1,033
Views
0
CrossRef citations to date
0
Altmetric
Review

Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives

, , , , , & show all
Pages 323-347 | Received 20 Nov 2023, Accepted 12 Feb 2024, Published online: 15 Mar 2024

References

  • Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–588. doi: 10.1038/s41575-020-0310-z
  • Surveillance, Epidemiology, and End Results (SEER), Program populations (1969-2020) National Cancer Institute, DCCPS, Surveillance Research program. Cancer of the liver and intrahepatic bile duct - Cancer stat facts [internet]. SEER. 2022 [cited 2023 Oct 30]. Available from: https://seer.cancer.gov/statfacts/html/livibd.html
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492
  • Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27. doi: 10.14740/wjon1166
  • Oh D-Y, Ruth HA, Qin S, et al. Durvalumab plus Gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. 2022;1:EVIDoa2200015.
  • Oh D-Y, He AR, Qin S, et al. 78P updated overall survival (OS) from the phase III TOPAZ-1 study of durvalumab (D) or placebo (PBO) plus gemcitabine and cisplatin (+ GC) in patients (pts) with advanced biliary tract cancer (BTC). Ann Oncol. 2022;33:S1462–S1463. doi: 10.1016/j.annonc.2022.10.114
  • Kelley RK, Ueno M, Yoo C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;401:1853–1865. doi: 10.1016/S0140-6736(23)00727-4
  • Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21:671–684.
  • Vogel A, Sahai V, Hollebecque A, et al. O-2 pemigatinib for previously treated locally advanced or metastatic cholangiocarcinoma: final results from FIGHT-202. Ann Oncol. 2022;33:S379. doi: 10.1016/j.annonc.2022.04.443
  • Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med. 2023;388:228–239. doi: 10.1056/NEJMoa2206834
  • Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021;6:803–815. doi: 10.1016/S2468-1253(21)00196-5
  • Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIdhy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21:796–807. doi: 10.1016/S1470-2045(20)30157-1
  • Harding JJ, Fan J, Oh D-Y, et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol. 2023;24:772–782. doi: 10.1016/S1470-2045(23)00242-5
  • Knox JJ, Lee CL, O’Kane G Targets and resistance mechanisms in biliary tract cancers. ASCO Dly News [Internet]. [cited 2023 Oct 5]. Available from: https://dailynews.ascopubs.org/do/10.1200/ADN.23.201274/full
  • Cho SM, Esmail A, Raza A, et al. Timeline of FDA-Approved targeted therapy for Cholangiocarcinoma. Cancers (Basel). 2022;14:2641. doi: 10.3390/cancers14112641
  • Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021;22:690–701. doi: 10.1016/S1470-2045(21)00027-9
  • Yoo C, Kim K, Jeong JH, et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol. 2021;22:1560–1572. doi: 10.1016/S1470-2045(21)00486-1
  • Vogel A, Wenzel P, Folprecht G, et al. 53MO nal-IRI and 5-FU/LV compared to 5-FU/LV in patients with cholangio- and gallbladder carcinoma previously treated with gemcitabine-based therapies (NALIRICC – AIO-HEP-0116). Ann Oncol. 2022;33:S563–S564. doi: 10.1016/j.annonc.2022.07.081
  • Ying J, Chen J. Combination versus mono-therapy as salvage treatment for advanced biliary tract cancer: a comprehensive meta-analysis of published data. Crit Rev Oncol Hematol. 2019;139:134–142. doi: 10.1016/j.critrevonc.2019.01.001
  • Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–1825.
  • Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med. 2013;369:1691–1703.
  • Wainberg ZA, Melisi D, Macarulla T, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet. 2023 [cited 2023 Oct 5]. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01366-1/fulltext
  • Portal A, Pernot S, Tougeron D, et al. Nab-paclitaxel plus gemcitabine for metastatic pancreatic adenocarcinoma after Folfirinox failure: an AGEO prospective multicentre cohort. Br J Cancer. 2015;113:989–995. doi: 10.1038/bjc.2015.328
  • Chung MJ, Kang H, Kim HG, et al. Multicenter phase II trial of modified FOLFIRINOX in gemcitabine-refractory pancreatic cancer. World J Gastrointest Oncol. 2018;10:505–515. doi: 10.4251/wjgo.v10.i12.505
  • Gill S, Ko Y-J, Cripps C, et al. PANCREOX: a randomized phase III study of Fluorouracil/Leucovorin with or without oxaliplatin for second-line advanced pancreatic cancer in patients who have received gemcitabine-based chemotherapy. J Clin Oncol. 2016;34:3914–3920. doi: 10.1200/JCO.2016.68.5776
  • Wang-Gillam A, Li C-P, Bodoky G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387:545–557. doi: 10.1016/S0140-6736(15)00986-1
  • Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–327. doi: 10.1056/NEJMoa1903387
  • Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–1966. doi: 10.1200/JCO.2006.07.9525
  • Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:271–282. doi: 10.1016/S1470-2045(19)30691-6
  • Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21:531–540. doi: 10.1016/S1470-2045(19)30856-3
  • Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in patients with noncolorectal high microsatellite Instability/Mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38:1–10. doi: 10.1200/JCO.19.02105
  • Leroux C, Konstantinidou G. Targeted therapies for pancreatic cancer: overview of current treatments and new opportunities for personalized oncology. Cancers (Basel). 2021;13:799. doi: 10.3390/cancers13040799
  • Zheng H-C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–59964. doi: 10.18632/oncotarget.19048
  • Wu C-E, Pan Y-R, Yeh C-N, et al. Targeting P53 as a future strategy to overcome gemcitabine resistance in biliary tract cancers. Biomolecules. 2020;10:1474. doi: 10.3390/biom10111474
  • Sanchon-Sanchez P, Briz O, Macias RIR, et al. Evaluation of potential targets to enhance the sensitivity of cholangiocarcinoma cells to anticancer drugs. Biomed Pharmacother Biomed Pharmacother. 2023;168:115658. doi: 10.1016/j.biopha.2023.115658
  • Zeekpudsa P, Kukongviriyapan V, Senggunprai L, et al. Suppression of NAD(P)H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents. J Exp Clin Cancer Res CR. 2014;33:11. doi: 10.1186/1756-9966-33-11
  • Tannapfel A, Sommerer F, Benicke M, et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003;52:706–712. doi: 10.1136/gut.52.5.706
  • Peng J, Fang S, Li M, et al. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci [Internet]. 2023;18 [cited 2023 Nov 15]. Available from: https://www.degruyter.com/document/doi/10.1515/biol-2022-0652/html
  • Buckarma EH, Werneburg NW, Conboy CB, et al. The YAP-interacting phosphatase SHP2 can regulate transcriptional coactivity and modulate sensitivity to chemotherapy in cholangiocarcinoma. Mol Cancer Res MCR. 2020;18:1574–1588. doi: 10.1158/1541-7786.MCR-20-0165
  • Abou-Alfa GK, Bibeau K, Schultz N, et al. Effect of FGFR2 alterations on overall and progression-free survival in patients receiving systemic therapy for Intrahepatic Cholangiocarcinoma. Target Oncol [Internet]. 2022 [cited 2022 Sep 21]; Available from];17(5):517–527. doi: 10.1007/s11523-022-00906-w
  • Brandi G, Deiana C, Galvani L, et al. Are FGFR and IDH1-2 alterations a positive prognostic factor in intrahepatic cholangiocarcinoma? An unresolved issue. Front Oncol. 2023;13:1137510. doi: 10.3389/fonc.2023.1137510
  • Kim H, Kim JY, Park KU. Clinical implications of BRCA mutations in advanced biliary tract cancer. Oncology. 2023;101:41–48. doi: 10.1159/000527525
  • Mao Y, Huang X, Shuang Z, et al. PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation. Cancer Med. 2018;7(4):1285–1296. doi: 10.1002/cam4.1318
  • Banales JM, Cardinale V, Carpino G, et al. Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–280. doi: 10.1038/nrgastro.2016.51
  • Yu Y, Zhang M, Wang N, et al. Epigenetic silencing of tumor suppressor gene CDKN1A by oncogenic long non-coding RNA SNHG1 in cholangiocarcinoma. Cell Death Dis. 2018;9:746. doi: 10.1038/s41419-018-0768-6
  • Sittithumcharee G, Suppramote O, Vaeteewoottacharn K, et al. Dependency of cholangiocarcinoma on cyclin D-Dependent kinase activity. Hepatology. 2019;70:1614–1630. doi: 10.1002/hep.30704
  • Puik JR, Meijer LL, Le Large TY, et al. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics. 2017;18:1343–1358. doi: 10.2217/pgs-2017-0010
  • Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130:2113–2129. doi: 10.1053/j.gastro.2006.02.057
  • Toyota Y, Iwama H, Kato K, et al. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth. Int J Oncol. 2015;47:1293–1302. doi: 10.3892/ijo.2015.3118
  • Carotenuto P, Hedayat S, Fassan M, et al. Modulation of biliary cancer chemo-resistance through MicroRNA-mediated rewiring of the expansion of CD133+ cells. Hepatology. 2020;72:982–996. doi: 10.1002/hep.31094
  • Toledo B, Picon-Ruiz M, Marchal JA, et al. Dual role of fibroblasts educated by tumour in cancer behavior and therapeutic perspectives. Int J Mol Sci. 2022;23:15576.
  • Fabris L, Sato K, Alpini G, et al. The tumor microenvironment in cholangiocarcinoma progression. Hepatology. 2021;73:75–85. doi: 10.1002/hep.31410
  • Obata T, Tsutsumi K, Ueta E, et al. MicroRNA-451a inhibits gemcitabine-refractory biliary tract cancer progression by suppressing the MIF-mediated PI3K/AKT pathway. Mol Ther Nucleic Acids. 2023;34:102054. doi: 10.1016/j.omtn.2023.102054
  • Yang C, Xu M, Shen H-J, et al. Potential biomarkers for sensitivity of gallbladder cancer cells to gemcitabine. Int J Clin Exp Pathol. 2014;7:521–528.
