1,410
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A stochastic predator–prey model with two competitive preys and Ornstein–Uhlenbeck process

Article: 2193211 | Received 06 May 2022, Accepted 18 Nov 2022, Published online: 22 Mar 2023

References

  • E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), pp. 2073–2089.
  • H.J. Alsakaji, S. Kundu, and F.A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and Holling type II functional responses, Appl. Math. Comput. 397 (2021), p. 125919.
  • J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton sea – an eco-epidemiological model, Ecol. Model 136 (2001), pp. 103–112.
  • T.C. Gard, Persistence in stochastic food web models, Bull. Math. Biol 46 (1984), pp. 357–370.
  • T.C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal. 10 (1986), pp. 1411–1419.
  • C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin, 1983.
  • B. Han, B. Zhou, D. Jiang, T. Hayat, and A. Alsaedi, Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay, Appl. Math. Comput. 405 (2021), p. 126236.
  • D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (2001), pp. 525–546.
  • C. Ji, D. Jiang, and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009), pp. 482–498.
  • D. Jiang, N. Shi, and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl 340 (2008), pp. 588–597.
  • R. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.
  • Y. Li and H. Gao, Existence, uniqueness and global asymptotic stability of positive solutions of a predator-prey system with Holling II functional response with random perturbation, Nonlinear Anal.68 (2008), pp. 1694–1705.
  • S. Li and S. Guo, Permanence of a stochastic prey-predator model with a general functional response, Math. Comput. Simul 187 (2021), pp. 308–336.
  • Y. Li and L. Zhang, The stochastic interactions between predator and prey under Markovian switching: Competitive interaction between multiple prey, J Nonlinear Sci. Appl. 10 (2017), pp. 5622–5645.
  • Q. Liu and Q. Chen, A note on the stationary distribution of a three-species food web stochastic model with generalist predator, Appl. Math. Lett. 114 (2021), p. 106929.
  • M. Liu and P.S. Mandal, Dynamical behavior of a one-prey two-predator model with random perturbations, Commun. Nonlinear Sci. Numer. Simul. 28 (2015), pp. 123–137.
  • M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci 23 (2013), pp. 751–775.
  • M. Liu, C. Bai, M. Deng, and B. Du, Analysis of stochastic two-prey one-predator model with Lévy jumps, Physica. A. 445 (2016), pp. 176–188.
  • J. Lv and K. Wang, Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Commun. Nonlinear Sci. Numer. Simul 16 (2011), pp. 4037–4048.
  • Z. Ma, Y. Zhou, and C. Li, Qualitative and Stability Methods for Ordinary Differential Equations, Science Press, Beijing, 2015. (In Chinese).
  • P.S. Mandal, Characterization of positive solution to stochastic competitor-competitor-cooperative model, Electron. J. Differ. Equations 2013 (2013), pp. 1–13.
  • X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 1997.
  • K.S. Mathur, A prey-dependent consumption two-prey one predator eco-epidemic model concerning biological and chemical controls at different pulses, J. Franklin Inst. 353 (2016), pp. 3897–3919.
  • R.M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.
  • C.E.H. Pimentel, P.M. Rodriguez, and L.A. Valencia, A note on a stage-specific predator-prey stochastic model, Physica. A. 553 (2020), p. 124575.
  • F. Steven, Ornstein-Uhlenbeck process, Stoch. Differ. Equ. 2004.
  • H. Wang, D. Jiang, T. Hayat, A. Alsaedi, and B. Ahmad, Stationary distribution of stochastic NP ecological model under regime switching, Physica. A. 549 (2020), p. 124064.
  • S. Wang, Z. Wang, C. Xu, and G. Jiao, Sensitivity analysis and stationary probability distributions of a stochastic two-prey one-predator model, Appl. Math. Lett. 116 (2021), p. 106996.
  • C.-C. Wu, The spreading speed for a predator-prey model with one predator and two preys, Appl. Math. Lett 91 (2019), pp. 9–14.
  • D. Xu, Y. Huang, and Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst. 24 (2009), pp. 1005–1023.
  • X. Zhang and R. Yuan, A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput. 394 (2021), p. 125833.
  • S. Zhang, S. Yuan, and T. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput. 413 (2022), p. 126598.