 2014;44(2):140–144. doi: 10.1016/j.ijantimicag.2014.03.013
  • Vanstraelen K, Prattes J, Maertens J, et al. Posaconazole plasma exposure correlated to intestinal mucositis in allogeneic stem cell transplant patients. Eur J Clin Pharmacol. 2016;72(8):953–963. doi: 10.1007/s00228-016-2057-6
  • Lenczuk D, Zinke-Cerwenka W, Greinix H, et al. Antifungal prophylaxis with posaconazole delayed-release tablet and oral suspension in a real-life setting: plasma levels, efficacy, and tolerability. Antimicrob Agents Chemother. 2018;62(6):62. doi: 10.1128/AAC.02655-17
  • Prattes J, Duettmann W, Hoenigl M. Posaconazole plasma concentrations on Days Three to Five predict steady-state levels. Antimicrob Agents Chemother. 2016;60(9):5595–5599. doi: 10.1128/AAC.00389-16
  • Bui J, Gellatly R, Othman J, et al. Subtherapeutic concentrations of posaconazole tablet: determining risk factors and effectiveness of a standardized dose adjustment in hematology inpatients. Leuk Lymphoma. 2022;63(14):3418–3425. doi: 10.1080/10428194.2022.2126282
  • Arrieta AC, Sung L, Bradley JS, et al. A non-randomized trial to assess the safety, tolerability, and pharmacokinetics of posaconazole oral suspension in immunocompromised children with neutropenia. PLoS One. 2019;14(3):e0212837. doi: 10.1371/journal.pone.0212837
  • Döring M, Cabanillas Stanchi KM, Queudeville M, et al. Efficacy, safety and feasibility of antifungal prophylaxis with posaconazole tablet in paediatric patients after haematopoietic stem cell transplantation. J Cancer Res Clin Oncol. 2017;143(7):1281–1292. doi: 10.1007/s00432-017-2369-7
  • Howard SJ, Lestner JM, Sharp A, et al. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis. 2011;203(9):1324–1332. doi: 10.1093/infdis/jir023
  • Lewis RE, Albert ND, Kontoyiannis DP. Comparative pharmacodynamics of posaconazole in neutropenic murine models of invasive pulmonary aspergillosis and mucormycosis. Antimicrob Agents Chemother. 2014;58(11):6767–6772. doi: 10.1128/AAC.03569-14
  • Forastiero A, Bernal-Martínez L, Mellado E, et al. In vivo efficacy of voriconazole and posaconazole therapy in a novel invertebrate model of Aspergillus fumigatus infection. Int J Antimicrob Agents. 2015;46(5):511–517. doi: 10.1016/j.ijantimicag.2015.07.007
  • Gastine S, Hope W, Hempel G, et al. Pharmacodynamics of Posaconazole in experimental invasive pulmonary aspergillosis: utility of serum Galactomannan as a dynamic endpoint of antifungal efficacy. Antimicrob Agents Chemother. 2021;65(2):65. doi: 10.1128/AAC.01574-20
  • Dolton MJ, Ray JE, Chen S-A, et al. Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration. Antimicrob Agents Chemother. 2012;56(11):5503–5510. doi: 10.1128/AAC.00802-12
  • Jia M, Zhang Q, Qin Z, et al. Dose Optimisation of Posaconazole and Therapeutic Drug Monitoring in Pediatric Patients. Front Pharmacol. 2022;13:833303. doi: 10.3389/fphar.2022.833303
  • Jeong W, Snell GI, Levvey BJ, et al. Single-centre study of therapeutic drug monitoring of posaconazole in lung transplant recipients: factors affecting trough plasma concentrations. J Antimicrob Chemother. 2018;73(3):748–756. doi: 10.1093/jac/dkx440
  • Kraljevic M, Khanna N, Medinger M, et al. Clinical considerations on posaconazole administration and therapeutic drug monitoring in allogeneic hematopoietic cell transplant recipients. Med Mycol. 2021;59(7):701–711. doi: 10.1093/mmy/myaa106
