1,474
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A dynamical analysis and numerical simulation of COVID-19 and HIV/AIDS co-infection with intervention strategies

ORCID Icon &
Article: 2175920 | Received 09 May 2022, Accepted 29 Jan 2023, Published online: 14 Feb 2023

References

  • I. Ahmed, E.F. Doungmo Goufo, A. Yusuf, P. Kumam, P. Chaipanya, and K. Nonlaopon, An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC-fractional operator. Alexandria Eng. J. 60(3) (2021), pp. 2979–2995.
  • A. Babaei, H. Jafari, and A. Liya, Mathematical models of HIV/AIDS and drug addiction in prisons. Eur Phys J Plus 135(5) (2020), pp. 1–12.
  • Y.J. Baek, T. Lee, Y. Cho, J.H. Hyun, M.H. Kim, Y. Sohn, J.H. Kim, et al., A mathematical model of COVID-19 transmission in a tertiary hospital and assessment of the effects of different intervention strategies. PloS one 15(10) (2020), pp. e0241169.
  • S.R. Bandekar, and M. Ghosh, A co-infection model on TB-COVID-19 with optimal control and sensitivity analysis. Math. Comput. Simul. 200 (2022), pp. 1–31.
  • C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, and A-A. Yakubu, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, Springer Science & Business Media, 2002.
  • C. Castillo-Chavez, and B. Song, Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2) (2004), pp. 361–404.
  • T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui, and L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty. 9(1) (2020), pp. 1–8.
  • N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5) (2008), pp. 1272–1296.
  • L. Cirrincione, F. Plescia, C. Ledda, V. Rapisarda, D. Martorana, R.E. Moldovan, K. Theodoridou, and E. Cannizzaro, COVID-19 pandemic: Prevention and protection measures to be adopted at the workplace. Sustainability 12(9) (2020), 3603.
  • D.O. Daniel, Mathematical model for the transmission of Covid-19 with nonlinear forces of infection and the need for prevention measure in Nigeria. J. Infect. Dis. Epidem 6 (2021), pp. 158.
  • I.M. Hezam, A. Foul, and A. Alrasheedi, A dynamic optimal control model for COVID-19 and cholera co-infection in Yemen. Adv. Differ. Equ. 1(2021) (2021), pp. 1–30.
  • H.-F. Huo, and R. Chen, Stability of an HIV/AIDS treatment model with different stages. Discrete. Dyn. Nat. Soc. 2015 (2015), pp. 1–9.
  • J. Lutera, D. Mbete, and S. Wangila, Co-infection model of HIV/AIDS-pneumonia on the effect of treatment at initial and final stages. IOSR J. Math. (IOSR-JM) 14(5) (2018), pp. 56–81.
  • M. Martcheva, An Introduction to Mathematical Epidemiology. Vol. 61, Springer, New York, 2015.
  • T.T. Mekonnen, Mathematical model analysis and numerical simulation for codynamics of meningitis and pneumonia infection with intervention. Sci. Rep. 12(1) (2022), pp. 1–22.
  • J.Y. Mugisha, J. Ssebuliba, J.N. Nakakawa, C.R. Kikawa, and A. Ssematimba, Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown. PloS one 16(2) (2021), pp. e0247456.
  • S.S. Musa, I.A. Baba, A. Yusuf, T.A. Sulaiman, A.I. Aliyu, S. Zhao, and D. He, Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations. Results Phys. 26 (2021), pp. 104290.
  • J.K. Nthiiri, G.O. Lavi, and A. Mayonge, Mathematical model of pneumonia and HIV/AIDS coinfection in the presence of protection. Int. J. Math. Anal 9(42) (2015), pp. 2069–2085.
  • A. Nwankwo, and D. Okuonghae, Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis. Bull. Math. Biol. 80(3) (2018), pp. 437–492.
  • A. Omame, N. Sene, I. Nometa, C.I. Nwakanma, E.U. Nwafor, N.O. Iheonu, and D. Okuonghae, Analysis of COVID-19 and comorbidity co-infection model with optimal control. Optim. Control Appl. Methods 42(6) (2021), pp. 1568–1590.
  • E.O. Omondi, R.W. Mbogo, and L.S. Luboobi, Mathematical analysis of sex-structured population model of HIV infection in Kenya. Lett. Biomath. 5(1) (2018), pp. 174–194.
  • N. Ringa, M.L. Diagne, H. Rwezaura, A. Omame, S.Y. Tchoumi, and J.M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control. Inform. Med. Unlocked 31, (2022), pp. 100978.
  • P. Riyapan, S.E. Shuaib, and A. Intarasit, A mathematical model of COVID-19 pandemic: A case study of Bangkok, Thailand. Comput. Math. Methods. Med. 2021 (2021), pp. 1–11.
  • P. Ssentongo, E.S. Heilbrunn, A.E. Ssentongo, S. Advani, V.M. Chinchilli, J.J. Nunez, and P. Du, Epidemiology and outcomes of COVID-19 in HIV-infected individuals: a systematic review and meta-analysis. Sci. Rep. 11(1) (2021), pp. 1–12.
  • D. Sun, X. Long, and J. Liu, Modeling the COVID-19 epidemic with multi-population and control strategies in the United States. Front. Public. Health. 9 (2021), pp. 1–14.
  • S.Y. Tchoumi, M.L. Diagne, H. Rwezaura, and J.M. Tchuenche, Malaria and COVID-19 co-dynamics: A mathematical model and optimal control. Appl. Math. Model. 99 (2021), pp. 294–327.
  • S.W. Teklu, Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies. J. Biol. Dyn. 16(1) (2022), pp. 640–664.
  • S.W. Teklu, and T.T. Mekonnen, HIV/AIDS-pneumonia co-infection model with treatment at each infection stage: Mathematical analysis and numerical simulation. J. Appl. Math. 2021 (2021), pp. 1–21.
  • S.W. Teklu, and K.P. Rao, HIV/AIDS-Pneumonia codynamics model analysis with vaccination and treatment. Comput. Math. Methods. Med. 2022 (2022), pp. 1–20.
  • P. Van den Driessche, and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2) (2002), pp. 29–48.
  • I.M. Wangari, S. Sewe, G. Kimathi, M. Wainaina, V. Kitetu, and W. Kaluki, Mathematical modelling of COVID-19 transmission in Kenya: A model with reinfection transmission mechanism. Comput. Math. Methods. Med. 2021 (2021), pp. 1–18.
  • H.M. Yang, L.P. Lombardi Junior, F.F. Morato Castro, and A.C. Yang, Mathematical modeling of the transmission of SARS-CoV-2, evaluating the impact of isolation in São Paulo State (Brazil) and lockdown in Spain associated with protective measures on the epidemic of Covid-19. Plos One 16(6) (2021), pp. 1–24.
  • A. Zeb, E. Alzahrani, V.S. Erturk, and G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. BioMed Res. Int. 2020 (2020), pp. 1–7.