  • Okumura Y, Noda T, Eguchi H, et al. Hypoxia-induced PLOD2 is a key regulator in Epithelial-Mesenchymal transition and chemoresistance in biliary tract cancer. Ann Surg Oncol. 2018;25:3728–3737. doi: 10.1245/s10434-018-6670-8
  • Wang S, Zheng Y, Yang F, et al. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther. 2021;6:1–23. doi: 10.1038/s41392-021-00659-4
  • Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, et al. Pancreatic cancer: advances and challenges. Cell. 2023;186:1729–1754. doi: 10.1016/j.cell.2023.02.014
  • Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12:319–334. doi: 10.1038/nrclinonc.2015.53
  • Fedele C, Ran H, Diskin B, et al. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov. 2018;8:1237–1249. doi: 10.1158/2159-8290.CD-18-0444
  • Ardalan B, Azqueta JI, England J, et al. Potential benefit of treatment with MEK inhibitors and chemotherapy in BRAF-mutated KRAS wild-type pancreatic ductal adenocarcinoma patients: a case report. Mol Case Stud. 2021;7:a006108. doi: 10.1101/mcs.a006108
  • Strickler JH, Satake H, George TJ, et al. Sotorasib in KRAS p.G12C–mutated advanced pancreatic cancer. N Engl J Med. 2023;388:33–43. doi: 10.1056/NEJMoa2208470
  • Pan M, Jiang C, Zhang Z, et al. TP53 gain-of-function and non–gain-of-Function mutations are associated with differential prognosis in advanced pancreatic ductal adenocarcinoma. JCO Precis Oncol. 2023;e2200570. doi: 10.1200/PO.22.00570
  • Rosen MN, Goodwin RA, Vickers MM. BRCA mutated pancreatic cancer: a change is coming. World J Gastroenterol. 2021;27:1943–1958. doi: 10.3748/wjg.v27.i17.1943
  • Wong W, Raufi AG, Safyan RA, et al. BRCA mutations in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020;12:2731–2742. doi: 10.2147/CMAR.S211151
  • Chen C-C, Kass EM, Yen W-F, et al. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc Natl Acad Sci, USA. 2017;114(29):7665–7670. doi: 10.1073/pnas.1706392114
  • Shoucair S, Baker AR, Yu J. Germline variants in DNA damage repair genes: an emerging role in the era of precision medicine in pancreatic adenocarcinoma. Ann Gastroenterol Surg. 2022;6(1):7–16. doi: 10.1002/ags3.12514
  • Blair AB, Groot VP, Gemenetzis G, et al. BRCA1/BRCA2Germline mutation carriers and sporadic pancreatic ductal adenocarcinoma. J Am Coll Surg. 2018;226(4):630. doi: 10.1016/j.jamcollsurg.2017.12.021
  • Park W, Chen J, Chou JF, et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clin Cancer Res. 2020;26(13):3239–3247. doi: 10.1158/1078-0432.CCR-20-0418
  • O’Reilly EM, Lee JW, Zalupski M, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a Germline BRCA/PALB2 Mutation. J Clin Oncol. 2020;38:1378–1388. doi: 10.1200/JCO.19.02931
  • Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8:a019505. doi: 10.1101/cshperspect.a019505
  • Wang SS, Xu J, Ji KY, et al. Epigenetic alterations in pancreatic cancer metastasis. Biomolecules. 2021;11:1082. doi: 10.3390/biom11081082
  • Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell. 2004;117:721–733. doi: 10.1016/j.cell.2004.05.023
  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRnas. Nat Struct Mol Biol. 2006;13:1097–1101. doi: 10.1038/nsmb1167
  • Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRnas: how many mechanisms? Trends Cell Biol. 2007;17(3):118–126. doi: 10.1016/j.tcb.2006.12.007
  • Hong TH, Park IY. MicroRNA expression profiling of diagnostic needle aspirates from surgical pancreatic cancer specimens. Ann Surg Treat Res. 2014;87:290–297. doi: 10.4174/astr.2014.87.6.290
  • Hampton T. MicroRNAs linked to pancreatic cancer. JAMA. 2007;297:937.
  • Ali A, Jamieson NB, Khan IN, et al. Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. Am J Cancer Res. 2022;12:5668–5683.
  • Frampton AE, Castellano L, Colombo T, et al. Integrated molecular analysis to investigate the role of microRnas in pancreatic tumour growth and progression. Lancet Lond Engl. 2015;385(Suppl 1):S37. doi: 10.1016/S0140-6736(15)60352-X
  • Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–4538. doi: 10.1158/0008-5472.CAN-09-4467
  • Vahabi M, Dehni B, Antomás I, et al. Targeting miRNA and using miRNA as potential therapeutic options to bypass resistance in pancreatic ductal adenocarcinoma. Cancer Metastasis Rev. 2023;42:725–740. doi: 10.1007/s10555-023-10127-w
  • Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412. doi: 10.1146/annurev-pathol-020117-043854
  • El Amrani M, Corfiotti F, Corvaisier M, et al. Gemcitabine-induced epithelial-mesenchymal transition-like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal-like phenotype. Mol Carcinog. 2019;58:1985–1997. doi: 10.1002/mc.23090
  • Kuwada K, Kagawa S, Yoshida R, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37:307. doi: 10.1186/s13046-018-0981-2
  • Hwang JS, Lai TH, Ahmed M, et al. Regulation of TGF-β1-induced EMT by autophagy-dependent energy metabolism in cancer cells. Cancers (Basel). 2022;14:4845. doi: 10.3390/cancers14194845
  • Izumchenko E, Chang X, Michailidi C, et al. The TGFβ–miR200–MIG6 pathway orchestrates the EMT-Associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res. 2014;74:3995–4005. doi: 10.1158/0008-5472.CAN-14-0110
  • Sanomachi T, Suzuki S, Togashi K, et al. Brexpiprazole reduces survivin and reverses EGFR tyrosine kinase inhibitor resistance in lung and pancreatic cancer. Anticancer Res. 2019;39:4817–4828. doi: 10.21873/anticanres.13667
  • Zhao X, Yang Y, Yu H, et al. Polydatin inhibits ZEB1-invoked epithelial-mesenchymal transition in fructose-induced liver fibrosis. J Cell Mol Med. 2020;24:13208–13222. doi: 10.1111/jcmm.15933
  • Melchionna R, Iapicca P, Di Modugno F, et al. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556. doi: 10.1080/2162402X.2016.1221556
  • Randazzo O, Papini F, Mantini G, et al. “Open Sesame?”: biomarker status of the human equilibrative nucleoside transporter-1 and molecular mechanisms influencing its expression and activity in the uptake and cytotoxicity of gemcitabine in pancreatic cancer. Cancers (Basel). 2020;12:3206. doi: 10.3390/cancers12113206
  • Toledo B, González-Titos A, Hernández-Camarero P, et al. A Brief Review on chemoresistance; targeting cancer stem cells as an alternative approach. Int J Mol Sci. 2023;24:4487. doi: 10.3390/ijms24054487
  • Wang C, Lin W, Playa H, et al. Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol. 2013;86:1531–1540. doi: 10.1016/j.bcp.2013.08.063
  • Farrell JJ, Elsaleh H, Garcia M, et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 2009;136:187–195. doi: 10.1053/j.gastro.2008.09.067
  • Greenhalf W, Ghaneh P, Neoptolemos JP, et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. JNCI J Natl Cancer Inst. 2014;106:djt347. doi: 10.1093/jnci/djt347
  • Hioki M, Shimada T, Yuan T, et al. Contribution of equilibrative nucleoside transporters 1 and 2 to gemcitabine uptake in pancreatic cancer cells. Biopharm Drug Dispos. 2018;39:256–264. doi: 10.1002/bdd.2131
  • Paproski RJ, Young JD, Cass CE. Predicting gemcitabine transport and toxicity in human pancreatic cancer cell lines with the positron emission tomography tracer 3′-deoxy-3′-fluorothymidine. Biochem Pharmacol. 2010;79:587–595. doi: 10.1016/j.bcp.2009.09.025
  • Lockhart AC, Tirona RG, Kim RB. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther. 2003;2:685–698.