  • Tverdek FP, Heo ST, Aitken SL, et al. Real-life assessment of the safety and effectiveness of the new tablet and intravenous formulations of posaconazole in the prophylaxis of invasive fungal infections via analysis of 343 courses. Antimicrob Agents Chemother. 2017;61(8):61. doi: 10.1128/AAC.00188-17
  • M-RBS C, Huisman C, Kemper EM, et al. Posaconazole treatment in hematology patients: a pilot study of therapeutic drug monitoring. Ther Drug Monit. 2012;34(3):320–325. doi: 10.1097/FTD.0b013e31824d135c
  • Cornely OA, Ullmann AJ. Lack of evidence for exposure–response relationship in the use of Posaconazole as prophylaxis against invasive fungal infections. Clin Pharmacol Ther United States. 2011;89(3):351–352. doi: 10.1038/clpt.2010.261
  • Cendejas-Bueno E, Forastiero A, Ruiz I, et al. Blood and tissue distribution of posaconazole in a rat model of invasive pulmonary aspergillosis. Diagn Microbiol Infect Dis. 2017;87(2):112–117. doi: 10.1016/j.diagmicrobio.2016.10.010
  • Kim HY, Märtson A-G, Dreesen E, et al. Saliva for Precision Dosing of Antifungal Drugs: Saliva Population PK Model for Voriconazole Based on a Systematic Review. Front Pharmacol. 2020;11:894. doi: 10.3389/fphar.2020.00894
  • Cornely OA, Maertens J, Winston DJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356(4):348–359. doi: 10.1056/NEJMoa061094
  • Ullmann AJ, Lipton JH, Vesole DH, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356(4):335–347. doi: 10.1056/NEJMoa061098
  • Chen L, Wang Y, Zhang T, et al. Utility of posaconazole therapeutic drug monitoring and assessment of plasma concentration threshold for effective prophylaxis of invasive fungal infections: a meta-analysis with trial sequential analysis. BMC Infect Dis. 2018;18(1):155. doi: 10.1186/s12879-018-3055-3
  • Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2007;44(1):2–12. doi: 10.1086/508774
  • Dekkers BGJ, Bakker M, van der Elst KCM, et al. Therapeutic Drug Monitoring of Posaconazole: an Update. Curr Fungal Infect Rep. 2016;10(2):51–61. doi: 10.1007/s12281-016-0255-4
  • Kuriakose K, Nesbitt WJ, Greene M, et al. Posaconazole-Induced Pseudohyperaldosteronism. Antimicrob Agents Chemother. 2018;62(5):62. doi: 10.1128/AAC.02130-17
  • Davis MR, Nguyen M-V, Gintjee TJ, et al. Management of posaconazole-induced pseudohyperaldosteronism. J Antimicrob Chemother. 2020;75(12):3688–3693. doi: 10.1093/jac/dkaa366
  • Panos G, Velissaris D, Karamouzos V, et al. Long QT syndrome leading to multiple cardiac arrests after posaconazole administration in an immune-compromised patient with sepsis: an unusual case report. Am J Case Rep. 2016;17:295–300. doi: 10.12659/AJCR.896946
  • Moton A, Krishna G, Wang Z. Tolerability and safety profile of posaconazole: evaluation of 18 controlled studies in healthy volunteers. J Clin Pharm Ther. 2009;34(3):301–311. doi: 10.1111/j.1365-2710.2009.01055.x
  • O’Flynn R, Zhou Y-P, Waskin H, et al. Hepatic safety of the antifungal triazole agent posaconazole: characterization of adverse event reports in a manufacturer’s safety database. Expert Opin Drug Saf. 2022;21(8):1113–1120. doi: 10.1080/14740338.2022.2047177
  • Nguyen M-V, Davis MR, Wittenberg R, et al. Posaconazole serum drug levels associated with pseudohyperaldosteronism. Clin infect dis an off publ infect dis soc Am. Clinl Infect Dis. 2020;70(12):2593–2598. doi: 10.1093/cid/ciz741
  • Jensen K, Saleh OA, Chesdachai S, et al. Association of adverse effects with high serum posaconazole concentrations. Med Mycol. 2023;61(8):61. doi: 10.1093/mmy/myad079
