665
Views
0
CrossRef citations to date
0
Altmetric
Special Issue in Memory of Abdul-Aziz Yakubu

Steady solution and its stability of a mathematical model of diabetic atherosclerosis

Article: 2257734 | Received 15 Mar 2023, Accepted 05 Sep 2023, Published online: 15 Sep 2023

References

  • N.A. Averinos and P. Neofytou, Mathematical modeling and simulation of atherosclerosis formation and progress: A review, Ann. Biomed. Eng. 47(8) (August 2019), pp. 1764–1785.
  • J.A. Beckman, M.A. Creager, and P. Libby, Diabetes and atherosclerosis, JAMA 287(19) (2002), pp. 2570–2581.
  • A. Boutayeb and A. Chetouani, A critical review of mathematical models and data used in diabetology, Biomed. Eng. Online. 5 (2006), pp. 43.
  • V. Calvez and A. Ebde, Mathematical modeling of the atherosclerotic plaque formation, in ESAIM Proc. CEMRACS 2008 – Model. Numer. Simul. Complex Fluids, pp. 1–162010.
  • C. Chothia, The nature of the accessible and buried surfaces in proteins, J. Mol Biol. 105 (1976), pp. 1–12.
  • M. Cilla, E. Pena, and M.A. Martinez, Mathematical modeling of atheroma plaque formation and development in coronary arteries, J. R. Soc. Interface 11 (2013), pp. 20130866.
  • C.A. Cobbold, J.A. Sherratt, and S.R.J. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: A mathematical approach, Bull. Math. Biol. 64 (2002), pp. 65–95.
  • G. Douglas and K.M. Channon, The pathogenesis of atherosclerosis, Medicine (Baltimore) 42 (2014), pp. 480–4.
  • N. Filipovic, Z. Teng, M. Radovic, I. Saveljic, D. Fotiadis, and O. Parodi, Computer simulation of three-dimensional plaque formation and progression in the carotid artery, Med. Biol. Eng. Comput. 51 (2013), pp. 607–616.
  • A. Friedman, Mathematical Biology: Modeling and Analysis, CBMS Regional Conferences Series in Mathematics; Vol. 127 AMS, 2018.
  • A. Friedman and W. Hao, A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bull. Math. Biol. 77 (2015), pp. 758–781.
  • A. Friedman, W. Hao, and B. Hu, A free boundary problem for steady small plaques in the artery and their stability, J. Differential Equations 259 (2015), pp. 1227–1255.
  • A.D. Gaetano, T. Hardy, B. Beck, E. Abu-Raddad, P. Palumbo, J. Bue-Valleskey, and N. Poksen, Mathematical models of diabetes progression, Am. J. Physiol Endocrinol Metab 295 (2008), pp. E1462–E1479.
  • G.S. Getz and C.A. Reardon, Animal models of atherosclerosis, Arterioscler Thromb VascBiol. 32 (2012), pp. 1104–15.
  • J. Ha, L.S. Satin, and A.S. Sherman, A mathematicalmodel of the pathogenesis, prevention, and reversal of type 2 diabetes, Endocrinology 157(2) (2016), pp. 624–635.
  • J. Ha and A. Sherman, Type 2 diabetes: One disease, many pathways, Am. J. Physiol Endocrinol Metab. 319(2) (2020), pp. E410–E426.
  • W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model, PLoS. ONE. 9 (2014), pp. 1–15.
  • M.M. Hennes, I.M. O'Shaughnessy, T.M. Kelly, P. LaBelle, B.M. Egan, and A.H. Kissebah, Insulin resistant lypolisis in abdominally obese hypertensive individuals, Hypertension. 28 (1996), pp. 120–126.
  • T. Inoguchi, P. Li, F. Umeda, H.Y. Yu, M. Kakimoto, M. Imamura, T. Aoki, T. Etoh, T. Hashimoto, M. Naruse, and H. Sano, High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxsidase in cultured vascular cells, Diabetes 49 (2000), pp. 1939–1945.
  • J. Janin and C. Chothia, Role of hydrophobicity in the binding of coenzymes, Biochemistry 17 (1978), pp. 2943–2948.
  • L.A. Johnson, H.S. Kim, M.J. Knudson, C.T. Nipp, X. Yi, and N. Maeda, Diabetic atherosclerosis in APOE*4 mice: Synergy between lipoprotein metabolism and vascular inflammation, J. Lipid. Res. 54(2) (2013), pp. 386–396.
  • M.T. Johnstone, S.J. Creager, K.M. Scales, J.A. Cusco, B.K. Lee, and M.A. Creager, Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus, Circulation 199388, pp. 2510–2516.
  • J.E. Kanter, F. Kramer, S. Barnhart, M.M. Averill, A. Vivekanandan-Giri, T. Vickery, L.O. Li, L. Becker, W. Yuan, A. Chait, and K.R. Braun, Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1, Proc. Natl. Acad. Sci. U.S.A. 109(12) (2012), pp. E715–E724.
  • A.J. Lusis, Atherosclerosis, Nature 407 (2000), pp. 233–41.
  • A. Makroglou, J. Li, and Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview, Appl. Numer. Math. 56 (2006), pp. 559–573.
  • P. Palumbo, S. Ditlevsen, A. Bertuzzi, and A. De Gaetano, Mathematical modeling of the glucose-insulin system: A review, Math. Biosci. 244 (2013), pp. 69–81.
  • A. Parton, V. McGilligan, M. O'Kane, F.R. Baldrick, and S. Watterson, Computational modelling of atherosclerosis, Brief. Bioinformatics. 17(4) (2016), pp. 562–575.
  • G.M. Pieper, P. Langenstroer, and W. Siebeneich, Diabetic induced endothelial dysfunction in rat aorta: Role of hydroxyl radicals, Cardiovasc. Res. 34(1) (1997), pp. 145–156.
  • R.P. Robertson, Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes, J. Biol. Chem. 279 (2004), pp. 42351–42354.
  • T. Silva, A. Sequeira, R. Santos, and J. Tiago, Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow, in Conf. Pap. Math., pp. 1–14 2013.
  • R. Singh, S. Devi, and R. Gollen, Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life, Diabetes Metab. Res. Rev. 31 (2015), pp. 113–126.
  • W.D. Stanbro, Modeling the interaction of peroxynitrite with low-density lipoproteins. II: Reaction/diffusion model of peroxynitrite in low-density lipoprotein particles, J. Theor. Biol. 205 (2000), pp. 465–471.
  • H. Sun, X. Zhang, L. Zhao, X. Zhen, S. Huang, S. Wang, H. He, Z. Liu, N. Xu, F. Yang, and Z. Qu, Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor, J. Cell. Mol. Med. 19(4) (2015), pp. 836–849.
  • J. Tian, Y. Liu, Y. Liu, K. Chen, and S. Lyu, Cellular and molecular mechanisms of diabetic atherosclerosis: Herbal medicines as a potential therapeutic approach, oxidative medicine and cellular longevity. Volume 2017, Article ID 9080869, 16 pages.
  • G. Tomaso, V. Daz-Zuccarini, and C. Pichardo-Almarza, A multiscale model of atherosclerotic plaque formation at its early stage, IEEE Trans. Biomed. Eng. 58 (2011), pp. 3460–3463.
  • B. Topp, K. Promislow, G. Devries, R.M. Miuraa, and T. Diane, Finegood a model of b-Cell mass, insulin, and glucose kinetics: Pathways to diabetes, J. Theor. Biol. 206 (2000), pp. 605–619.
  • I.A. van den Oever, H.G. Raterman, M.T. Nurmohamed, and S. Simsek, Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus, Mediators. Inflamm. 2010 (2010), Article ID 792393, 15 pages.
  • C. Weber and H. Noels, Atherosclerosis: Current pathogenesis and therapeutic options, Nat. Med. 17 (2011), pp. 1410–22.
  • S.B. Williams, J.A. Cusco, M.A. Rody, M.T. Johnstone, and M.A. Creager, Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus, J. Am Coll Cardiol. 27 (1996), pp. 567–574.
  • X. Xie, Well-posedness of a mathematical model of diabetic atherosclerosis, J. Math. Anal. Appl. 505(2) (2022), pp. 18. Paper No. 125606.
  • X. Xie, Well-posedness of a mathematical model of diabetic atherosclerosis with advanced glycation end-products, Appl. Anal. 101(11) (2022), pp. 3989–4013.