  • Mathijssen RHJ, Marsh S, Karlsson MO, et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9:3246–3253.
  • Chen M, Xue X, Wang F, et al. Expression and promoter methylation analysis of ATP-binding cassette genes in pancreatic cancer. Oncol Rep. 2012;27:265–269. doi: 10.3892/or.2011.1475
  • Yao L, Gu J, Mao Y, et al. Dynamic quantitative detection of ABC transporter family promoter methylation by MS‑HRM for predicting MDR in pancreatic cancer. Oncol Lett. 2018;15:5602–5610. doi: 10.3892/ol.2018.8041
  • Yada E, Kasajima R, Niida A, et al. Possible role of cytochrome P450 1B1 in the mechanism of gemcitabine resistance in pancreatic cancer. Biomedicines. 2021;9:1396. doi: 10.3390/biomedicines9101396
  • Leskelä S, Jara C, Leandro-García LJ, et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J. 2011;11:121–129. doi: 10.1038/tpj.2010.13
  • Bergonzini C, Gregori A, Hagens TMS, et al. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells [internet].bioRxiv; 2023 [cited 2024 Jan 26]. p. 2023.05.30.542412. Available from: https://www.biorxiv.org/content/10.1101/2023.05.30.542412v1
  • Neuzillet C, Tijeras-Raballand A, Cros J, et al. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev. 2013;32:585–602. doi: 10.1007/s10555-013-9439-3
  • Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab-Paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29(34):4548–4554. doi: 10.1200/JCO.2011.36.5742
  • Tuveson DA Data from nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse Model of pancreatic cancer. 2023 [cited 2023 Nov 15]. Available from: https://aacr.figshare.com/collections/Data_from_i_nab_i_-Paclitaxel_Potentiates_Gemcitabine_Activity_by_Reducing_Cytidine_Deaminase_Levels_in_a_Mouse_Model_of_Pancreatic_Cancer/6546821
  • Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019;18:14. doi: 10.1186/s12943-018-0927-5
  • Liot S, Balas J, Aubert A, et al. Stroma involvement in pancreatic ductal adenocarcinoma: an overview focusing on extracellular matrix proteins. Front Immunol. 2021;12 [cited 2023 Nov 15]. [Internet] Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.612271
  • Liang C, Shi S, Meng Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med. 2017;49:e406. doi: 10.1038/emm.2017.255
  • Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–747. doi: 10.1016/j.ccr.2014.04.021
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013
  • Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–1437. doi: 10.1038/nm.3394
  • Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64:1476–1484. doi: 10.1136/gutjnl-2015-309304
  • Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: impact of altered energy metabolism. Crit Rev Oncol Hematol. 2017;114:139–152. doi: 10.1016/j.critrevonc.2017.03.026
  • Poklepovic AS, Fields EC, Bandyopadhyay D, et al. A phase 1 study of neoadjuvant chemotherapy followed by concurrent chemoradiation with gemcitabine, sorafenib, and vorinostat in pancreatic cancer. J Clin Oncol. 2021;39:e16268–e16268. doi: 10.1200/JCO.2021.39.15_suppl.e16268
  • Algaze S, Hanna DL, Azad NS, et al. A phase Ib study of guadecitabine and durvalumab in patients with advanced hepatocellular carcinoma, pancreatic adenocarcinoma, and biliary cancers. J Clin Oncol. 2022;40:574–574. doi: 10.1200/JCO.2022.40.4_suppl.574
  • Barbato A, Piscopo F, Salati M, et al. Micro-RNA in cholangiocarcinoma: implications for diagnosis, prognosis, and therapy. J Mol Pathol. 2022;3:88–103. doi: 10.3390/jmp3020009
  • Xie Y, Wang Y, Li J, et al. Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Theranostics. 2018;8:4305. doi: 10.7150/thno.26506
  • Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35:180–188. doi: 10.1007/s10637-016-0407-y
  • Yen W-C, Fischer MM, Axelrod F, et al. Targeting notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21:2084–2095. doi: 10.1158/1078-0432.CCR-14-2808
  • O’Reilly EM, Sahai V, Bendell JC, et al. Results of a randomized phase II trial of an anti-notch 2/3, tarextumab (OMP-59R5, TRXT, anti-Notch2/3), in combination with nab-paclitaxel and gemcitabine (nab-P+Gem) in patients (pts) with untreated metastatic pancreatic cancer (mPC). J Clin Oncol. 2017;35:279–279. doi: 10.1200/JCO.2017.35.4_suppl.279
  • Cook N, Basu B, Smith D-M, et al. A phase I trial of the ɣ-secretase inhibitor (GSI) MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2014;32:4116–4116. doi: 10.1200/jco.2014.32.15_suppl.4116
  • Gulla A, Andriusaityte U, Zdanys GT, et al. The impact of epithelial–mesenchymal transition and metformin on pancreatic cancer chemoresistance: a pathway towards individualized therapy. Medicina (Mex). 2022;58:467. doi: 10.3390/medicina58040467
  • Glabman RA, Choyke PL, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy. Cancers (Basel). 2022;14:3906. doi: 10.3390/cancers14163906
  • Albrengues J, Bertero T, Grasset E, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun. 2015;6:10204. doi: 10.1038/ncomms10204
  • Gailhouste L, Liew LC, Hatada I, et al. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis. 2018;9:1–12. doi: 10.1038/s41419-018-0487-z