  • Boglione-Kerrien C, Picard S, Tron C, et al. Safety study and therapeutic drug monitoring of the oral tablet formulation of posaconazole in patients with haematological malignancies. J Cancer Res Clin Oncol. 2018;144(1):127–134. doi: 10.1007/s00432-017-2523-2
  • Sabatino DC, Lange NW, Salerno DM, et al. Elevated posaconazole trough concentrations are not associated with increased risk for posaconazole toxicity in lung transplant recipients. Clin Transplant. 2023;37(1):e14826. doi: 10.1111/ctr.14826
  • Maertens JA, Rahav G, Lee D-G, et al. Pharmacokinetic and exposure response analysis of the double-blind randomized study of posaconazole and voriconazole for treatment of invasive aspergillosis. Clin Drug Investig. 2023;43(9):681–690. doi: 10.1007/s40261-023-01282-7
  • Pathadka S, Yan VKC, Neoh CF, et al. Global consumption trend of antifungal agents in humans from 2008 to 2018: data from 65 middle- and high-income countries. Drugs. 2022;82(11):1193–1205. doi: 10.1007/s40265-022-01751-x
  • Arendrup MC, Meletiadis J, Mouton JW, et al. EUCAST technical note on isavuconazole breakpoints for aspergillus, itraconazole breakpoints for Candida and updates for the antifungal susceptibility testing method documents. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2016;22(6):571.e1–4. doi: 10.1016/j.cmi.2016.01.017
  • Furfaro E, Signori A, Di Grazia C, et al. Serial monitoring of isavuconazole blood levels during prolonged antifungal therapy. J Antimicrob Chemother. 2019;74(8):2341–2346. doi: 10.1093/jac/dkz188
  • Gomez-Lopez A, Sanchez Galiano S, Ortega Madueño S, et al. Observed isavuconazole exposure: 5-year experience of azole TDM from a Spanish reference laboratory. Med Mycol. 2023;61:myad086. doi: 10.1093/mmy/myad086
  • Desai A, Kovanda L, Kowalski D, et al. Population pharmacokinetics of isavuconazole from phase 1 and phase 3 (SECURE) trials in adults and target attainment in patients with invasive infections due to aspergillus and other filamentous fungi. Antimicrob Agents Chemother. 2016;60(9):5483–5491. doi: 10.1128/AAC.02819-15
  • Höhl R, Bertram R, Kinzig M, et al. Isavuconazole therapeutic drug monitoring in critically ill ICU patients: a monocentric retrospective analysis. Mycoses. 2022;65(7):747–752. doi: 10.1111/myc.13469
  • Zurl C, Waller M, Schwameis F, et al. Isavuconazole treatment in a mixed patient cohort with invasive fungal infections: outcome, tolerability and clinical implications of isavuconazole plasma concentrations. J Fungi. 2020;6(2):90. (Basel, Switzerland). doi: 10.3390/jof6020090
  • Biagi M, Butler D, Tan X, et al. Pharmacokinetics and dialytic clearance of isavuconazole during in vitro and in vivo continuous renal replacement therapy. Antimicrob Agents Chemother. 2019;63(12):63. doi: 10.1128/AAC.01085-19
  • Lahmer T, Batres Baires G, Heilmaier M, et al. Influence of sustained low-efficiency dialysis treatment on isavuconazole plasma levels in critically ill patients. Antimicrob Agents Chemother. 2019;63(11):63. doi: 10.1128/AAC.01162-19
  • Jansen AME, Ter Heine R, Verweij PE, et al. High variability in isavuconazole unbound fraction in clinical practice: a call to reconsider Pharmacokinetic/pharmacodynamic targets and breakpoints. Clin Pharmacokinet. 2023;62(12):1695–1699. doi: 10.1007/s40262-023-01311-w
  • Hatzl S, Kriegl L, Posch F, et al. Early attainment of isavuconazole target concentration using an increased loading dose in critically ill patients with extracorporeal membrane oxygenation. J Antimicrob Chemother. 2023;78(12):2902–2908. doi: 10.1093/jac/dkad328
