866
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A refined asymptotic result of one-dimensional flux limited Keller–Segel models

Article: 2203165 | Received 31 Oct 2022, Accepted 11 Apr 2023, Published online: 19 Apr 2023

References

  • W. Alt, Biased random walk model for chemotaxis and related diffusion approximation, J. Math. Biol. 9 (1980), pp. 147–177.
  • E. Budrene and H. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature 349 (1991), pp. 630–633.
  • X. Chen, J. Hao, X. Wang, Y. Wu, and Y. Zhang, Stability of spiky solution of Keller–Segel's minimal chemotaxis model, J. Differ. Equ. 257 (2014), pp. 3102–3134.
  • A. Chertock, A. Kurganov, X. Wang, and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models 5 (2012), pp. 51–95.
  • T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), pp. 183–217.
  • T. Hillen, K. Painter, and C. Schmeiser, Global existence for chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst. Ser. B. 7 (2007), pp. 125–144.
  • D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I, Jahresber. DMV 105 (2003), pp. 103–165.
  • D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences II, Jahresber. DMV 106 (2004), pp. 51–69.
  • E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol.26 (1970), pp. 399–415.
  • E. Keller and L. Segel, Models for chemotaxis, J. Theor. Biol. 30 (1971), pp. 225–234.
  • H. Li, Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differ. Equ. 30 (2018), pp. 1775–1795.
  • P. Liu, J.P. Shi, and Z.A. Wang, Pattern formation of the attraction-repulsion Keller–Segel system, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), pp. 2597–2625.
  • H. Othmer, S.R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol. 26 (1988), pp. 263–298.
  • K.J. Painter, P.K. Maini, and H.G. Othmer, Stripe formation in juvenile pomacanthus explained by a generalized turing mechanism with chemotaxis, Proc. Natl. Acad. Sci. 96 (1999), pp. 5549–5554.
  • C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), pp. 311–338.
  • B. Perthame, N. Vauchelet, and Z. Wang, The flux limited Keller–Segel system; properties and derivation from kinetic equations, Rev. Mat. Iberoam. 36 (2020), pp. 357–386.
  • G.J. Petter, H.M. Byrne, D.L.S. Mcelwain, and J. Norbury, A model of wound healing and angiogenesis in soft tissue, Math. Biosci. 136 (1996), pp. 35–63.
  • J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan, and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol. 6 (8) (2010), Article ID e1000890.
  • Z.A. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst. Ser. B. 18 (2013), pp. 601–641.
  • Z.A. Wang and X. Xu, Radial spiky steady states of a flux-limited Keller–Segel model: Existence, asymptotics and stability, Stud. Appl. Math. 148 (2022), pp. 1251–1273.