1,158
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Integrated production of microbial biopolymer (PHA) with other value-added bioproducts: an innovative approach for sustainable production

ORCID Icon, & ORCID Icon
Article: 2289983 | Received 05 Jul 2023, Accepted 27 Nov 2023, Published online: 21 Jan 2024

References

  • Anderson, A.J.; Haywood, G.W.; Dawes, E.A. Biosynthesis and Composition of Bacterial Poly(Hydroxyalkanoates). Int. J. Biol. Macromol. 1990, 12, 102–105. doi:10.1016/0141-8130(90)90060-N
  • Lee, S.Y. Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. doi:10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  • Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Radecka, I. Bacterial Synthesis of Biodegradable Polyhydroxyalkanoates. J. Appl. Microbiol. 2007, 102, 1437–1449. doi:10.1111/j.1365-2672.2007.03335.x
  • Angelova, N.; Hunkeler, D. Rationalizing the Design of Polymeric Biomaterials. Trends Biotechnol. 1999, 17, 409–421. doi:10.1016/S0167-7799(99)01356-6
  • Young, A.L. Biotechnology for Food, Energy, and Industrial Products: New Opportunities for Bio-based Products. Environ. Sci. Pollut. Res. 2003, 10, 273–276. doi:10.1007/BF02980256
  • Willke, T.; Vorlop, K.D. Industrial Bioconversion of Renewable Resources as an Alternative to Conventional Chemistry. Appl. Microbiol. Biotechnol. 2004, 66 (2), 131–142. doi:10.1007/s00253-004-1733-0
  • Wolf, O.; Crank, M.; Patel, M. Techno-economic Feasibility of Large-Scale Production of bio-Based Polymers in Europe. European Communities. 2005, EUR22103EN, 81–94.
  • Anderson, A.J.; Dawes, E.A. Occurrence, Metabolism, Metabolic Role, and Industrial Uses of Bacterial Polyhydroxyalkanoates. Microbiol. Rev. 1990, 54, 450–472. https://doi.org/10.1128/mmbr.54.4.450-472.1990.
  • Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure, and Properties of Polyhydroxyalkanoates: Biological Polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. doi:10.1016/S0079-6700(00)00035-6
  • Allen, A.D.; Anderson, W.A.; Ayorinde, F.O.; Eribo, B.E. Biosynthesis and Characterization of Copolymer Poly(3HB-co-3HV) from Saponified Jatropha curcas oil by Pseudomonas oleovorans. J. Ind. Microbiol. Biotechnol. 2010, 37, 849–856. doi:10.1007/s10295-010-0732-7
  • Chen, G.Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials 2005, 26, 6565–6578. doi:10.1016/j.biomaterials.2005.04.036
  • Możejko-Ciesielska, J.; Kiewisz, R. Bacterial Polyhydroxyalkanoates: Still Fabulous? Microbiol. Res. 2016, 192, 271–282. doi:10.1016/j.micres.2016.07.010
  • Rai, R.; Keshavarz, T.; Roether, J.A.; Boccaccini, A.R.; Roy, I. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Mater. Sci. Eng. R Reports. 2011, 72, 29–47. doi:10.1016/j.mser.2010.11.002
  • Steinbüchel, A.; Füchtenbusch, B. Bacterial and Other Biological Systems for Polyester Production. Trends Biotechnol. 1998, 16, 419–427. doi:10.1016/S0167-7799(98)01194-9
  • Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering. 2022, 9 (2), 74.
  • Choi, J.; Lee, S.Y. Economic Considerations in the Production of Poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) by Bacterial Fermentation. Appl. Microbiol. Biotechnol. 2000, 53, 646–649. doi:10.1007/s002530000326
  • Madkour, M.H.; Heinrich, D.; Alghamdi, M.A.; Shabbaj, I.I.; Steinbüchel, A. PHA Recovery from Biomass. Biomacromolecules. 2013, 14, 2963–2972. doi:10.1021/bm4010244
  • Frazzetto, G. White Biotechnology-the Application of Biotechnology to Industrial Production Holds Many Promises for Sustainable Development, but Many Products Still Have to Pass the Test of Economic Viability. EMBO Rep. 2003, 4, 835–837. https://doi.org/10.1142/9781848162310_0017.
