639
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Threshold dynamics of a stochastic mathematical model for Wolbachia infections

, , , &
Article: 2231967 | Received 14 Nov 2022, Accepted 27 Jun 2023, Published online: 07 Jul 2023

References

  • E.F. Andongma, S.A. Forchu, B.T. Andongma, and B.K. Gana, Impact of environmental changes on mosquitoes and disease transmission, J. Nat. Sci. Res. 10 (2020), pp. 35–40.
  • T.H. Ant, C.S. Herd, V. Geoghegan, A.A. Hoffmann, and S.P. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, Plos Pathog. 14(1) (2018), pp. e1006815.
  • A. Athreya, T. Kolba, and J.C. Mattingly, Propagating Lyapunov functions to prove noise-induced stabilization, Electron. J. Probab. 17(96) (2012), pp. 1–38.
  • B.J. Beaty, Genetic manipulation of vectors: a potential novel approach for control of vector-borne diseases, Proc. Natl. Acad. Sci. 97(19) (2000), pp. 10295–10297.
  • J.J. Bull and M. Turelli, Wolbachia versus dengue: evolutionary forecasts, Evol. Med. Public Health. 2013(1) (2013), pp. 197–207.
  • E. Caspari and G. Watson, On thee volutionary importance of cytoplasmic sterility in mosquitoes, Evolution 13(4) (1959), pp. 568.
  • Q. Cheng, Q. Jing, R.C. Spear, J.M. Marshall, Z. Yang, and P. Gong, Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou 2014: evidence from a mathematical model, PLoS Negl. Trop. Dis. 10(2) (2016), pp. e0004417.
  • J. Couret and M.Q. Benedict, A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae), BMC Ecol. 14(1) (2014), pp. 3.
  • D. Dalal, D. Greenhalgh, and X. Mao, A stochastic model of AIDs and condom use, J. Math. Anal. Appl. 325(1) (2007), pp. 36–53.
  • J.Z. Farkas and P. Hinow, Structured and unstructured continuous models for Wolbachia infections, Bull. Math. Biol. 72(8) (2010), pp. 2067–2088.
  • P.E.M. Fine, On the dynamics of symbiote-dependent cytoplasmic incompatibility in culicine mosquitoes, J. Invert. Path. 31(1) (1978), pp. 10–18.
  • T.G. Hallam and Z.E. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol. 24(3) (1986), pp. 327–339.
  • R. Haygood and M. Turelli, Evolution of incompatibility-inducing microbes in subdivided host populations, Evolution 63(2) (2009), pp. 432–447.
  • J. Hemingway and H. Ranson, Insecticide resistance in insect vectors of human disease, Annu. Rev. Entomol. 45(1) (2000), pp. 371–391.
  • W.A. Hickey and G.B. Craig, Genetic distortion of sex ratio in a mosquito Aedes aegypti, Genetics53(6) (1966), pp. 1177–1196.
  • A.A. Hoffmann, M. Turelli, and L.G. Harshman, Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans, Genetics 126(4) (1990), pp. 933–948.
  • A.A. Hoffmann, B.L. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P.H. Johnson, F. Muzzi, M.Greenfield, M. Durkan, Y.S. Leong, Y. Dong, and H. Cook, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476(7361) (2011), pp. 454–457.
  • L.C. Hu, M.G. Huang, M.X. Tang, J.S. Yu, and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44.
  • S. James, C.P. Simmons, and A.A. James, Ecology: mosquito trials, Sciences 334(6057) (2011), pp. 771–772.
  • M.J. Keeling, F.M. Jiggins, and J.M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity 91(4) (2003), pp. 382–388.
  • J.L. Kyle and E. Harris, Global spread and persistence of dengue, Annu. Rev. Microbiol. 62(1) (2008), pp. 71–92.
  • H. Laven, Eradication of culex pipiens fatigans through cytoplasmic incompatibility, Nature 216(5113) (1967), pp. 383–384.
  • M. Liu and C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol. 73(3) (2016), pp. 597–625.
  • M. Liu and M. Fan, Permanence of stochastic Lotka–Volterra systems, J. Nonlinear Sci. 27(2) (2017), pp. 425–452.
  • Z. Ma and T.G. Hallam, Effects of parameter fluctuations on community survival, Math Biosci. 86(1) (1987), pp. 35–49.
  • X. Mao, G. Marion, and E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stoch. Process Appl. 97(1) (2002), pp. 95–110.
  • X. Mao, Stationary distribution of stochastic population systems, Syst Contol Lett. 60(6) (2011), pp. 398–405.
  • S.P. Meyn and R.L. Tweedie, Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes, Adv. Appl. Probab. (1993), pp. 518–548.
  • M.Z. Ndii, N. Anggriani, J.J. Messakh, and B.S. Djahi, Estimating the reproduction number and designing the integrated strategies against dengue estimating the reproduction number and designing the integrated strategies against dengue, Res. Phys. 10 (2021), pp. 1–10.
  • S.T. Ogunlade, A.I. Adekunle, M.T. Meehan, D.P. Rojas, and E.S. McBryde, Modeling the potential of wAuWolbachia strain invasion in mosquitoes to control aedesborne arboviral infections, Sci. Rep. 10(1) (2020), pp. 16812.
  • W. Preechaporn, M. Jaroensutasinee, and K. Jaroensutasinee, Albopictus in three topographical areas, Control 1 (2007), pp. 23–27.
  • E. Renshaw, Modelling Biological Population in Space and Time, Cambridge University Press, Cambridge, 1995.
  • A. Utarini, C. Indriani, R.A. Ahmad, W. Tantowijoyo, E. Arguni, M.R. Ansari, E. Supriyati, D.S.Wardana, Y. Meitika, I. Ernesia, and I. Nurhayati, Efficacy of Wolbachia-Infected mosquito deployments for the control of dengue, N. Engl. J. Med. 384 (2021), pp. 2177–2186.
  • T. Walker, P.H. Johnson, and L.A. Moreira, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (2011), pp. 450–453.
  • K. Wang, Stochastic Biomathematical Models, Science Press, Beijing, 2010. (in Chinese).
  • X. Wang, S. Tang, J. Wu, Y. Xiao, and R.A. Cheke, A combination of climatic conditions determines major within-season dengue outbreaks in Guangdong province, Parasit. Vectors. 12(1) (2019), pp. 45.
  • X. Zhang, S. Tang, and R.A. Cheke, Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control, Nonlinear Anal-Real. 22 (2015), pp. 236–258.
  • X. Zhang, S. Tang, R.A. Cheke, and H. Zhu, Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation, Bull. Math. Biol. 78(10) (2016), pp. 1968–2010.
  • X. Zhang, S. Tang, and R.A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Bioci. 269 (2015), pp. 164–177.
  • Y. Zhao, S. Yuan, and T. Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci. Numer. Simul. 37 (2016), pp. 131–142.