2,130
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

A comprehensive review of metal-based redox flow batteries: progress and perspectives

&
Article: 2302834 | Received 08 Aug 2023, Accepted 03 Jan 2024, Published online: 18 Jan 2024

References

  • López-Vizcaíno, R.; Mena, E.; Millán, M.; Rodrigo, M.A.; Lobato, J. Performance of a Vanadium Redox Flow Battery for the Storage of Electricity Produced in Photovoltaic Solar Panels. Renew. Energy 2017, 114, 1123–1133. doi:10.1016/j.renene.2017.07.118.
  • United States Energy Information Administration. Annual Energy Outlook 2013 Early Release Overview. Annual Energy Outlook 2013 Early Release Overview 2011.
  • Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 1704–1709. doi:10.1073/pnas.0812721106.
  • Edenhofer, O.; Seyboth, K.; Creutzig, F.; Schlömer, S. On the Sustainability of Renewable Energy Sources. Annu. Rev. Environ. Resour. 2013, 38, 169–200. doi:10.1146/annurev-environ-051012-145344.
  • Bussar, C.; Moos, M.; Alvarez, R.; Wolf, P.; Thien, T.; Chen, H.; Cai, Z.; Leuthold, M.; Sauer, D.U.; Moser, A. Optimal Allocation and Capacity of Energy Storage Systems in a Future European Power System with 100% Renewable Energy Generation. Energy Procedia 2014, 46, 40–47. doi:10.1016/j.egypro.2014.01.156.
  • Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped Hydro Energy Storage System: A Technological Review. Renewable Sustainable Energy Rev. 2015, 44, 586–598. doi:10.1016/j.rser.2014.12.040.
  • Pullen, K.R. The Status and Future of Flywheel Energy Storage. Joule 2019, 3, 1394–1399. doi:10.1016/j.joule.2019.04.006.
  • Papič, I. Simulation Model for Discharging a Lead-Acid Battery Energy Storage System for Load Leveling. IEEE Trans. Energy Convers. 2006, 21, 608–615. doi:10.1109/TEC.2005.853746.
  • Kumar, D.; Rajouria, S.K.; Kuhar, S.B.; Kanchan, D.K. Progress and Prospects of Sodium-Sulfur Batteries: A Review. Solid State Ion. 2017, 312, 8–16. doi:10.1016/j.ssi.2017.10.004.
  • Fan, L.; Tu, Z.; Chan, S.H. Recent Development of Hydrogen and Fuel Cell Technologies: A Review. Energy Reports 2021, 7, 8421–8446. doi:10.1016/j.egyr.2021.08.003.
  • Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University 2020, 26, 208–217. doi:10.1007/s12209-020-00236-w.
  • Buckles, W.; Hassenzahl, W.v. Superconducting Magnetic Energy Storage. IEEE Power Eng. Rev. 2000, 20, 16–20. doi:10.1109/39.841345.
  • Budt, M.; Wolf, D.; Span, R.; Yan, J. A Review on Compressed air Energy Storage: Basic Principles,: Past Milestones and Recent Developments. Appl. Energy 2016, 170, 250–268. doi:10.1016/j.apenergy.2016.02.108.
  • Zhang, H.; Li, X.; Zhang, J. Redox Flow Batteries: Fundamentals and Applications; 2017. doi:10.1201/9781315152684.
  • Skyllas-Kazacos, M.; Grossmith, F. Efficient Vanadium Redox Flow Cell. J. Electrochem. Soc. 1987, 134, 2950–2953. doi:10.1149/1.2100321.
  • Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. – Int. Ed. 2017, 56, 686–711. doi:10.1002/anie.201604925.
  • Archana, K.S.; Suresh, S.; Ragupathy, P.; Ulaganathan, M. Investigations on New Fe–Mn Redox Couple Based Aqueous Redox Flow Battery. Electrochim. Acta 2020, 345, 136245. doi:10.1016/j.electacta.2020.136245.
  • Suresh, S.; Ulaganathan, M.; Venkatesan, N.; Periasamy, P.; Ragupathy, P. High Performance Zinc-Bromine Redox Flow Batteries: Role of Various Carbon Felts and Cell Configurations. J Energy Storage 2018, 20, 134–139. doi:10.1016/j.est.2018.09.006.
  • Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55. doi:10.1149/1.3599565.
  • Alotto, P.; Guarnieri, M.; Moro, F. Redox Flow Batteries for the Storage of Renewable Energy: A Review. Renewable Sustainable Energy Rev. 2014, 29, 325–335. doi:10.1016/j.rser.2013.08.001.
  • Leung, P.; Shah, A.A.; Sanz, L.; Flox, C.; Morante, J.R.; Xu, Q.; Mohamed, M.R.; Ponce de León, C.; Walsh, F.C. Recent Developments in Organic Redox Flow Batteries: A Critical Review. J. Power Sources 2017, 360, 243–283. doi:10.1016/j.jpowsour.2017.05.057.
  • Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Fante, K.A., Kebede, A.A., Mierlo, J.V. A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020, 12, 10511. doi:10.3390/su122410511.
  • Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Adv. Funct. Mater. 2013, 23, 970–986. doi:10.1002/adfm.201200694.
  • Potash, R.A.; McKone, J.R.; Conte, S.; Abruña, H.D. On the Benefits of a Symmetric Redox Flow Battery. J. Electrochem. Soc. 2016, 163, A338–A344. doi:10.1149/2.0971602jes.
  • Cheng, J.; Zhang, L.; Yang, Y.S.; Wen, Y.H.; Cao, G.P.; Wang, X.D. Preliminary Study of Single Flow Zinc-Nickel Battery. Electrochem. Commun. 2007, 9, 2639–2642. doi:10.1016/j.elecom.2007.08.016.
  • Sukkar, T.; Skyllas-Kazacos, M. Membrane Stability Studies for Vanadium Redox Cell Applications. J. Appl. Electrochem. 2004, 34, 137–145. doi:10.1023/B:JACH.0000009931.83368.dc.
  • Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion Exchange Membranes for Vanadium Redox Flow Battery (VRB) Applications. Energy Environ. Sci. 2011, 4, 1147. doi:10.1039/c0ee00770f.
  • Lou, X.; Lu, B.; He, M.; Yu, Y.; Zhu, X.; Peng, F.; Qin, C.; Ding, M.; Jia, C. Functionalized Carbon Black Modified Sulfonated Polyether Ether Ketone Membrane for Highly Stable Vanadium Redox Flow Battery. J. Memb. Sci. 2022, 643, 120015. doi:10.1016/j.memsci.2021.120015.
  • Singh, A.K.; Sharma, P.; Singh, K.; Shahi, V.K. Improved Performance of Vanadium Redox Flow Battery with Tuneable Alkyl Spacer Based Cross-Linked Anion Exchange Membranes. J. Power Sources 2022, 520, 230856. doi:10.1016/J.JPOWSOUR.2021.230856.
  • Li, J.; Liu, J.; Xu, W.; Long, J.; Huang, W., Zhang, Y.; Chu L. Highly Ion-Selective Sulfonated Polyimide Membranes with Covalent Self-Crosslinking and Branching Structures for Vanadium Redox Flow Battery. Chem. Eng. J. 2022, 437, 135414. doi:10.1016/J.CEJ.2022.135414.
  • Jia, C.; Cheng, Y.; Ling, X.; Wei, G.; Liu, J.; Yan, C. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications. Electrochim. Acta 2015, 153, 44–8. doi:10.1016/J.ELECTACTA.2014.11.123.
  • Dai, W.; Shen, Y.; Li, Z.; Yu, L.; Xi, J.; Qiu, X. SPEEK/Graphene Oxide Nanocomposite Membranes with Superior Cyclability for Highly Efficient Vanadium Redox Flow Battery. J. Mater. Chem. A Mater 2014, 2, 12423–12432. doi:10.1039/c4ta02124j.
  • Zhang, Y.; Wang, H.; Yu, W.; Shi, H. Structure and Properties of Sulfonated Poly(Ether Ether Ketone) Hybrid Membrane with Polyaniline-Chains-Modified Graphene Oxide and Its Application for Vanadium Redox Flow Battery. ChemistrySelect 2018, 3, 9249–9258. doi:10.1002/slct.201801548.
  • Li, Z.; Liu, L.; Yu, L.; Wang, L.; Xi, J.; Qiu, X.; Chen, L. Characterization of Sulfonated Poly(Ether Ether Ketone)/Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Composite Membrane for Vanadium Redox Flow Battery Application. J. Power Sources 2014, 272, 427–35. doi:10.1016/J.JPOWSOUR.2014.08.101.
  • Hossain, S.I.; Aziz, M.A.; Han, D.; Selvam, P.; Shanmugam, S. Fabrication of SPAEK-Cerium Zirconium Oxide Nanotube Composite Membrane with Outstanding Performance and Durability for Vanadium Redox Flow Batteries. J. Mater. Chem. A Mater 2018, 6, 20205–20213. doi:10.1039/c8ta08349e.
  • Niu, R.; Kong, L.; Zheng, L.; Wang, H.; Shi, H. Novel Graphitic Carbon Nitride Nanosheets/Sulfonated Poly(Ether Ether Ketone) Acid-Base Hybrid Membrane for Vanadium Redox Flow Battery. J. Memb. Sci. 2017, 525, 220–8. doi:10.1016/J.MEMSCI.2016.10.049.