  • Nikel, P.I.; De Almeida, A.; Melillo, E.C.; Galvagno, M.A.; Pettinari, M.J. New Recombinant Escherichia coli Strain Tailored for the Production of Poly(3-hydroxybutyrate) from Agroindustrial By-products. Appl. Environ. Microbiol. 2006, 72, 3949–3954. doi:10.1128/AEM.00044-06
  • Kumar, P.; Kim, B.S. Valorization of Polyhydroxyalkanoates Production Process by co-Synthesis of Value-Added Products. Bioresour. Technol. 2018, 269, 544–556. doi:10.1016/j.biortech.2018.08.120
  • Khanna, S.; Srivastava, A.K. A Simple Structured Mathematical Model for Biopolymer (PHB) Production. Biotechnol. Prog. 2005, 21, 830–838. doi:10.1021/bp0495769
  • Madison, L.L.; Huisman, G.W. Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. https://doi.org/10.1128/mmbr.63.1.21-53.1999.
  • Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of Polyhydroxyalkanoates in Stress Resistance of Microbial Cells: Biotechnological Consequences and Applications. Biotechnol. Adv. 2018 May–Jun, 36 (3), 856–870. doi:10.1016/j.biotechadv.2017.12.006. Epub 2017 Dec 14. PMID: 29248684.
  • Obruca, S.; Sedlacek, P.; Slaninova, E.; Fritz, I.; Daffert, C.; Meixner, K.; Sedrlova, Z.; Koller, M. Novel Unexpected Functions of PHA Granules. Appl. Microbiol. Biotechnol. 2020, 104, 4795–4810. doi:10.1007/s00253-020-10568-1
  • Steinbuchel, A.; Valentin, H.E. Diversity of Bacterial Polyhydroxyalkanoate Acids. FEMS Microbiol. Lett. 1995, 128, 219–228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x.
  • Hazer, B.; Steinbüchel, A. Increased Diversification of Polyhydroxyalkanoates by Modification Reactions for Industrial and Medical Applications. Appl. Microbiol. Biotechnol. 2007, 74, 1–12. https://doi.org/10.1007/s00253-006-0732-8
  • Rehm, B.H.A. Bacterial Polymers: Biosynthesis, Modifications and Applications. Nat. Publ. Gr. 2010, 8, 578–592. https://doi.org/10.1038/nrmicro2354
  • Zinn, M.; Hany, R. Tailored Material Properties of Polyhydroxyalkanoates Through Biosynthesis and Chemical Modification. Adv. Eng. Mater. 2005, 7, 408–411. doi:10.1002/adem.200500053
  • Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial Production of Polyhydroxyalkanoates (PHAs) and its Copolymers: A Review of Recent Advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. doi:10.1016/j.ijbiomac.2016.04.069
  • Li, Z.; Yang, J.; Loh, X.J. Polyhydroxyalkanoates: Opening Doors for a Sustainable Future. NPG Asia Mater. 2016, 8, e265. doi:10.1038/am.2016.48
  • Koller, M. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chem. Biochem. Eng. Q. 2019, 32, 413–438. doi:10.15255/CABEQ.2018.1385
  • Ferre-Guell, A.; Winterburn, J. Biosynthesis and Characterization of Polyhydroxyalkanoates with Controlled Composition and Microstructure. Biomacromolecules. 2018, 19, 996–1005. doi:10.1021/acs.biomac.7b01788
  • Sim, S.J.; Snell, K.D.; Hogan, S.A.; Stubbe, J.A.; Rha, C.; Sinskey, A.J. PHA Synthase Activity Controls the Molecular Weight and Polydispersity of Polyhydroxybutyrate in Vivo. Nat. Biotechnol. 1997, 15, 63–67. doi:10.1038/nbt0197-63
  • Valappil, S.P.; Rai, R.; Bucke, C.; Roy, I. Polyhydroxyalkanoate Biosynthesis in Bacillus cereus SPV Under Varied Limiting Conditions and an Insight into the Biosynthetic Genes Involved. J. Appl. Microbiol. 2008, 104, 1624–1635. doi:10.1111/j.1365-2672.2007.03678.x
  • Geethu, M.; Vrundha, R.; Raja, S.; Raghu Chandrashekhar, H.; Divyashree, M.S. Improvement of the Production and Characterisation of Polyhydroxyalkanoate by Bacillus endophyticus Using Inexpensive Carbon Feedstock. J. Polym. Environ. 2019, 27, 917–928. doi:10.1007/s10924-019-01397-z
