898
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An epidemiological model for analysing pandemic trends of novel coronavirus transmission with optimal control

, &
Article: 2299001 | Received 09 Jun 2023, Accepted 15 Dec 2023, Published online: 29 Dec 2023

References

  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433
  • Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of covid-19. Jama. 2020;323(14):1406–1407. doi: 10.1001/jama.2020.2565
  • Tang B, Bragazzi NL, Li Q, et al. An updated estimation of the risk of transmission of the novel coronavirus (2019-ncov). Infect Dis Model. 2020;5:248–255.
  • Lin L, Hou Z. Combat covid-19 with artificial intelligence and big data. J Travel Med. 2020;27(5):taaa080. doi: 10.1093/jtm/taaa080
  • Lu H. Drug treatment options for the 2019-new coronavirus (2019-ncov). Biosci Trends. 2020;14(1):69–71. doi: 10.5582/bst.2020.01020
  • Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-ncov) infections: challenges for fighting the storm. Eur J Clin Investig. 2020;50(3):e13209. doi: 10.1111/eci.v50.3
  • Al Harthi S, Al Osali M, Al Ismaili R, et al. Clinical characteristics of confirmed cases of covid-19 admitted at Al Nahdha Hospital Oman: a cross-sectional descriptive study. Cureus. 2021;13(8).
  • Rihan FA, Alsakaji HJ, Rajivganthi C. Stochastic SIRC epidemic model with time-delay for covid-19. Adv Differ Equa. 2020;2020(1):502. doi: 10.1186/s13662-020-02964-8
  • Din A, Li Y. Stationary distribution extinction and optimal control for the stochastic hepatitis b epidemic model with partial immunity. Phys Scr. 2021;96(7):074005. doi: 10.1088/1402-4896/abfacc
  • Saha S, Samanta G. Modelling the role of optimal social distancing on disease prevalence of covid-19 epidemic. Int J Dyn Control. 2021;9(3):1053–1077. doi: 10.1007/s40435-020-00721-z
  • Fadaei Y, Rihan FA, Rajivganthi C. Immunokinetic model for covid-19 patients. Complexity. 2022;2022:1–13. doi: 10.1155/2022/8321848
  • Omame A, Onyenegecha IP, Raezah AA, et al. Co-dynamics of covid-19 and viral hepatitis b using a mathematical model of non-integer order: impact of vaccination. Fractal and Fract. 2023;7(7):544. doi: 10.3390/fractalfract7070544
  • Kalula A, Mureithi E, Marijani T, et al. Optimal control and cost-effectiveness analysis of age-structured malaria model with asymptomatic carrier and temperature variability. J Biolog Dyn. 2023;17(1):2199766. doi: 10.1080/17513758.2023.2199766
  • Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics–i. 1927. Bull Math Biol. 1991;53(1-2):33–55.
  • De Vries G, Hillen T, Lewis M, et al. A course in mathematical biology: quantitative modeling with mathematical and computational methods. SIAM; 2006. doi: 10.1137/1.9780898718256
  • Agarwal P, Singh R. Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach. Phys A Stat Mech Appl. 2020;547:124243. doi: 10.1016/j.physa.2020.124243
  • Zaman G, Kang YH, Jung IH. Stability analysis and optimal vaccination of an sir epidemic model. BioSystems. 2008;93(3):240–249. doi: 10.1016/j.biosystems.2008.05.004
  • Khan T, Zaman G, Chohan MI. The transmission dynamic and optimal control of acute and chronic hepatitis b. J Biolog Dyn. 2017;11(1):172–189. doi: 10.1080/17513758.2016.1256441
  • Kamyad AV, Akbari R, Heydari AA, et al. Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis b virus. Comput Math Methods Med. 2014;2014:1–15. doi: 10.1155/2014/475451
  • Nwankwo A, Okuonghae D. A mathematical model for the population dynamics of malaria with a temperature dependent control. Differ Equ Dyn Syst. 2019;1–30.