  • Safyan RA, Manji GA, Lee SM, et al. Phase 2 study of azacitidine (AZA) plus pembrolizumab (pembro) as second-line treatment in patients with advanced pancreatic ductal adenocarcinoma. J Clin Oncol. 2022;40:4158–4158. doi: 10.1200/JCO.2022.40.16_suppl.4158
  • Jimeno A, Weiss GJ, Miller WH, et al. Phase I study of the hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19:2766–2774. doi: 10.1158/1078-0432.CCR-12-3654
  • Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase II study of PEGPH20 plus nab-Paclitaxel/Gemcitabine versus nab-Paclitaxel/Gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clin Oncol. 2018;36:359–366. doi: 10.1200/JCO.2017.74.9564
  • Ramanathan RK, McDonough SL, Philip PA, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 2019;37:1062–1069. doi: 10.1200/JCO.18.01295
  • Hurwitz HI, Uppal N, Wagner SA, et al. Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J Clin Oncol. 2015;33:4039–4047. doi: 10.1200/JCO.2015.61.4578
  • Hurwitz H, Van Cutsem E, Bendell JC, et al. Two randomized, placebo-controlled phase 3 studies of ruxolitinib (rux) + capecitabine (C) in patients (pts) with advanced/metastatic pancreatic cancer (mPC) after failure/intolerance of first-line chemotherapy: JANUS 1 (J1) and JANUS 2 (J2). J Clin Oncol. 2017;35:343–343. doi: 10.1200/JCO.2017.35.4_suppl.343
  • Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–1281. doi: 10.1056/NEJMoa0908721
  • Shroff RT, Javle MM, Xiao L, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 2019;5:824–830. doi: 10.1001/jamaoncol.2019.0270
  • SWOG Cancer Research Network. A phase III randomized trial of Gemcitabine, cisplatin, and nab-paclitaxel versus Gemcitabine and cisplatin in newly diagnosed, advanced biliary tract cancers [Internet]. Report No.: NCT03768414. clinicaltrials.gov; 2023 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT03768414
  • Lopes LF, Bacchi CE. Imatinib treatment for gastrointestinal stromal tumour (GIST). J Cell Mol Med. 2010;14:42–50. doi: 10.1111/j.1582-4934.2009.00983.x
  • Soria J-C, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med. 2018;378:113–125. doi: 10.1056/NEJMoa1713137
  • Sabnis AJ, Bivona TG. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol Med. 2019;25:185–197. doi: 10.1016/j.molmed.2018.12.009
  • Yun C-H, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci. 2008;105:2070–2075. doi: 10.1073/pnas.0709662105
  • Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480:387–390. doi: 10.1038/nature10662
  • Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–880. doi: 10.1126/science.1062538
  • Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–977. doi: 10.1038/nature09626
  • Coleman N, Hong L, Zhang J, et al. Beyond epidermal growth factor receptor: MET amplification as a general resistance driver to targeted therapy in oncogene-driven non-small-cell lung cancer. ESMO Open. 2021;6:100319. doi: 10.1016/j.esmoop.2021.100319
  • De Las Rivas J, Brozovic A, Izraely S, et al. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol. 2021;95:2279–2297. doi: 10.1007/s00204-021-03063-7
  • Yin X, Li Y, Wang H, et al. Small cell lung cancer transformation: From pathogenesis to treatment. Semin Cancer Biol. 2022;86:595–606. doi: 10.1016/j.semcancer.2022.03.006
  • Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–352. doi: 10.1038/s41580-020-0237-9
  • Varghese AM, Patel JAA, Janjigian YY, et al. Non-invasive detection of acquired resistance to FGFR inhibition in patients with cholangiocarcinoma harboring FGFR2 alterations. JCO. 2019;37(15_suppl):4096–4096. doi: 10.1200/JCO.2019.37.15_suppl.4096
  • Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion–positive cholangiocarcinoma. Cancer Discov. 2017;7:252–263. doi: 10.1158/2159-8290.CD-16-1000
  • Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov. 2021;11:326–339. doi: 10.1158/2159-8290.CD-20-0766
  • Lubner SJ, Mahoney MR, Kolesar JL, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II consortium study. J Clin Oncol. 2010;28:3491–3497. doi: 10.1200/JCO.2010.28.4075
  • Wu Q, Zhen Y, Shi L, et al. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion–positive cholangiocarcinoma. Cancer Discov. 2022;12:1378–1395. doi: 10.1158/2159-8290.CD-21-1168
  • Krook MA, Lenyo A, Wilberding M, et al. Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma. Mol Cancer Ther. 2020;19:847–857. doi: 10.1158/1535-7163.MCT-19-0631
  • Vaquero J, Guedj N, Clapéron A, et al. Epithelial-mesenchymal transition in cholangiocarcinoma: from clinical evidence to regulatory networks. J Hepatol. 2017;66:424–441. doi: 10.1016/j.jhep.2016.09.010
  • Vaquero J, Lobe C, Tahraoui S, et al. The IGF2/IR/IGF1R Pathway in tumor Cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2018;24:4282–4296. doi: 10.1158/1078-0432.CCR-17-3725
  • Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2023;21(1):7–24. doi: 10.1038/s41575-023-00840-w
  • Gurreri E, Genovese G, Perelli L, et al. KRAS-Dependency in pancreatic ductal adenocarcinoma: mechanisms of escaping in resistance to KRAS inhibitors and perspectives of therapy. Int J Mol Sci. 2023;24:9313.
  • Qin S, Bai Y, Wang Z, et al. Nimotuzumab combined with gemcitabine versus gemcitabine in K-RAS wild-type locally advanced or metastatic pancreatic cancer: a prospective, randomized-controlled, double-blinded, multicenter, and phase III clinical trial. J Clin Oncol. 2022;40:LBA4011–LBA4011. doi: 10.1200/JCO.2022.40.17_suppl.LBA4011
  • Qian Y, Gong Y, Fan Z, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol OncolJ Hematol Oncol. 2020;13:130. doi: 10.1186/s13045-020-00958-3
  • Gout J, Perkhofer L, Morawe M, et al. Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut. 2021;70:743–760. doi: 10.1136/gutjnl-2019-319970
  • Ettrich TJ, Schwerdel D, Dolnik A, et al. Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information. Sci Rep. 2019;9:13261. doi: 10.1038/s41598-019-49860-0
  • Luchini C, Veronese N, Nottegar A, et al. Liquid biopsy as surrogate for tissue for molecular profiling in pancreatic cancer: a meta-analysis towards precision medicine. Cancers (Basel). 2019;11:1152. doi: 10.3390/cancers11081152
  • Gray JE, Okamoto I, Sriuranpong V, et al. Tissue and plasma EGFR mutation analysis in the FLAURA Trial: osimertinib versus Comparator EGFR Tyrosine Kinase Inhibitor as first-line treatment in patients with EGFR-Mutated advanced non–small cell lung cancer. Clin Cancer Res. 2019;25:6644–6652. doi: 10.1158/1078-0432.CCR-19-1126
  • Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion–positive Intrahepatic cholangiocarcinoma. Cancer Discov. 2019;9:1064–1079. doi: 10.1158/2159-8290.CD-19-0182
  • Pant S, Schuler MH, Iyer G, et al. Efficacy and safety of erdafitinib in adults with cholangiocarcinoma (CCA) with prespecified fibroblast growth factor receptor alterations (FGFRalt) in the phase 2 open-label, single-arm RAGNAR trial: expansion cohort results. J Clin Oncol. 2023;41:610–610. doi: 10.1200/JCO.2023.41.4_suppl.610
  • Javle MM, Fountzilas C, Li D, et al. Phase II study of FGFR1-3 inhibitor tinengotinib as monotherapy in patients with advanced or metastatic cholangiocarcinoma: Interim analysis. J Clin Oncol. 2023;41:539–539. doi: 10.1200/JCO.2023.41.4_suppl.539
  • Wang X, Allen S, Blake JF, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J Med Chem. 2022;65:3123–3133. doi: 10.1021/acs.jmedchem.1c01688
  • Mirati Therapeutics Inc. A phase 1/2 multiple expansion cohort trial of MRTX1133 in patients with advanced solid tumors harboring a KRAS G12D mutation [internet]. Report No.: NCT05737706. clinicaltrials.gov; 2023 [cited 2023 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05737706
  • Hofmann MH, Gmachl M, Ramharter J, et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-Driven cancers through combined MEK inhibition. Cancer Discov. 2021;11:142–157. doi: 10.1158/2159-8290.CD-20-0142
  • Revolution medicines, Inc. A multicenter open-label study of RMC-6236 in patients with advanced solid tumors harboring specific mutations in RAS [internet]. Report No.: NCT05379985. clinicaltrials.gov; 2023 [cited 2023 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05379985
  • Revolution Medicines, Inc. Phase 1/1b, multicenter, open-label, dose escalation and dose expansion study of RMC-6291 monotherapy in subjects with advanced KRASG12C mutant solid tumors [Internet]. Report No.: NCT05462717. clinicaltrials.gov; 2023 [cited 2023Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05462717
  • Brana I, Shapiro G, Johnson ML, et al. Initial results from a dose finding study of TNO155, a SHP2 inhibitor, in adults with advanced solid tumors. J Clin Oncol. 2021;39:3005–3005. doi: 10.1200/JCO.2021.39.15_suppl.3005
  • Krishnan T, Roberts-Thomson R, Broadbridge V, et al. Targeting mutated KRAS genes to treat solid tumours. Mol Diagn Ther. 2022;26:39–49. doi: 10.1007/s40291-021-00564-0
  • Wallez Y, Dunlop CR, Johnson TI, et al. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression. Mol Cancer Ther. 2018;17:1670–1682. doi: 10.1158/1535-7163.MCT-18-0010
  • Prevo R, Fokas E, Reaper PM, et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther. 2012;13:1072–1081. doi: 10.4161/cbt.21093
  • Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–451. doi: 10.1016/S0140-6736(15)60898-4
  • Brown WS, McDonald PC, Nemirovsky O, et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by Co-targeting mTORC1/2 complexes in pancreatic cancer. Cell Rep Med [Internet]. 2020;1 [cited 2023 Oct 16]. Available from: https://www.cell.com/cell-reports-medicine/abstract/S2666-3791(20)30173-7
  • Bannoura SF, Uddin M, Nagasaka M, et al. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev. 2021;40:819–835. doi: 10.1007/s10555-021-09990-2
  • LoRusso P, Fakih M, FYFLD V, et al. 561P phase ib study of ribociclib (R) + trametinib (T) in patients (pts) with metastatic/advanced solid tumours. Ann Oncol. 2020;31:S484. doi: 10.1016/j.annonc.2020.08.675
  • Wang J, Zhao J, Zhong J, et al. 653O glecirasib (KRAS G12C inhibitor) in combination with JAB-3312 (SHP2 inhibitor) in patients with KRAS p.G12C mutated solid tumors. Ann Oncol. 2023;34:S459. doi: 10.1016/j.annonc.2023.09.1839
  • BU C, ZHAO L, WANG L, et al. mTORC2 promotes pancreatic cancer progression and parp inhibitor resistance. Oncol Res. 31:495–503. doi: 10.32604/or.2023.029309
  • Rose M, Burgess JT, O’Byrne K, et al. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. doi: 10.3389/fcell.2020.564601
  • Revythis A, Limbu A, Mikropoulos C, et al. Recent insights into PARP and immuno-checkpoint inhibitors in Epithelial ovarian cancer. Int J Environ Res Public Health. 2022;19:8577. doi: 10.3390/ijerph19148577
  • Reiss KA, Mick R, Teitelbaum U, et al. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. 2022;23:1009–1020. doi: 10.1016/S1470-2045(22)00369-2
  • Corrie PG. A phase II study combining pembrolizumab with olaparib in metastatic pancreatic adenocarcinoma (PDA) patients with high Tumour Mutation Burden [internet]. Report No.: NCT05093231. clinicaltrials.gov; 2021 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05093231
  • National Cancer Institute (NCI). Randomized phase II clinical trial of olaparib + pembrolizumab vs. Olaparib alone as maintenance therapy in metastatic pancreatic cancer patients with germline BRCA1 or BRCA2 mutations [internet]. Report No.: NCT04548752. clinicaltrials.gov; 2024 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT04548752
  • Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. Multi-agent Low Dose Chemotherapy (gemcitabine, Nab-paclitaxel, capecitabine, cisplatin, Irinotecan) followed by maintenance olaparib and Pembrolizumab in untreated metastatic pancreatic ductal adenocarcinoma [internet]. Report No.: NCT04753879. clinicaltrials.gov; 2023 [cited 2023 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT04753879
  • Mayo Clinic. Phase II study of Niraparib and TSR-042 in Patients with Germline or Somatic BRCA1/2 and PALB2-Related pancreatic cancer [internet]. Report No.: NCT04493060. clinicaltrials.gov; 2023 [cited 2023 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT04493060
  • Servier Bio-Innovation LLC. A phase 1/2, Safety Lead-in and dose expansion, open-label, multicenter trial investigating the Safety, tolerability, and preliminary activity of Ivosidenib in combination with nivolumab and Ipilimumab in Previously treated subjects with nonresectable or metastatic cholangiocarcinoma with an IDH1 Mutation [internet]. Report No.: NCT05921760.clinicaltrials.gov; 2023 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05921760
  • University Health Network, Toronto. A phase II study of Olaparib and durvalumab (MEDI 4736) in patients with IDH-Mutated solid tumors [internet]. Report No.: NCT03991832. clinicaltrials.gov; 2023 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT03991832
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060
  • Said SS, Ibrahim WN. Cancer resistance to immunotherapy: comprehensive insights with future perspectives. Pharmaceutics. 2023;15:1143. doi: 10.3390/pharmaceutics15041143
  • Schmiechen ZC, Stromnes IM. Mechanisms governing immunotherapy resistance in pancreatic ductal adenocarcinoma. Front Immunol [Internet]. 2021 [cited 2023 Oct 20];11. doi: 10.3389/fimmu.2020.613815
  • Yoon JH, Jung Y-J, Moon S-H. Immunotherapy for pancreatic cancer. World J Clin Cases. 2021;9:2969–2982. doi: 10.12998/wjcc.v9.i13.2969
  • Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–1010. doi: 10.1038/ng.3375
  • Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology. 2020;72:965. doi: 10.1002/hep.31092
  • Lo JH, Agarwal R, Goff LW, et al. Immunotherapy in biliary tract cancers: current standard-of-care and emerging strategies. Cancers (Basel). 2023;15:3312. doi: 10.3390/cancers15133312
  • Goeppert B, Frauenschuh L, Zucknick M, et al. Major histocompatibility complex class I expression impacts on patient survival and type and density of immune cells in biliary tract cancer. Br J Cancer. 2015;113:1343–1349. doi: 10.1038/bjc.2015.337
  • Amankulor NM, Kim Y, Arora S, et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 2017;31:774–786. doi: 10.1101/gad.294991.116
  • Ruan R, Li L, Li X, et al. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer. 2023;22:60. doi: 10.1186/s12943-023-01761-7
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733
  • Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev. 2021;40:837–862. doi: 10.1007/s10555-021-09981-3
  • Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:4266–4276. doi: 10.1158/1078-0432.CCR-11-3114
  • Knudsen ES, Vail P, Balaji U, et al. Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunological markers. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:4429. doi: 10.1158/1078-0432.CCR-17-0162
  • Piha-Paul SA, Oh D-Y, Ueno M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer. 2020;147:2190–2198. doi: 10.1002/ijc.33013
  • Kim RD, Chung V, Alese OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 2020;6:888–894. doi: 10.1001/jamaoncol.2020.0930
  • Terrero G, Datta J, Dennison J, et al. Ipilimumab/Nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 2022;8:938–940. doi: 10.1001/jamaoncol.2022.0611
  • Klein O, Kee D, Nagrial A, et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 2020;6:1405–1409. doi: 10.1001/jamaoncol.2020.2814
  • Doki Y, Ueno M, Hsu C-H, et al. Tolerability and efficacy of durvalumab, either as monotherapy or in combination with tremelimumab, in patients from Asia with advanced biliary tract, esophageal, or head-and-neck cancer. Cancer Med. 2022;11:2550–2560. doi: 10.1002/cam4.4593
  • Lin J, Yang X, Long J, et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma. Hepatobiliary Surg Nutr. 2020;9:41424–41424. doi: 10.21037/hbsn-20-338
  • Cousin S, Cantarel C, Guegan J-P, et al. Regorafenib–avelumab combination in patients with biliary tract cancer (REGOMUNE): a single-arm, open-label, phase II trial. Eur J Cancer. 2022;162:161–169. doi: 10.1016/j.ejca.2021.11.012
  • Shi G-M, Huang X-Y, Wu D, et al. Toripalimab combined with lenvatinib and GEMOX is a promising regimen as first-line treatment for advanced intrahepatic cholangiocarcinoma: a single-center, single-arm, phase 2 study. Signal Transduct Target Ther. 2023;8:1–10. doi: 10.1038/s41392-023-01317-7
  • Guo Y, Feng K, Liu Y, et al. Phase I study of Chimeric Antigen Receptor–modified T cells in patients with EGFR-Positive advanced biliary tract cancers. Clin Cancer Res. 2018;24:1277–1286. doi: 10.1158/1078-0432.CCR-17-0432
  • Koido S, Homma S, Okamoto M, et al. Chemoimmunotherapy targeting Wilms’ tumor 1 (WT1)-specific cytotoxic T lymphocyte and helper T cell responses for patients with pancreatic cancer. Oncoimmunology. 2014;3:e958950. doi: 10.4161/21624011.2014.958950
  • Wang-Gillam A, Plambeck-Suess S, Goedegebuure P, et al. A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Invest New Drugs. 2013;31:707–713. doi: 10.1007/s10637-012-9866-y
  • Bahary N, Wang-Gillam A, Haraldsdottir S, et al. Phase 2 trial of the IDO pathway inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of patients with metastatic pancreas cancer. J Clin Oncol. 2018;36:4015–4015. doi: 10.1200/JCO.2018.36.15_suppl.4015
  • Marin-Acevedo JA, Dholaria B, Soyano AE, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol OncolJ Hematol Oncol. 2018;11:39. doi: 10.1186/s13045-018-0582-8
  • Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–150. doi: 10.1038/s41586-023-06063-y
  • Feng Q, Sun B, Xue T, et al. Advances in CAR T-cell therapy in bile duct, pancreatic, and gastric cancers. Front Immunol. 2022;13 [cited 2023 Oct 20]. [Internet] Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1025608
  • Leem G, Jang S-I, Cho J-H, et al. Safety and efficacy of allogeneic natural killer cells in combination with pembrolizumab in patients with chemotherapy-refractory biliary tract cancer: a multicenter open-label phase 1/2a trial. Cancers (Basel). 2022;14:4229. doi: 10.3390/cancers14174229
  • Elrakaybi A, Ruess DA, Lübbert M, et al. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel). 2022;14:5926. doi: 10.3390/cancers14235926
  • Wang L Capecitabine combined with lenvatinib and Tislelizumab as adjuvant treatment after resection in patients with biliary tract cancer: a single-arm, phase II study [internet]. Report No.: NCT05254847. clinicaltrials.gov; 2022 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05254847
  • Kuang M Adjuvant immunotherapy combined with chemoradiation for patients with high-risk reseCtable extrahepatic chOlangiocarcinoma and gallblaDder cancer: a phase II, multicenter, randomized controlled trial [Internet].Report No.: NCT04333927. clinicaltrials.gov; 2020 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT04333927
  • Institut für klinische krebsforschung IKF GmbH at Krankenhaus Nordwest. A phase II study of immunotherapy with durvalumab and tremelimumab in combination with capecitabine or without capecitabine in adjuvant situation for biliary tract cancer [Internet]. Report No.: NCT05239169. clinicaltrials.gov; 2024 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT05239169
  • Shanghai Zhongshan Hospital. A randomized controlled, multicenter, open-label, phase II clinical study of PD1 antibody (toripalimab) combined with GEMOX Chemotherapy and lenvatinib neoadjuvant treatment for resectable intrahepatic cholangiocarcinoma with high-risk recurrence factors [internet]. Report No.: NCT04506281. clinicaltrials.gov; 2020 [cited 2024 Jan 1]. Available from: https://clinicaltrials.gov/study/NCT04506281
  • Chen W, Xu D, Liu Q, et al. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother. 2023;162:114697. doi: 10.1016/j.biopha.2023.114697
  • Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 2022;22:131–142. doi: 10.1038/s41568-021-00418-1
  • Mody K, Jain P, El-Refai SM, et al. Clinical, genomic, and transcriptomic data profiling of biliary tract cancer reveals subtype-specific immune signatures. JCO Precis Oncol. 2022;6:e2100510. doi: 10.1200/PO.21.00510
  • Parikh AR, Leshchiner I, Elagina L, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25:1415–1421. doi: 10.1038/s41591-019-0561-9
  • Pellecchia S, Viscido G, Franchini M, et al. Predicting drug response from single-cell expression profiles of tumours. BMC Med. 2023;21:476. doi: 10.1186/s12916-023-03182-1
  • Zhang J, Zhang H, Zhang L, et al. Single-Cell transcriptome identifies drug-resistance signature and immunosuppressive microenvironment in metastatic small cell lung cancer. Adv Genet Hoboken NJ. 2022;3:2100060. doi: 10.1002/ggn2.202100060
  • Bueschbell B, Caniceiro AB, Suzano PMS, et al. Network biology and artificial intelligence drive the understanding of the multidrug resistance phenotype in cancer. Drug Resist Updat. 2022;60:100811. doi: 10.1016/j.drup.2022.100811
  • You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther [Internet]. 2022;7 [cited 2023 Oct 30]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090746/
  • Patel SK, George B, Rai V. Artificial intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front Pharmacol [Internet]. 2020 [cited 2023 Oct 30];11. doi: 10.3389/fphar.2020.01177
  • Hayashi H, Uemura N, Matsumura K, et al. Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World J Gastroenterol. 2021;27:7480–7496. doi: 10.3748/wjg.v27.i43.7480
  • Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review. Artif Intell Surg. 2023;3:27–47. doi: 10.20517/ais.2022.39
  • Beatty GL, Werba G, Lyssiotis CA, et al. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 2021;35:940–962. doi: 10.1101/gad.348523.121