402
Views
0
CrossRef citations to date
0
Altmetric
Special Issue in Memory of Abdul-Aziz Yakubu

Modeling impact of vaccination on COVID-19 dynamics in St. Louis

, , , , , , & show all
Article: 2287084 | Received 28 Apr 2023, Accepted 17 Nov 2023, Published online: 05 Dec 2023

References

  • McLaughlin JM, Khan F, Pugh S, et al. County-level predictors of coronavirus disease 2019 (COVID-19) cases and deaths in the United States: what happened, and where do we go from here? Clin Infect Dis. 2021;73:e1814–e1821. doi: 10.1093/cid/ciaa1729
  • Bergmann PJ, Ahlgren NA, Torres Stone RA. County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. PLOS Glob Public Health. 2022;2:e0001282. doi: 10.1371/journal.pgph.0001282
  • Masters NB, Zhou T, Meng L, et al. Geographic heterogeneity in behavioral and social drivers of COVID-19 vaccination. Am J Prev Med. 2022;63:883–893. doi: 10.1016/j.amepre.2022.06.016
  • Tiu A, Susswein Z, Merritt A, et al. Characterizing the spatiotemporal heterogeneity of the COVID-19 vaccination landscape. Am J Epidemiol. 2022;191:1792–1802. doi: 10.1093/aje/kwac080
  • Chang S, Pierson E, Koh W, et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature. 2021;589:82–87. doi: 10.1038/s41586-020-2923-3
  • Chen S, Li Q, Gao S, et al. State-specific projection of COVID-19 infection in the United States and evaluation of three major control measures. Sci Rep. 2020;10. doi: 10.1038/s41598-020-80044-3
  • Hou X, Gao S, Li Q, et al. Intracounty modeling of COVID-19 infection with human mobility: assessing spatial heterogeneity with business traffic, age and race. Proc Natl Acad Sci. 2021;118:e2020524118–doi: 10.1073/pnas.2020524118
  • Das P, Igoe M, Lenhart S, et al. Geographic disparities and determinants of COVID-19 incidence risk in the greater St. Louis area, Missouri (United States). PLoS One. 2022;17:e0274899. doi: 10.1371/journal.pone.0274899
  • Igoe M, Das P, Lenhart S, et al. Geographic disparities and predictors of COVID-19 hospitalization risks in the St. Louis area, Missouri (USA). BMC Public Health. 2022;22:1–10. doi: 10.1186/s12889-022-12716-w
  • Xiang Y, Jia Y, Chen L, et al. COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. Infect Dis Model. 2021;6:324–342.
  • Das Y, Igoe M, Lacy A, et al. Challenges of fitting models to nonstationary process [chapter in dissertation]. North Carolina State University; 2023. p. 1–49.
  • Edholm CJ, Levy B, Spence L, et al. A vaccination model for COVID-19 in Gauteng, South Africa. Infect Dis Model. 2022;7:333–345. doi: 10.1016/j.idm.2022.06.002
  • Potgieter A, Fabris-Rotelli IN, Kimmie Z, et al. Modelling representative population mobility for COVID-19 spatial transmission in South Africa. Front Big Data. 2021;4:1–17. doi: 10.3389/fdata.2021.718351
  • Spence L, Anderson DE, Aslan IH, et al. The effect of changing COVID-19 restrictions on the transmission rate in a veterinary clinic. Infect Dis Model. 2022;8:294–308.
  • Lin DY, Gu Y, Wheeler B, et al. Effectiveness of COVID-19 vaccines over a 9-month period in North Carolina. N Engl J Med. 2022;386:933–941. doi: 10.1056/NEJMoa2117128
  • Avusuglo WS, Nicola Bragazzi1 N, Asgary A, et al. Leveraging an epidemic–economic mathematical model to assess human responses to COVID-19 policies and disease progression. Sci Rep. 2023;13(1):12842. doi: 10.1038/s41598-023-39723-0
  • Ngonghala CN, Taboe HB, Saftar S, et al. Unraveling the dynamics of the omicron and delta variants of the 2019 coronavirus in the presence of vaccination, mask usage, and antiviral treatment. Appl Math Model. 2023;114:447–465. doi: 10.1016/j.apm.2022.09.017
  • Cosner C, Beier JC, Cantrell RS, et al. The effects of human movement on the persistence of vector-borne diseases. J Theor Biol. 2009;258:550–560. doi: 10.1016/j.jtbi.2009.02.016
  • Brauer F, Castillo-Chavez C, Feng Z. Mathematical models in epidemiology. New York (NY): Springer New York; 2019.
  • Lee S, Baek O, Melara L. Resource allocation in two-patch epidemic model with state-dependent dispersal behaviors using optimal control. Processes. 2020;8:1–19.
  • Bichara D, Castillo-Chavez C. Vector-borne diseases models with residence times–a lagrangian perspective. Math Biosci. 2016;281:128–138. doi: 10.1016/j.mbs.2016.09.006