  • Venkateswar Reddy, M.; Mawatari, Y.; Yajima, Y.; Satoh, K.; Venkata Mohan, S.; Chang, Y.C. Production of Poly-3-Hydroxybutyrate (P3HB) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) P(3HB-co-3HV) from Synthetic Wastewater Using Hydrogenophaga palleronii. Bioresour. Technol. 2016, 215, 155–162. doi:10.1016/j.biortech.2016.03.025
  • Rodrigues, P.R.; Assis, D.J.; Druzian, J.I. Simultaneous Production of Polyhydroxyalkanoate and Xanthan gum: From Axenic to Mixed Cultivation. Bioresour. Technol. 2019, 283, 332–339. doi:10.1016/j.biortech.2019.03.095
  • Alias, Z.; Tan, I.K.P. Isolation of Palm oil-Utilising, Polyhydroxyalkanoate (PHA)-Producing Bacteria by an Enrichment Technique. Bioresour. Technol. 2005, 96, 1229–1234. doi:10.1016/j.biortech.2004.10.012
  • Mohapatra, S.; Mohanta, P.R.; Sarkar, B.; Daware, A.; Kumar, C.; Samantaray, D.P. Production of Polyhydroxyalkanoates (PHAs) by Bacillus Strain Isolated from Waste Water and Its Biochemical Characterization. Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci. 2017a, 87, 459–466. doi:10.1007/s40011-015-0626-6
  • Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S.C. Medium Chain Length Polyhydroxyalkanoates Consisting Primarily of Unsaturated 3-Hydroxy-5-cis-Dodecanoate Synthesized by Newly Isolated Bacteria Using Crude Glycerol. Microb. Cell Fact. 2016, 15, 1–17. doi:10.1186/s12934-016-0454-2
  • Trakunjae, C.; Boondaeng, A.; Apiwatanapiwat, W.; Kosugi, A.; Arai, T.; Sudesh, K.; Vaithanomsat, P. Enhanced Polyhydroxybutyrate (PHB) Production by Newly Isolated Rare Actinomycetes Rhodococcus sp. Strain BSRT1-1 Using Response Surface Methodology. Sci. Rep. 2021, 11, 1–14. doi:10.1038/s41598-021-81386-2
  • Koller, M.; Atlić, A.; Dias, M.; Reiterer, A. Microbial PHA Production from Waste Raw Materials. In Plastics from Bacteria; Chen, G.Q., Ed.; Springer: Berlin, Heidelberg, 2010; pp. 85–119.
  • Ravindran, R.; Jaiswal, A.K. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering 2016, 3, 30. doi:10.3390/bioengineering3040030
  • Nikodinovic-Runic, J.; Guzik, M.; Kenny, S.T.; Babu, R.; Werker, A.; O’Connor, K.E. Carbon-rich Wastes as Feedstocks for Biodegradable Polymer (polyhydroxyalkanoate) Production Using Bacteria. Adv. Appl. Microbiol. 2013, 84, 139–200. doi:10.1016/B978-0-12-407673-0.00004-7
  • Kapoor, M.; Panwar, D.; Kaira, G.S. Bioprocesses for Enzyme Production Using Agro-Industrial Wastes : Technical Challenges and Commercialization Potential. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Dhillon, G.S., Kaur , S., Eds.; Academic Press. Elsevier Inc., 2016; pp. 61–93. https://doi.org/10.1016/B978-0-12-802392-1.00003-4
  • Syed, D.G.; Agasar, D.; Pandey, A. Production and Partial Purification of α-Amylase from a Novel Isolate Streptomyces gulbargensis. J. Ind. Microbiol. Biotechnol. 2009, 36, 189–194. doi:10.1007/s10295-008-0484-9
  • Saranya Devi, E.; Vijayendra, S.V.N.; Shamala, T.R. Exploration of Rice Bran, an Agro-Industry Residue, for the Production of Intra- and Extra-Cellular Polymers by Sinorhizobium meliloti MTCC 100. Biocatal. Agric. Biotechnol. 2012, 1, 80–84. doi:10.1016/j.bcab.2011.08.014
  • Sreekanth, M.S.; Vijayendra, S.V.N.; Joshi, G.J.; Shamala, T.R. Effect of Carbon and Nitrogen Sources on Simultaneous Production of α-Amylase and Green Food Packaging Polymer by Bacillus sp. CFR 67. J. Food Sci. Technol. 2013, 50, 404–408. doi:10.1007/s13197-012-0639-6
