492
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simple reaction–diffusion system as a possible model for the origin of chemotaxis

&
Article: 2260833 | Received 16 Nov 2022, Accepted 30 Aug 2023, Published online: 27 Sep 2023

References

  • F.O. Bendezú and S.G. Martin, Cdc42 explores the cell periphery for mate selection in fission yeast, Curr. Biol. 23(1) (2013), pp. 42–47.
  • S. Bian, Global existence in the critical and subcritical cases to the Fisher-KPP model with nonlocal nonlinear reaction, (2019). arXiv preprint arXiv:1910.08905
  • J.-G. Chiou, S.A. Ramirez, T.C. Elston, T.P. Witelski, D.G. Schaeffer and D.J. Lew, Principles that govern competition or co-existence in Rho-GTPase driven polarization, PLoS Comput. Biol. 14(4) (2018), Article ID e1006095.
  • S.L. Deshmane, S. Kremlev, S. Amini and B.E. Sawaya, Monocyte chemoattractant protein-1 (MCP-1): An overview, J. Interferon Cytokine Res. 29(6) (2009), pp. 313–326.
  • C.R. Doering and J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations, Vol. 12, Cambridge University Press, 1995.
  • A.B. Goryachev and A.V. Pokhilko, Dynamics of Cdc42 network embodies a turing-type mechanism of yeast cell polarity, FEBS Lett. 582(10) (2008), pp. 1437–1443.
  • T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math. (201919), pp. 292–296.
  • J.E. Himes, J.A. Riffell, C. Ann Zimmer and R.K. Zimmer, Sperm chemotaxis as revealed with live and synthetic eggs, Biol. Bull. 220(1) (2011), pp. 1–5.
  • A. Ismael, W. Tian, N. Waszczak, X. Wang, Y. Cao, D. Suchkov, E. Bar, M.V. Metodiev, J. Liang, R.A. Arkowitz and D.E. Stone, Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation, Sci. Signal. 9(423) (2016), Article ID ra38.
  • F. James and N. Vauchelet, Chemotaxis: From kinetic equations to aggregate dynamics, Nonlinear Differ. Equ. Appl. NoDEA 20(1) (2013), pp. 101–127.
  • E.F. Keller and L.A. Segel., Model for chemotaxis, J. Theor. Biol. 30(2) (1971), pp. 225–234.
  • H.G. Othmer and T. Hillen, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math. 61(3) (2000), pp. 751–775.
  • H.G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math. 62(4) (2002), pp. 1222–1250.
  • M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki and S. Kuroda, A mass conserved reaction–diffusion system captures properties of cell polarity, PLoS Comput. Biol. 3(6) (2007), Article ID e108.
  • B. Perthame, Transport Equations in Biology, Springer Science & Business Media, 2006.
  • B. Perthame, N. Vauchelet and Z. Wang, The flux limited Keller–Segel system; properties and derivation from kinetic equations, (2018). Available at arXiv preprint arXiv:1801.07062
  • D. Ralt, M. Manor, A. Cohen-Dayag, I. Tur-Kaspa, I. Ben-Shlomo, A. Makler, I. Yuli, J. Dor, S.Blumberg, S. Mashiach and M. Eisenbach, Chemotaxis and chemokinesis of human spermatozoa to follicular factors, Biol. Reprod. 50(4) (1994), pp. 774–785.
  • J.A. Riffell and R.K. Zimmer, Sex and flow: The consequences of fluid shear for sperm–egg interactions, J. Exp. Biol. 210(20) (2007), pp. 3644–3660.
  • A. Shellard and R. Mayor, Chemotaxis during neural crest migration, in Seminars in Cell & Developmental Biology, Vol. 55, Elsevier, 2016, pp. 111–118.
  • L. Solnica-Krezel and D.S. Sepich, Gastrulation: Making and shaping germ layers, Annu. Rev. Cell Dev. Biol. 28(1) (2012), pp. 687–717.
  • D.D. Taub, P. Proost, W.J. Murphy, M. Anver, D.L. Longo, J. Van Damme and J.J. Oppenheim, Monocyte chemotactic protein-1 (MCP-1),-2, and-3 are chemotactic for human T lymphocytes, J. Clin. Investig. 95(3) (1995), pp. 1370–1376.
  • X. Wang, W. Tian, B.T. Banh, B.-M. Statler, J. Liang and D.E. Stone, Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine, J. Cell Biol. 218(11) (2019), pp. 3730–3752.
  • R.K. Zimmer and J.A. Riffell, Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction, Proc. Natl. Acad. Sci. 108(32) (2011), pp. 13200–13205.