  • Li, J.; Zhang, Q.; Peng, S.; Zhang, D.; Yan, X.; Wu, X.; Gong, X.; Wang, Q.; He, G. Electrospinning Fiberization of Carbon Nanotube Hybrid Sulfonated Poly (Ether Ether Ketone) ion Conductive Membranes for a Vanadium Redox Flow Battery. J. Memb. Sci. 2019, 583, 93–102. doi:10.1016/J.MEMSCI.2019.04.043.
  • Ahn, Y.; Kim, D. Ultra-low Vanadium ion Permeable Electrolyte Membrane for Vanadium Redox Flow Battery by Pore Filling of PTFE Substrate. Energy Storage Mater 2020, 31, 105–14. doi:10.1016/J.ENSM.2020.06.035.
  • Che, X.; Tang, W.; Dong, J.; Aili, D.; Yang, J. Anion Exchange Membranes Based on Long Side-Chain Quaternary Ammonium-Functionalized Poly(Arylene Piperidinium)s for Vanadium Redox Flow Batteries. Sci. China Mater. 2022, 65, 683–694. doi:10.1007/s40843-021-1786-0.
  • Xu, W.; Long, J.; Liu, J.; Luo, H.; Duan, H.; Zhang, Y.; Li, J.; Qi, X.; Chu, L. A Novel Porous Polyimide Membrane with Ultrahigh Chemical Stability for Application in Vanadium Redox Flow Battery. Chem. Eng. J. 2022, 428, 131203. doi:10.1016/J.CEJ.2021.131203.
  • Cha, M.S.; Jo, S.W.; Han, S.H.; Hong, S.H.; So, S.; Kim, T.H.; Oh, S.-G.; Hong, Y.T.; Lee, J.Y. Ether-free Polymeric Anion Exchange Materials with Extremely low Vanadium ion Permeability and Outstanding Cell Performance for Vanadium Redox Flow Battery (VRFB) Application. J. Power Sources 2019, 413, 158–66. doi:10.1016/J.JPOWSOUR.2018.12.036.
  • Ma, Y.; Li, L.; Ma, L.; Qaisrani, N.A.; Gong, S.; Li, P.; Zhang, F.; He, G. Cyclodextrin Templated Nanoporous Anion Exchange Membrane for Vanadium Flow Battery Application. J. Memb. Sci. 2019, 586, 98–105. doi:10.1016/J.MEMSCI.2019.05.055.
  • Ye, J.; Yu, S.; Zheng, C.; Sun, T.; Liu, J.; Li, H. Advanced Hybrid Membrane for Vanadium Redox Flow Battery Created by Polytetrafluoroethylene Layer and Functionalized Silicon Carbide Nanowires. Chem. Eng. J. 2022, 427, 131413. doi:10.1016/J.CEJ.2021.131413.
  • Zhang, Y.; Wang, H.; Qian, P.; Zhang, L.; Zhou, Y.; Shi, H. Hybrid Proton Exchange Membrane of Sulfonated Poly(Ether Ether Ketone) Containing Polydopamine-Coated Carbon Nanotubes Loaded Phosphotungstic Acid for Vanadium Redox Flow Battery. J. Memb. Sci. 2021, 625, 119159. doi:10.1016/J.MEMSCI.2021.119159.
  • Zhang, D.; Xin, L.; Xia, Y.; Dai, L.; Qu, K.; Huang, K.; Fan, Y.; Xu, Z. Advanced Nafion Hybrid Membranes with Fast Proton Transport Channels Toward High-Performance Vanadium Redox Flow Battery. J. Memb. Sci. 2021, 624, 119047. doi:10.1016/J.MEMSCI.2020.119047.
  • Afzal, C.W.; Pang, B.; Yan, X.; Jiang, X.; Cui, F.; Wu, X.; He, G. Oxidized Black Phosphorus Nanosheets/Sulfonated Poly (Ether Ether Ketone) Composite Membrane for Vanadium Redox Flow Battery. J. Memb. Sci. 2022, 644, 120084. doi:10.1016/J.MEMSCI.2021.120084.
  • Si, J.; Lv, Y.; Lu, S.; Xiang, Y. Microscopic Phase-Segregated Quaternary Ammonia Polysulfone Membrane for Vanadium Redox Flow Batteries. J. Power Sources 2019, 428, 88–92. doi:10.1016/J.JPOWSOUR.2019.04.100.
  • Cha, M.S.; Jeong, H.Y.; Shin, H.Y.; Hong, S.H.; Kim, T.H.; Oh, S.G.; Lee, J.Y.; Hong, Y.T. Crosslinked Anion Exchange Membranes with Primary Diamine-Based Crosslinkers for Vanadium Redox Flow Battery Application. J. Power Sources 2017, 363, 78–86. doi:10.1016/J.JPOWSOUR.2017.07.068.
  • Pang, B.; Cui, F.; Chen, W.; Wang, X.; Du, R.; Wu, X.; Yan, X.; Dai, Y.; He, G. Construction of Hierarchical Proton Sieving-Conductive Channels in Sulfated UIO-66 Grafted Polybenzimidazole ion Conductive Membrane for Vanadium Redox Flow Battery. J. Power Sources 2022, 526, 231132. doi:10.1016/J.JPOWSOUR.2022.231132.
  • Che, X.; Zhao, H.; Ren, X.; Zhang, D.; Wei, H.; Liu, J.; Zhang, X.; Yang, J. Porous Polybenzimidazole Membranes with High ion Selectivity for the Vanadium Redox Flow Battery. J. Memb. Sci. 2020, 611, 118359. doi:10.1016/J.MEMSCI.2020.118359.
  • Zhou, X.; Xue, R.; Zhong, Y.; Zhang, Y.; Jiang, F. Asymmetric Porous Membranes with Ultra-High ion Selectivity for Vanadium Redox Flow Batteries. J. Memb. Sci. 2020, 595, 117614. doi:10.1016/J.MEMSCI.2019.117614.
  • Qian, P.; Wang, H.; Sheng, J.; Zhou, Y.; Shi, H. Ultrahigh Proton Conductive Nanofibrous Composite Membrane with an Interpenetrating Framework and Enhanced Acid-Base Interfacial Layers for Vanadium Redox Flow Battery. J. Memb. Sci. 2022, 647, 120327. doi:10.1016/J.MEMSCI.2022.120327.
  • An, H.; Zhang, R.; Li, W.; Li, P.; Qian, H.; Yang, H. Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries. ACS Appl. Mater. Interfaces 2022, 14, 7845–7855. doi:10.1021/acsami.1c20627.
  • Xu, T. Ion Exchange Membranes: State of Their Development and Perspective. J. Memb. Sci. 2005, 263, 1–29. doi:10.1016/j.memsci.2005.05.002.
  • Egle, D. An Introduction to Ion Exchange. Von R. Paterson. 109 S. Heyden & Son Ltd.,: London 1970. Engl. Preis: DM 22.50. Arch Pharm 1970, 303, 1020–1020. doi:10.1002/ardp.19703031225.
  • Ion Exchange Resins. 2nd ed. By Robert Kunin. John Wiley & Sons,: Inc.,: New York, 1958. Xiii + 466pp. 15 × 23cm. Price $11. J. Am. Pharm. Assoc. 1958, 47, 836. doi:10.1002/jps.3030471140.
  • Prifti, H.; Parasuraman, A.; Winardi, S.; Lim, T.M.; Skyllas-Kazacos, M. Membranes for Redox Flow Battery Applications. Membranes 2012, 2, 275–306. doi:10.3390/membranes2020275.
  • Hosseini, S.M.; Jashni, E.; Amani, S.; van der Bruggen, B. Tailoring the Electrochemical Properties of ED ion Exchange Membranes Based on the Synergism of TiO2 Nanoparticles-co-GO Nanoplates. J. Colloid Interface Sci. 2017, 505, 763–775. doi:10.1016/j.jcis.2017.06.045.
  • Sreenath, S.; Sharma, N.K.; Nagarale, R.K. Alkaline all Iron Redox Flow Battery with a Polyethylene/Poly(Styrene-: Co -Divinylbenzene) Interpolymer Cation-Exchange Membrane. RSC Adv. 2020, 10, 44824–44833. doi:10.1039/d0ra08316j.
  • Chen, D.; Hickner, M.A.; Agar, E.; Kumbur, E.C. Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Appl. Mater. Interfaces 2013, 5, 7559–7566. doi:10.1021/am401858r.
  • Yuan, Z.; Li, X.; Zhao, Y.; Zhang, H. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery. ACS Appl. Mater. Interfaces 2015, 7, 19446–19454. doi:10.1021/acsami.5b05840.
  • Gierke, T.D.; Munn, G.E.; Wilson, F.C. Morphology in Nafion Perfluorinated Membrane Products,: as Determined by Wide- and Small-Angle X-Ray Studies. J. Polym. Sci. Part A-2,: Polym. Phys. 1981, 19, 1687–1704. doi:10.1002/pol.1981.180191103.
  • Yeager, H.L.; Steck, A. Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure. J. Electrochem. Soc. 1981, 128, 1880–1884. doi:10.1149/1.2127757.
  • Kim, S.; Yan, J.; Schwenzer, B.; Zhang, J.; Li, L., Liu, J., Yang, Z.G.; Hickner M.A. Cycling Performance and Efficiency of Sulfonated Poly(Sulfone) Membranes in Vanadium Redox Flow Batteries. Electrochem. Commun. 2010, 12, 1650–1653. doi:10.1016/j.elecom.2010.09.018.
  • Wang, N.; Yu, J.; Zhou, Z.; Fang, D.; Liu, S.; