146
Views
1
CrossRef citations to date
0
Altmetric
Review

Integrating clinical pharmacology and artificial intelligence: potential benefits, challenges, and role of clinical pharmacologists

, ORCID Icon, &
Pages 381-391 | Received 27 Oct 2023, Accepted 08 Feb 2024, Published online: 15 Feb 2024

References

  • Aronson JK. A manifesto for clinical pharmacology from principles to practice. Br J Clin Pharmacol. 2010;70(1):3–13. doi: 10.1111/j.1365-2125.2010.03699.x PMID- 20642541.
  • EB S, Silva RJ. Chapter 83 - artificial intelligence in medical devices and clinical decision support systems. In: Iadanza E, editor. Clinical engineering handbook. 2nd ed. Academic Press; 2020. p. 556–568.
  • van der Lee M, Swen JJ. Artificial intelligence in pharmacology research and practice. Clin Transl Sci. 2023;16(1):31–36. doi: 10.1111/cts.13431 PMID- 36181380.
  • Fan K, Cheng L, Li L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Brief Bioinform. 2021;22(6). doi: 10.1093/bib/bbab271 PMID- 34347041.
  • Menden MP, Wang D, Mason MJ, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674. doi: 10.1038/s41467-019-09799-2 PMID- 31209238.
  • Tsigelny IF. Artificial intelligence in drug combination therapy. Brief Bioinform. 2019;20(4):1434–1448. doi: 10.1093/bib/bby004 PMID- 29438494.
  • Preuer K, Lewis RPI, Hochreiter S, et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018;34(9):1538–1546. doi: 10.1093/bioinformatics/btx806 PMID- 29253077.
  • Shortliffe E. Computer-based medical consultations: MYCIN: Elsevier; 1976 [cited 2023 Oct 23]. Available from: https://www.sciencedirect.com/book/9780444001795/computer-based-medical-consultations-mycin
  • Buchanan B, Shortliffe E. Rule-based expert system – the MYCIN experiments of the Stanford Heuristic Programming Project1984. [cited 2023 Oct 23]. Available from: https://www.shortliffe.net/Buchanan-Shortliffe-1984/Contents.pdf
  • Miller RA, Pople Jr HE, Myers JD. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–476. doi: 10.1056/nejm198208193070803 PMID- 7048091.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: 10.1038/nature14539 PMID- 26017442.
  • Voytovich L, Greenberg C. Natural language processing: practical applications in medicine and investigation of contextual autocomplete. Acta Neurochir Suppl. 2022;134:207–214. doi: 10.1007/978-3-030-85292-4_24 PMID- 34862544.
  • Reading Turchioe M, Volodarskiy A, Pathak J, et al. Systematic review of current natural language processing methods and applications in cardiology. Heart. 2022;108(12):909–916. doi: 10.1136/heartjnl-2021-319769 PMID- 34711662.
  • Zhou B, Yang G, Shi Z, et al. Natural language processing for smart healthcare. IEEE Rev Biomed Eng. 2022. doi: 10.1109/RBME.2022.3210270 PMID- 36170385.
  • Hou JK, Imler TD, Imperiale TF. Current and future applications of natural language processing in the field of digestive diseases. Clin Gastroenterol Hepatol. 2014;12(8):1257–1261. doi: 10.1016/j.cgh.2014.05.013 PMID- 24858706.
  • Habehh H, Gohel S. Machine learning in healthcare. Curr Genomics. 2021;22(4):291–300. doi: 10.2174/1389202922666210705124359 PMID- 35273459.
  • Pappada SM. Machine learning in medicine: it has arrived, let’s embrace it. J Card Surg. 2021;36(11):4121–4124. doi: 10.1111/jocs.15918 PMID- 34392567.
  • An Q, Rahman S, Zhou J, et al. A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sens (Basel). 2023;23(9). doi: 10.3390/s23094178 PMID- 37177382.
  • Yang S, Zhu F, Ling X, et al. Intelligent health care: applications of deep learning in computational medicine. Front Genet. 2021;12:607471. doi: 10.3389/fgene.2021.607471 PMID- 33912213.
  • Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–1246. doi: 10.1093/bib/bbx044 PMID- 28481991.
  • Purushotham S, Meng C, Che Z, et al. Benchmarking deep learning models on large healthcare datasets. J Biomed Inform. 2018;83:112–134. doi: 10.1016/j.jbi.2018.04.007 PMID- 29879470.
  • Coronato A, Naeem M, De Pietro G, et al. Reinforcement learning for intelligent healthcare applications: a survey. Artif Intell Med. 2020;109:101964. doi: 10.1016/j.artmed.2020.101964 PMID- 34756216.
  • Baucum M, Khojandi A, Vasudevan R. Improving deep reinforcement learning with transitional variational autoencoders: a healthcare application. IEEE J Biomed Health Inform. 2021;25(6):2273–2280. doi: 10.1109/JBHI.2020.3027443 PMID- 32991294.
  • Liu S, See KC, Ngiam KY, et al. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Inter Res. 2020;22(7):e18477. doi: 10.2196/18477 PMID- 32706670.
  • Datta S, Li Y, Ruppert MM, et al. Reinforcement learning in surgery. Surgery. 2021;170(1):329–332. doi: 10.1016/j.surg.2020.11.040 PMID- 33436272.
  • Rubinic I, Kurtov M, Rubinic I, et al. Artificial intelligence in clinical pharmacology: a case study and scoping review of large language models and bioweapon potential. Br J Clin Pharmacol. 2023; doi: 10.1111/bcp.15899 PMID- 37658550.
  • Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol Divers. 2022;26(3):1893–1913. doi: 10.1007/s11030-021-10326-z PMID- 34686947.
  • Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. doi: 10.1016/j.drudis.2020.10.010 PMID- 33099022.
  • Chaudhari R, Tan Z, Huang B, et al. Computational polypharmacology: a new paradigm for drug discovery. Expert Opin Drug Discov. 2017;12(3):279–291. doi: 10.1080/17460441.2017.1280024 PMID- 28067061.
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature21056 PMID- 28117445.
  • Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141):20170387. doi: 10.1098/rsif.2017.0387 PMID- 29618526.
  • Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981–983. doi: 10.1056/NEJMp1714229 PMID- 29539284.
  • Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97–113. doi: 10.1038/nrd.2017.232 PMID- 29242609.
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250. doi: 10.1016/j.drudis.2018.01.039 PMID- 29366762.
  • AstraZeneca x BenevolentAI Collaboration. 2023 [cited 2023 Oct 23]. Available from: https://www.benevolent.com/news-and-media/press-releases-and-in-media/benevolentai-achieves-further-milestones-ai-enabled-target-identification-collaboration-astrazeneca/
  • Smith DP, Oechsle O, Rawling MJ, et al. Expert-augmented computational drug repurposing identified baricitinib as a treatment for COVID-19. Front Pharmacol. 2021;12:709856. doi: 10.3389/fphar.2021.709856 PMID- 34393789.
  • Saber-Ayad M, Hammoudeh S, Abu-Gharbieh E, et al. Current status of baricitinib as a repurposed therapy for COVID-19. Pharmaceuticals (Basel). 2021;14(7). doi: 10.3390/ph14070680 PMID- 34358107.
  • Atomwise. 2023 [cited 2023 Sep 17]. Available from: https://www.atomwise.com/publications
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040. doi: 10.1038/s41587-019-0224-x PMID- 31477924.
  • Karlsson I, Bostrm H. Predicting Adverse Drug Events using Heterogeneous Event Sequences. 2016;356–362. doi: 10.1109/ICHI.2016.64
  • Jin B, Yang H, Xiao C, et al. Multitask dyadic prediction and its application in prediction of adverse drug-drug interaction. Proc AAAI Conf Artif Intell. 2017;31(1). doi: 10.1609/aaai.v31i1.10718
  • Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–1685. doi: 10.1016/j.drudis.2017.08.010 PMID- 31477924.
  • Zolnour A, Eldredge CE, Faiola A, et al. A risk identification model for detection of patients at risk of antidepressant discontinuation. Front Artif Intell. 2023;6:1229609. doi: 10.3389/frai.2023.1229609 PMID- 37693012.
  • Kibble M, Saarinen N, Tang J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–1266. doi: 10.1039/c5np00005j PMID- 26030402.
  • Melo MCR, Maasch JRMA, de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol. 2021;4(1):1050. doi: 10.1038/s42003-021-02586-0
  • Harrer S, Shah P, Antony B, et al. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci. 2019;40(8):577–591. doi: 10.1016/j.tips.2019.05.005 PMID- 31326235.
  • Study design and startup | saama - #1 in AI clinical analytics. 2023 [cited 2023 Jun 20]. Available from: https://www.saama.com/custom-solutions/clinical/study-design-and-startup
  • Accelerating clinical trial recruitment with artificial intelligence and natural language processing. 2023 [cited 2023 Aug 30]. Available from: https://deep6.ai/resources/livestream-accelerating-clinical-trial-recruitment-with-ai-and-nlp
  • Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1(1):18. doi: 10.1038/s41746-018-0029-1 PMID- 31304302.
  • Park JJH, Siden E, Zoratti MJ, et al. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials. 2019;20(1):572. doi: 10.1186/s13063-019-3664-1 PMID- 31533793.
  • Calaprice-Whitty D, Galil K, Salloum W, et al. Improving clinical trial participant prescreening with artificial intelligence (AI): a comparison of the results of AI-Assisted vs standard methods in 3 oncology trials. Ther Innov Regul Sci. 2020;54(1):69–74. doi: 10.1007/s43441-019-00030-4
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795. doi: 10.1056/NEJMp1500523 PMID- 25635347.
  • Hahn A, Frenck RW Jr, Zou Y, et al. Validation of a pediatric population pharmacokinetic model for vancomycin. Ther Drug Monit. 2015;37(3):413–416. doi: 10.1097/FTD.0000000000000153 PMID- 25423413.
  • Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–2826. doi: 10.1056/NEJMoa041588 PMID- 15591335.
  • Blasiak A, Truong A, Wen Jeit LT, et al. PRECISE CURATE.AI: a prospective feasibility trial to dynamically modulate personalized chemotherapy dose with artificial intelligence. J Clin Oncol. 2022;40(16_suppl):1574–1574.
  • Mukhopadhyay A, Sumner J, Ling LH, et al. Personalised dosing using the CURATE.AI algorithm: protocol for a feasibility study in patients with hypertension and type II diabetes mellitus. Int J Environ Res Public Health. 2022;19(15):8979. doi: 10.3390/ijerph19158979 PMID- 35897349.
  • van der Wouden CH, Cambon-Thomsen A, Cecchin E, et al. Implementing pharmacogenomics in Europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101(3):341–358. doi: 10.1002/cpt.602 PMID: 28027596.
  • Kirchheiner J, Roots I, Goldammer M, et al. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet. 2005;44(12):1209–1225. doi: 10.2165/00003088-200544120-00002 PMID- 16372821.
  • Aliper A, Kudrin R, Polykovskiy D, et al. Prediction of clinical trials outcomes based on target choice and clinical trial design with multi-modal artificial intelligence. Clin Pharmacol Ther. doi: 10.1002/cpt.3008
  • Tempus | AI-enabled precision medicine. 2023 [cited 2023 Oct 17]. Available from: https://www.tempus.com
  • Kuenzi BM, Park J, Fong SH, et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell. 2020;38(5):672–684 e6. doi: 10.1016/j.ccell.2020.09.014 PMID- 33096023.
  • Ahmad T, Lund LH, Rao P, et al. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018;7(8). doi: 10.1161/jaha.117.008081 PMID- 29650709.
  • Asadi H, Dowling R, Yan B, et al. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One. 2014;9(2):e88225. doi: 10.1371/journal.pone.0088225 PMID- 24520356.
  • Frizzell JD, Liang L, Schulte PJ, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol. 2017;2(2):204–209. doi: 10.1001/jamacardio.2016.3956 PMID- 27784047.
  • Bello B, Bundey YN, Bhave R, et al. Integrating AI/ML models for patient stratification leveraging omics dataset and clinical biomarkers from COVID-19 patients: a promising approach to personalized medicine. Int J Mol Sci. 2023;24(7):6250. doi: 10.3390/ijms24076250 PMID- 37047222.
  • Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–1021. doi: 10.1038/clpt.2012.50 PMID- 22549283.
  • Danysz K, Cicirello S, Mingle E, et al. Artificial intelligence and the future of the drug safety professional. Drug Saf. 2019;42(4):491–497. doi: 10.1007/s40264-018-0746-z PMCID: PMC6450851 PMID: 30343417.
  • Liang L, Hu J, Sun G, et al. Artificial intelligence-based pharmacovigilance in the setting of limited resources. Drug Saf. 2022;45(5):511–519. Epub 2022 May 17. doi: 10.1007/s40264-022-01170-7 PMCID: PMC9112260 PMID: 35579814.
  • Schmider J, Kumar K, LaForest C, et al. Innovation in pharmacovigilance: use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther. 2019;105(4):954–961. doi: 10.1002/cpt.1255 PMID- 30303528.
  • Wu HY, Chiang CW, Li L. Text mining for drug-drug interaction. Methods Mol Biol. 2014;1159:47–75. doi: 10.1007/978-1-4939-0709-0_4 PMID- 24788261.
  • Tanana M, Hallgren KA, Imel ZE, et al. A comparison of natural language processing methods for automated coding of motivational interviewing. J Subst Abuse Treat. 2016;65:43–50. doi: 10.1016/j.jsat.2016.01.006 PMID- 26944234.
  • Dang V, Wu E, Kortepeter CM, et al. Evaluation of a natural language processing tool for extracting gender, weight, ethnicity, and race in the US food and drug administration adverse event reporting system. Front Drug Saf Regul. 2022;2. doi: 10.3389/fdsfr.2022.1020943
  • Weissler EH, Naumann T, Andersson T, et al. The role of machine learning in clinical research: transforming the future of evidence generation. Trials. 2021 Aug 16;22(1):537. Erratum in: Trials. 2021 Sep 6;22(1):593. doi: 10.1186/s13063-021-05489-x PMID: 34399832; PMCID: PMC8365941.
  • Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–780. doi: 10.1016/j.drudis.2018.11.014 PMID- 30472429.
  • Chen Z, Liu X, Hogan W, et al. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2021;26(5):1256–1264. doi: 10.1016/j.drudis.2020.12.013 PMID- 33358699.
  • Healthcare Data, Technology and analytics | merative. 2023 [cited 2023 Aug 23]. Available from: https://www.merative.com
  • Abelson JS, Symer M, Peters A, et al. Mobile health apps and recovery after surgery: what are patients willing to do? Am J Surg. 2017;214(4):616–622. doi: 10.1016/j.amjsurg.2017.06.009 PMID- 28666581.
  • Meskó B, Drobni Z, Bényei É, et al. Digital health is a cultural transformation of traditional healthcare. Mhealth. 2017;3:38. doi: 10.21037/mhealth.2017.08.07 PMID- 29184890.
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7 PMID- 30617339.
  • Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37–43. doi: 10.1038/s41591-018-0272-7 PMID- 30617331.
  • Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J. 2017;38(23):1805–1814. doi: 10.1093/eurheartj/ehw302 PMID- 27436868.
  • Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86–93. doi: 10.1111/cts.12884 PMID- 32961010.
  • Luxton DD. Artificial intelligence in behavioral and mental health care; 2015 [cited 2024 Feb 12]. Available from: https://doi.org/10.1016/B978-0-12-420248-1.00001-5
  • Morley J, Floridi L, Kisey L, et al. From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Sci Eng Ethics. 2020;26(4):2141–2168. doi: 10.1007/s11948-019-00165-5 PMID- 31828533.
  • Mittelstadt B, Allo P, Taddeo M, et al. The ethics of algorithms: mapping the debate. Big Data Soc. 2016;3(2):205395171667967. In press. PMID article. doi: 10.1177/2053951716679679
  • Goodman KW, Berner ES, Dente MA, et al. Challenges in ethics, safety, best practices, and oversight regarding HIT vendors, their customers, and patients: a report of an AMIA special task force. J Am Med Inform Assoc. 2011;18(1):77–81. doi: 10.1136/jamia.2010.008946 PMID- 21075789.
  • O’Sullivan S, Nevejans N, Allen C, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot. 2019;15(1):e1968. doi: 10.1002/rcs.1968 PMID- 30397993.
  • Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2(1):69. doi: 10.1038/s41746-019-0148-3 PMID- 31372505.
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477. doi: 10.1038/s41573-019-0024-5 PMID: 30976107; PMCID: PMC6552674.
  • Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927. Erratum in: BMJ. 2020 Apr 1;369:m1312. doi: 10.1136/bmj.l6927 PMID: 32198138
  • Tobore I, Li J, Yuhang L, et al. Deep learning intervention for health care challenges: some biomedical domain considerations. JMIR Mhealth Uhealth. 2019;7(8):e11966. PMID- 31376272. doi: 10.2196/11966
  • Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–1930. doi: 10.1161/circulationaha.115.001593 PMID- 26572668.
  • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318(6):517–518. doi: 10.1001/jama.2017.7797 PMID- 28727867.
  • Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944. doi: 10.1371/journal.pone.0174944 PMID- 28376093.
  • Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–1219. doi: 10.1056/NEJMp1606181 PMID- 27682033.
  • Wiens J, Shenoy ES. Machine Learning for healthcare: on the verge of a Major Shift in Healthcare Epidemiology. Clin Infect Dis. 2018;66(1):149–153. doi: 10.1093/cid/cix731 PMID- 29020316.
  • Gianfrancesco MA, Tamang S, Yazdany J, et al. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018;178(11):1544–1547. doi: 10.1001/jamainternmed.2018.3763 PMID- 30128552.
  • Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Inter Res. 2016;18(12):e323. doi: 10.2196/jmir.5870 PMID- 27986644.
  • Holzinger A, Langs G, Denk H, et al. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312. doi: 10.1002/widm.1312 PMID- 32089788.
  • Gunning D, Stefik M, Choi J, et al. XAI-Explainable artificial intelligence. Sci Rob. 2019;4(37). 10.1126/scirobotics.aay7120 PMID- 33137719.
  • Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138–52160. doi: 10.1109/ACCESS.2018.2870052
  • Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–731. doi: 10.1038/s41551-018-0305-z PMID- 31015651.
  • Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: addressing ethical challenges. PLOS Med. 2018;15(11):e1002689. doi: 10.1371/journal.pmed.1002689 PMID- 30399149.
  • Panch T, Pearson-Stuttard J, Greaves F, et al. Artificial intelligence: opportunities and risks for public health. Lancet Digit Health. 2019;1(1):e13–e14. doi: 10.1016/s2589-7500(19)30002-0 PMID- 33323236.
  • Paranjape K, Schinkel M, Nannan Panday R, et al. Introducing artificial intelligence training in medical education. JMIR Med Educ. 2019;5(2):e16048. doi: 10.2196/16048 PMID- 31793895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.