  • Bichara D, Kang Y, Castillo-Chavez C, et al. SIS and SIR epidemic models under virtual dispersal. Bull Math Biol. 2015;77:2004–2034. doi: 10.1007/s11538-015-0113-5
  • Missouri Department of Health & Senior Services, Missouri weekly COVID-19 activity report. [accessed 2021 November 01]. 2021. Available from: https://health.mo.gov/living/healthcondiseases/communicable/novel-coronavirus/data/public-health/.
  • Centers for Disease Control and Prevention(CDC), CDC museum COVID-19 timeline. 2022. [accessed 2023 March 13]. 2023. Available from: https://www.cdc.gov/museum/timeline/covid19.html.
  • Johansson MA, Quandelacy TM, Kada S, et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw Open. 2021;4:e2035057–e2035057. doi: 10.1001/jamanetworkopen.2020.35057
  • Sanche S, Lin Y, Xu C, et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerging Infect Dis. 2020;26:1470–1477. doi: 10.3201/eid2607.200282
  • Centers for Disease Control and Prevention, COVID data tracker. [accessed 2021 June 19]. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.
  • John Hopkins University of Medicine Coronavirus Resource Center, Mortality analyses. [accessed 2023 February 01]. 2023. Available from: https://coronavirus.jhu.edu/data/mortality.
  • Centers for Disease Control and Prevention(CDC), Estimated COVID-19 Burden. [accessed 2023 February 05]. 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html.
  • Cheng HY, Jian SW, Liu DP, et al., for the Taiwan COVID-19 Outbreak Investigation Team. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020;180:1156–1163. doi: 10.1001/jamainternmed.2020.2020
  • Renardy M, Eisenberg M, Kirschner D. Predicting the second wave of COVID-19 in washtenaw county, MI. J Theor Biol. 2020;507:1–20. doi: 10.1016/j.jtbi.2020.110461
  • MathWorks, Cubic spline data interpolation. [accessed 2022 February 16]. 2022. Available from: https://www.mathworks.com/help/matlab/ref/spline.html.
  • MathWorks, Introducing spline fitting. [accessed 2022 February 16]. 2022. Available from: https://www.mathworks.com/help/curvefit/introducing-spline-fitting.html.
  • MathWorks, Splines. [accessed 2022 February 16]. 2022. Available from: https://www.mathworks.com/help/curvefit/splines.html.
  • Farthing TS, Jolley A, Nickel KB, et al. Early COVID-19 pandemic effects on individual-level risk for healthcare-associated infections in hospitalized patients. Infect Control Hosp Epidemiol June. 2023;29:1–6.
  • Irons NJ, Raftery AE. Estimating SARS-CoV-2 infections from deaths, confirmed cases, tests, and random surveys. Proc Natl Acad Sci. 2021;118(31):1–9. doi: 10.1073/pnas.2103272118
  • Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Sci Am Assoc Adv Sci. 2020;368(6490):489–493.
  • Rahmandad H, Lim TY, Sterman J. Behavioral dynamics of COVID-19: estimating underreporting, multiple waves, and adherence fatigue across 92 nations. Syst Dyn Rev. 2021;37:5–31. doi: 10.1002/sdr.v37.1
  • United States Census Bureau, ACS demographic and houseing estimates 1-year estimates data profiles. [accessed 2020 June 10]. 2019. Available from: https://data.census.gov/table?q=missouri.
  • Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface. 2010;7:873–885. https://doi.org/10.1098/rsif.2009.0386
  • van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6
  • Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics. Princenton (NJ): Princeton University Press; 2012.
  • Heesterbeek JAP, Diekmann O. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. Chichester (UK): John Wiley Press; 2000.
  • Hwang KKL, Edholm CJ, Saucedo O, et al. A hybrid epidemic model to explore stochasticity in COVID-19 dynamics. Bull Math Biol. 2022;84. doi: 10.1007/s11538-022-01030-6
  • Horn AL, Jiang L, Washburn F, et al. An integrated risk and epidemiological model to estimate risk-stratified COVID-19 outcomes for Los Angeles county: march 1, 2020–March 1, 2021. PLoS One. 2021;16:e0253549–e0253549. doi: 10.1371/journal.pone.0253549
  • The New York Times, See how vaccinations are going in your county and state. [accessed 2023 April 23]. 2022. Available from: https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html.
  • Lacy A, Khan MM, Nath ND, et al. Geographic disparities and predictors of COVID-19 vaccination in Missouri. [Preprint]. 2023. p. 1–29.