  • Kriegl L, Hatzl S, Zurl C, et al. Isavuconazole plasma concentrations in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother. 2022;77(9):2500–2505. doi: 10.1093/jac/dkac196
  • Huang H, Xie H, Chaphekar N, et al. A physiologically based pharmacokinetic analysis to predict the pharmacokinetics of intravenous isavuconazole in patients with or without hepatic impairment. Antimicrob Agents Chemother. 2023;65(5):65. doi: 10.1128/AAC.02032-20
  • Cojutti PG, Rinaldi M, Giannella M, et al. Successful and safe real-time TDM-Guided treatment of invasive pulmonary and cerebral aspergillosis using low-dose isavuconazole in a patient with primary biliary cirrhosis: Grand Round/A Case study. Ther Drug Monit. 2023;45(2):140–142. doi: 10.1097/FTD.0000000000001064
  • Schwartz S, Cornely OA, Hamed K, et al. Isavuconazole for the treatment of patients with invasive fungal diseases involving the central nervous system. Med Mycol. 2020;58(4):417–424. doi: 10.1093/mmy/myz103
  • Lamoth F, Mercier T, André P, et al. Isavuconazole brain penetration in cerebral aspergillosis. J Antimicrob Chemother England. 2019;74(6):1751–1753. doi: 10.1093/jac/dkz050
  • Lahmer T, Batres Baires G, Schmid RM, et al. Penetration of Isavuconazole in ascites fluid of critically Ill patients. J Fungi. 2021;7(5):376. (Basel, Switzerland). doi: 10.3390/jof7050376
  • Natesan SK, Chandrasekar PH. Isavuconazole for the treatment of invasive aspergillosis and mucormycosis: current evidence, safety, efficacy, and clinical recommendations. Infect Drug Resist. 2016;9:291–300. doi: 10.2147/IDR.S102207
  • Bury D, Wolfs TFW, Ter Heine R, et al. Pharmacokinetic investigations of isavuconazole in paediatric cancer patients show reduced exposure of isavuconazole after opening capsules for administration via a nasogastric tube. J Antimicrob Chemother. 2023;78(12):2886–2889. doi: 10.1093/jac/dkad324
  • Dieringer TD, Schaenman JM, Davis MR. Enteral feeding tube administration with therapeutic drug monitoring of crushed posaconazole tablets and opened isavuconazonium sulfate capsules. J Antimicrob Chemother. 2022;77(5):1417–1423. doi: 10.1093/jac/dkac035
  • Cojutti PG, Carnelutti A, Lazzarotto D, et al. Population pharmacokinetics and pharmacodynamic target attainment of isavuconazole against aspergillus fumigatus and aspergillus flavus in adult patients with invasive fungal diseases: should therapeutic drug monitoring for isavuconazole Be considered as mandatory as for the other Mold-Active Azoles? Pharmaceutics. 2021;13(12). doi: 10.3390/pharmaceutics13122099
  • Risum M, Vestergaard M-B, Weinreich UM, et al. Therapeutic drug monitoring of Isavuconazole: serum concentration variability and success rates for reaching target in comparison with Voriconazole. Antibiot. 2021;10(5):487. (Basel, Switzerland). doi: 10.3390/antibiotics10050487
  • Chen Y-C, Chang T-Y, Liu J-W, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: a 12-year longitudinal study. BMC Infect Dis. 2015;15(1):277. doi: 10.1186/s12879-015-1023-8
  • Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the SENTRY antifungal surveillance program: results for candida species from 1997–2016. Open Forum Infect Dis. 2019;6:S79–S94. doi: 10.1093/ofid/ofy358
  • Debruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet. 1993;24(1):10–27. doi: 10.2165/00003088-199324010-00002
  • Debruyne D, Ryckelynck JP, Moulin M, et al. Pharmacokinetics of fluconazole in patients undergoing continuous ambulatory peritoneal dialysis. Clin Pharmacokinet. 1990;18(6):491–498. doi: 10.2165/00003088-199018060-00006
  • Toon S, Ross CE, Gokal R, et al. An assessment of the effects of impaired renal function and haemodialysis on the pharmacokinetics of fluconazole. Br J Clin Pharmacol. 1990;29(2):221–226. doi: 10.1111/j.1365-2125.1990.tb03623.x
  • Humphrey MJ, Jevons S, Tarbit MH. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. Antimicrob Agents Chemother. 1985;28(5):648–653. doi: 10.1128/AAC.28.5.648
  • Buijk SL, Gyssens IC, Mouton JW, et al. Pharmacokinetics of sequential intravenous and enteral fluconazole in critically ill surgical patients with invasive mycoses and compromised gastro-intestinal function. Intensive care Med. 2001;27(1):115–121. doi: 10.1007/s001340000771
  • Muilwijk EW, de Lange DW, Schouten JA, et al. Suboptimal dosing of fluconazole in critically ill patients: time to rethink dosing. Antimicrob Agents Chemother. 2020;64(10):64. doi: 10.1128/AAC.00984-20
  • Bienvenu AL, Pradat P, Matusik E, et al. Suboptimal exposure to fluconazole in critically ill patients: pharmacokinetic analysis and determinants. Infect Dis Now. 2023;53(2):104630. doi: 10.1016/j.idnow.2022.10.002
  • Van Daele R, Wauters J, Lagrou K, et al. Pharmacokinetic Variability and Target Attainment of Fluconazole in Critically Ill Patients. Microorganisms. 2021;9(10):2068. doi: 10.3390/microorganisms9102068
  • Chen L, van Rhee KP, Wasmann RE, et al. Total bodyweight and sex both drive pharmacokinetic variability of fluconazole in obese adults. J Antimicrob Chemother. 2022;77(8):2217–2226. doi: 10.1093/jac/dkac160
  • Pea F, Righi E, Cojutti P, et al. Intra-abdominal penetration and pharmacodynamic exposure to fluconazole in three liver transplant patients with deep-seated candidiasis. J Antimicrob Chemother England. 2014;69(9):2585–2586. doi: 10.1093/jac/dku169
  • Louie A, Drusano GL, Banerjee P, et al. Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother. 1998;42(5):1105–1109. doi: 10.1128/AAC.42.5.1105
  • Andes D, van Ogtrop M. Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother. 1999;43(9):2116–2120. doi: 10.1128/AAC.43.9.2116
  • Pai MP, Turpin RS, Garey KW. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother. 2007;51(1):35–39. doi: 10.1128/AAC.00474-06
  • Boonstra JM, Märtson AG, Sandaradura I, et al. Optimization of fluconazole dosing for the prevention and treatment of invasive candidiasis based on the Pharmacokinetics of fluconazole in critically ill patients. Antimicrob Agents Chemother. 2021;65(3):65. doi: 10.1128/AAC.01554-20
  • EUCAST. European Committee on Antimicrobial Susceptibility Testing. Fluconazole: Rationale for the clinical breakpoints, version 3.0. 2020. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Fluconazole_RD_v3.0_final_18_02.pdf
  • Righi E, Carnelutti A, Baccarani U, et al. Treatment of Candida infections with fluconazole in adult liver transplant recipients: is TDM-guided dosing adaptation helpful? Transpl Infect Dis An Off J Transplant Soc. 2019;21(4):e13113. doi: 10.1111/tid.13113
  • Di Leo E, Nettis E, Priore MG, et al. Maculopapular rash due to fluconazole. Clin Exp Dermatol England. 2009;34(3):404. doi: 10.1111/j.1365-2230.2008.02895.x
  • Kyriakidis I, Tragiannidis A, Munchen S, et al. Clinical hepatotoxicity associated with antifungal agents. Expert Opin Drug Saf. 2017;16(2):149–165. doi: 10.1080/14740338.2017.1270264
  • Yüksekgönül A Ü, İ E, Karagöz T. Fluconazole-associated QT interval prolongation and Torsades de Pointes in a paediatric patient. Cardiol Young. 2021;31(12):2035–2037. doi: 10.1017/S1047951121001992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.