  • Omame A, Okuonghae D, Umana R, et al. Analysis of a co-infection model for HPV-TB. Appl Math Model. 2020;77:881–901. doi: 10.1016/j.apm.2019.08.012
  • Kang S, Hou X, Hu Y, et al. Dynamic analysis and optimal control considering cross transmission and variation of information. Sci Rep. 2022;12(1):18104. doi: 10.1038/s41598-022-21774-4
  • Teklu SW, Terefe BB. Mathematical modeling analysis on the dynamics of university students animosity towards mathematics with optimal control theory. Scient Rep. 2022;12(1):11578. doi: 10.1038/s41598-022-15376-3
  • W. C. C. for Infectious Disease Modelling, M. C. for Global Infectious Disease Analysis, A. L. J. I. for Disease, E. Analytics, and I. C. London: Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare demand. 2020.
  • Kucharski AJ, Russell TW, Diamond C, et al. Early dynamics of transmission and control of covid-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553–558. doi: 10.1016/S1473-3099(20)30144-4
  • Kuniya T. Prediction of the epidemic peak of coronavirus disease in japan. J Clin Med. 2020;9(3):789. doi: 10.3390/jcm9030789
  • Stutt RO, Retkute R, Bradley M, et al. A modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the covid-19 pandemic. Proc R Soc A. 2020;476(2238):20200376. doi: 10.1098/rspa.2020.0376
  • Samui P, Mondal J, Khajanchi S. A mathematical model for covid-19 transmission dynamics with a case study of india. Chaos Solit Fractals. 2020;140:110173. doi: 10.1016/j.chaos.2020.110173
  • Saha S, Samanta G, Nieto JJ. Epidemic model of covid-19 outbreak by inducing behavioural response in population. Nonlinear Dyn. 2020;102(1):455–487. doi: 10.1007/s11071-020-05896-w
  • Rihan F, Alsakaji H. Dynamics of a stochastic delay differential model for covid-19 infection with asymptomatic infected and interacting people: case study in the uae. Res Phys. 2021;28:104658.
  • Saha S, Samanta G, Nieto JJ. Impact of optimal vaccination and social distancing on covid-19 pandemic. Math Comput Simul. 2022;200:285–314. doi: 10.1016/j.matcom.2022.04.025
  • Saha S, Dutta P, Samanta G. Dynamical behavior of sirs model incorporating government action and public response in presence of deterministic and fluctuating environments. Chaos Solit Fractals. 2022;164:112643. doi: 10.1016/j.chaos.2022.112643
  • Rihan FA, Udhayakumar K, Sottocornola N, et al. Stability and bifurcation analysis of the caputo fractional-order asymptomatic covid-19 model with multiple time-delays. Int J Bifurc Chaos. 2023;33(02):2350022. doi: 10.1142/S0218127423500220
  • Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180(1-2):29–48. doi: 10.1016/S0025-5564(02)00108-6
  • Diekmann O, Heesterbeek JAP, Metz JA. On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–382. doi: 10.1007/BF00178324
  • Khajanchi S, Bera S, Roy TK. Mathematical analysis of the global dynamics of a HTLV-I infection model considering the role of cytotoxic t-lymphocytes. Math Comput Simul. 2021;180:354–378. doi: 10.1016/j.matcom.2020.09.009
  • Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004;1(2):361–404. doi: 10.3934/mbe.2004.1.361
  • Verhulst F. Nonlinear differential equations and dynamical systems. Springer Science & Business Media; 2006.
  • Fleming W, Rishel R, Marchuk G, et al. Deterministic and stochastic optimal control. 1975. (Applications of mathematics).
  • Pontryagin LS. Mathematical theory of optimal processes. CRC press; 1987.
  • Atkinson K, Han W, Stewart DE. Numerical solution of ordinary differential equations. Wiley; 2011.
  • Kovalnogov VN, Simos TE, Tsitouras C. Runge–Kutta pairs suited for sir-type epidemic models. Math Methods Appl Sci. 2021;44(6):5210–5216. doi: 10.1002/mma.v44.6