  • Costa, S.G.V.A.O.; Déziel, E.; Lépine, F. Characterization of Rhamnolipid Production by Burkholderia glumae. Lett. Appl. Microbiol. 2011, 53, 620–627. doi:10.1111/j.1472-765X.2011.03154.x
  • Tiso, T.; Zauter, R.; Tulke, H.; Leuchtle, B.; Li, W.J.; Behrens, B.; Wittgens, A.; Rosenau, F.; Hayen, H.; Blank, L.M. Designer Rhamnolipids by Reduction of Congener Diversity: Production and Characterization. Microb. Cell Fact. 2017, 16, 1–14. doi:10.1186/s12934-017-0838-y
  • Hošková, M.; Ježdík, R.; Schreiberová, O.; Chudoba, J.; Šír, M.; Čejková, A.; Masák, J.; Jirků, V.; Řezanka, T. Structural and Physiochemical Characterization of Rhamnolipids Produced by Acinetobacter calcoaceticus, Enterobacter asburiae, and Pseudomonas aeruginosa in Single Strain and Mixed Cultures. J. Biotechnol. 2015, 193, 45–51. doi:10.1016/j.jbiotec.2014.11.014
  • Randhawa, K.K.S.; Rahman, P.K.S.M. Rhamnolipid Biosurfactants-past, Present, and Future Scenario of the Global Market. Front. Microbiol. 2014, 5, 1–7. https://doi.org/10.3389/fmicb.2014.00454
  • De Oliveira, M.R; Magri, A.; Baldo, C.; Camilios-Neto, D.; Minucelli, T.; Celligoi, M.A.P.C. Sophorolipids A Promising Biosurfactant and It’s Applications. Int. J. Adv. Biotechnol. Res. 2015, 6 (2), 161–174.
  • Biselli, A.; Willenbrink, A.L.; Leipnitz, M.; Jupke, A. Development, Evaluation, and Optimisation of Downstream Process Concepts for Rhamnolipids and 3-(3-Hydroxyalkanoyloxy) Alkanoic Acids. Sep. Purif. Technol. 2020, 250, 117031. doi:10.1016/j.seppur.2020.117031
  • Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent Advancements in the Production of Rhamnolipid Biosurfactants by Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. https://doi.org/10.1039/d0ra04953k.
  • Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges Towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering. 2017, 4, 55. doi:10.3390/bioengineering4020055
  • Mukherjee, S.; Das, P.; Sen, R. Towards Commercial Production of Microbial Surfactants. Trends Biotechnol. 2006, 24, 509–515. doi:10.1016/j.tibtech.2006.09.005
  • Marsudi, S.; Unno, H.; Hori, K. Palm oil Utilization for the Simultaneous Production of Polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2008, 78, 955–961. doi:10.1007/s00253-008-1388-3
  • Pantazaki, A.A.; Papaneophytou, C.P.; Lambropoulou, D.A. Simultaneous Polyhydroxyalkanoates and Rhamnolipids Production by Thermus thermophilus. AMB. Express. 2011, 1, 17. doi:10.1186/2191-0855-1-17
  • Kourmentza, C.; Costa, J.; Azevedo, Z.; Servin, C.; Grandfils, C.; De Freitas, V.; Reis, M.A.M. Burkholderia thailandensis as a Microbial Cell Factory for the Bioconversion of Used Cooking oil to Polyhydroxyalkanoates and Rhamnolipids. Bioresour. Technol. 2018, 247, 829–837. doi:10.1016/j.biortech.2017.09.138
  • Brunchi, C.E.; Bercea, M.; Morariu, S.; Dascalu, M. Some Properties of Xanthan gum in Aqueous Solutions: Effect of Temperature and pH. J. Polym. Res. 2016, 23, 123. doi:10.1007/s10965-016-1015-4
  • García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, Recovery, and Properties. Biotechnol. Adv. 2000, 18, 549–579. doi:10.1016/S0734-9750(00)00050-1
  • Zeng, C.; Zhao, H.; Wan, Z.; Xiao, Q.; Xia, H.; Guo, S. Highly Biodegradable, Thermostable Eutectogels Prepared by Gelation of Natural Deep Eutectic Solvents Using Xanthan gum: Preparation and Characterization. RSC Adv. 2020, 10, 28376–28382. https://doi.org/10.1039/d0ra03390a.
  • Jung, H.R.; Choi, T.R.; Han, Y.H.; Park, Y.-L.; Park, J.Y.; Song, H.-S.; Yang, S.-Y.; Bhatia, S.K.; Gurav, R.; Park, H.; Namgung, S.; Choi, K.-Y.; Yang, Y.-H. Production of Blue-Colored Polyhydroxybutyrate (PHB) by one-pot Production and Coextraction of Indigo and PHB from Recombinant Escherichia coli. Dyes Pigm. 2020, 173, 107889. doi:10.1016/j.dyepig.2019.107889
  • de Meneses, L.; Pereira, J.R.; Sevrin, C.; Grandfils, C.; Paiva, A.; Reis, M.A.M.; Freitas, F. Pseudomonas chlororaphis as a Multiproduct Platform: Conversion of Glycerol into High-Value Biopolymers and Phenazines. N. Biotechnol. 2020, 55, 84–90. doi:10.1016/j.nbt.2019.10.002
  • Hassan, E.A.; Hemida, M.; Alla, A.; Naser, A.; Zohri, A.; Ragaey, M.M.; Mohamed, S. Production of Butanol and Polyhydroxyalkanoate from Industrial Waste by Clostridium beijerinckii ASU10. International J. Energy Res. 2019, 43, 3640–3652. doi:10.1002/er.4514
  • Gurav, R.; Bhatia, S.K.; Moon, Y.M.; Choi, T.R.; Jung, H.R.; Yang, S.Y.; Song, H.S.; Jeon, J.M.; Yoon, J.J.; Kim, Y.G.; Yang, Y.H. One-pot Exploitation of Chitin Biomass for Simultaneous Production of Electricity, n-Acetylglucosamine and Polyhydroxyalkanoates in Microbial Fuel Cell Using Novel Marine Bacterium Arenibacter Palladensis YHY2. J. Clean. Prod. 2019, 209, 324–332. doi:10.1016/j.jclepro.2018.10.252
  • Sukan, A.; Roy, I.; Keshavarz, T. A Strategy for Dual Biopolymer Production of P(3HB) and γ-PGA. J. Chem. Technol. Biotechnol. 2017a, 92, 1548–1557. doi:10.1002/jctb.5259
  • Koller, M.; Chiellini, E.; Braunegg, G. Study on the Production and Re-use of Poly (3-hydroxybutyrate-co-3- hydroxyvalerate) and Extracellular Polysaccharide by the Archaeon Haloferax mediterranei Strain DSM 1411. Chem. Biochem. Eng. Q. 2015, 29, 87–98. doi:10.15255/CABEQ.2014.2058
  • Shamala, T.R.; Vijayendra, S.V.N.; Joshi, G.J. Agro-industrial Residues and Starch for Growth and Co-production of Polyhydroxyalkanoate Copolymer and α -amylase by Bacillus sp. CFR-67. Brazilian J. Microbiol. 2012, 43, 1094–1102. doi:10.1590/S1517-83822012000300036
  • Guo, W.; Song, C.; Kong, M. Simultaneous Production and Characterization of Medium-chain-length polyhydroxyalkanoates and Alginate oligosaccharides by Pseudomonas mendocina NK-01 791–801; 2011.
  • Pal, S.; Manna, A.; Paul, A.K. Production of Poly(β-Hydroxybutyric Acid) and Exopolysaccharide by Azotobacter beijerinckii WDN-01. World J. Microbiol. Biotechnol. 1999, 15, 11–16. doi:10.1023/A:1008825009825
  • Bhattacharya, S.; Dubey, S.; Singh, P.; Shrivastava, A. Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry. Bioengineering 2016, 3, 34. doi:10.3390/bioengineering3040034
  • Muhammad, M.; Aloui, H.; Khomlaem, C.; Hou, C.T.; Kim, B.S. Production of Polyhydroxyalkanoates and Carotenoids through Cultivation of Different Bacterial Strains Using Brown Algae Hydrolysate as a Carbon Source. Biocata. Agri. Biotech. 2020, 30, 101852. doi:10.1016/j.bcab.2020.101852
  • Khomlaem, C.; Aloui, H.; Deshmukh, A.R.; Yun, J.H.; Kim, H.S.; Napathorn, S.C.; Kim, B.S. Defatted Chlorella Biomass as a Renewable Carbon Source for Polyhydroxyalkanoates and Carotenoids co-Production. Alga.l Res. 2020, 51, 102068. doi:10.1016/j.algal.2020.102068
  • Khomlaem, C.; Aloui, H.; Kim, B.S. Biosynthesis of Polyhydroxyalkanoates from Defatted Chlorella Biomass as an Inexpensive Substrate. Appl. Sci. 2021, 11 (3), 1094. doi:10.3390/app11031094
  • Khomlaem, C.; Aloui, H.; Singhvi, M.; Kim, B.S. Production of Polyhydroxyalkanoates and Astaxanthin from Lignocellulosic Biomass in High Cell Density Membrane Bioreactor. Chem. Eng. J. 2023, 451 (2), 138641. doi:10.1016/j.cej.2022.138641
  • Abd El-malek, F.; Rofeal, M.; Farag, A.; Omar, S.; Khairy, H. Polyhydroxyalkanoate Nanoparticles Produced by Marine Bacteria Cultivated on Cost Effective Mediterranean Algal Hydrolysate Media. J. Biotechnol. 2021, 328, 95–105. doi:10.1016/j.jbiotec.2021.01.008
  • Freitas, F.; Alves, V.D.; Reis, M.A.M. Advances in Bacterial Exopolysaccharides: From Production to Biotechnological Applications. Trends Biotechnol. 2011, 29, 388–398. doi:10.1016/j.tibtech.2011.03.008
  • Vijayendra, S.V.N.; Shamala, T.R. Film Forming Microbial Biopolymers for Commercial Applications-A Review. Crit. Rev. Biotechnol. 2014, 34, 338–357. doi:10.3109/07388551.2013.798254
  • de Graaff, D.R.; Felz, S.; Neu, T.R.; Pronk, M.; van Loosdrecht, M.C.M.; Lin, Y. Sialic Acids in the Extracellular Polymeric Substances of Seawater-Adapted Aerobic Granular Sludge. Water Res. 2019, 155, 343–351. doi:10.1016/j.watres.2019.02.040
  • Paul, E.; Bessière, Y.; Dumas, C.; Girbal-Neuhauser, E. Biopolymers Production from Wastes and Wastewaters by Mixed Microbial Cultures: Strategies for Microbial Selection. Waste. Biomass. Valorization. 2021, 12, 4213–4237. doi:10.1007/s12649-020-01252-6
  • Schmid, J.; Sieber, V.; Rehm, B. Bacterial Exopolysaccharides: Biosynthesis Pathways and Engineering Strategies. Front. Microbiol. 2015, 6, 1–24. doi:10.3389/fmicb.2015.00496
  • Lama, L.; Nicolaus, B.; Calandrelli, V.; Manca, M.C.; Romano, I.; Gambacorta, A. Effect of Growth Conditions on Endo- and Exopolymer Biosynthesis in Anabaena cylindrica 10 C. Phytochemistry. 1996, 42, 655–659. doi:10.1016/0031-9422(95)00985-X
  • Wang, J.; Yu, H.Q. Biosynthesis of Polyhydroxybutyrate (PHB) and Extracellular Polymeric Substances (EPS) by Ralstonia eutropha ATCC 17699 in Batch Cultures. Appl. Microbiol. Biotechnol. 2007, 75, 871–878. doi:10.1007/s00253-007-0870-7
  • Martinez-Toledo, M.V.; Gonzalez-Lopez, J.; Rodelas, B.; Pozo, C.; Salmeron, V. Production of poly-β-hydroxybutyrate by Azotobacter chroococcum H23 in chemically defined medium and alpechin medium. J. Appl. Bacteriol. 1995, 78, 413–418. doi:10.1111/j.1365-2672.1995.tb03427.x
  • Page, W.J.; Manchak, J.; Rudy, B. Formation of Poly(Hydroxybutyrate-co-Hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 1992, 58, 2866–2873. doi:10.1128/aem.58.9.2866-2873.1992
  • Riaz, S.; Rhee, K.Y.; Park, S.J. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers (Basel) 2021, 13, 253. doi:10.3390/polym13020253
  • Yang, X.; Suk, H.; Park, C.; Wook, S. Current Status and Prospects of Organic Waste Utilization for Biorefineries. Renew. Sustain. Energy Rev. 2015, 49, 335–349. doi:10.1016/j.rser.2015.04.114
  • Patel, S.K.S.; Kalia, J.L.V.C. Integrative Approach for Producing Hydrogen and Polyhydroxyalkanoate from Mixed Wastes of Biological Origin. Indian J. Microbiol. 2016, 56, 293–300. doi:10.1007/s12088-016-0595-3
  • Wu, S.C.; Liou, S.Z.; Lee, C.M. Bioresource Technology Correlation Between Bio-hydrogen Production and Polyhydroxybutyrate (PHB) Synthesis by Rhodopseudomonas palustris WP3-5. Bioresour. Technol. 2012, 113, 44–50. doi:10.1016/j.biortech.2012.01.090
  • Singh, M.; Kumar, P.; Patel, S.K.S.; Kalia, V.C. Production of Polyhydroxyalkanoate Co-Polymer by Bacillus thuringiensis. Indian J. Microbiol. 2013, 53, 77–83. doi:10.1007/s12088-012-0294-7
  • Ebrahimian, F.; Karimi, K.; Kumar, R. Sustainable Biofuels and Bioplastic Production from the Organic Fraction of Municipal Solid Waste. Waste Manag. 2020, 116, 40–48. doi:10.1016/j.wasman.2020.07.049
  • Chaturvedi, V.; Verma, P. Microbial Fuel Cell: A Green Approach for the Utilization of Waste for the Generation of Bioelectricity. Bioresour. Bioprocess. 2016, 3, 38. doi:10.1186/s40643-016-0116-6
  • Lopes, C.; Antelo, L.T.; Franco-Uría, A.; Alonso, A.A.; Pérez-Martín, R. Chitin Production from Crustacean Biomass: Sustainability Assessment of Chemical and Enzymatic Processes. J. Clean. Prod. 2018, 172, 4140–4151. doi:10.1016/j.jclepro.2017.01.082
  • Bhatia, S.K.; Yoon, J.J.; Kim, H.J.; Hong, J.W.; Gi Hong, Y.; Song, H.S.; Moon, Y.M.; Jeon, J.M.; Kim, Y.G.; Yang, Y.H. Engineering of Artificial Microbial Consortia of Ralstonia eutropha and Bacillus subtilis for Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer Production from Sugarcane Sugar Without Precursor Feeding. Bioresour. Technol. 2018, 257, 92–101. doi:10.1016/j.biortech.2018.02.056
  • Torregrosa-Crespo, J.; Pire Galiana, C.; Martínez-Espinosa, R.M. Biocompounds from Haloarchaea and Their Uses in Biotechnology. In Archaea-New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications; Sghaier, H., Najjari, A., Ghedira, K., Eds.; InTech: London, 2017; pp. 63–82.
  • Kumar, P.; Kim, B.S. Paracoccus sp. Strain LL1 as a Single Cell Factory for the Conversion of Waste Cooking oil to Polyhydroxyalkanoates and Carotenoids. Appl. Food Biotechnol. 2019, 6 (1), 53–60.
  • Kumar, P.; Jun, H.B.; Kim, B.S. Co-production of Polyhydroxyalkanoates and Carotenoids Through Bioconversion of Glycerol by Paracoccus sp. Strain LL1. Int. J. Biol. Macromol. 2018, 107, 2552–2558.
  • Corrêa, P.S.; Teixeira, C.M.L.L. Polyhydroxyalkanoates and Pigments Coproduction by Arthrospira (Spirulina) Platensis Cultivated in Crude Glycerol. J. Appl. Phycol. 2021, 33 (3), 1487–1500.
  • Kumar, V.; Darnal, S.; Kumar, S.; Kumar, S.; Singh, D. Bioprocess for Co-production of Polyhydroxybutyrate and Violacein Using Himalayan Bacterium Iodobacter sp. PCH194. Bioresour. Technol. 2021, 319, 124235.
  • Park, S.; Yang, Y.H.; Choi, K.Y. One-pot Production of Thermostable PHB Biodegradable Polymer by co-Producing Bio-Melanin Pigment in Engineered Escherichia Coli. Biomass Convers. Biorefin. 2022, 1, 1–9.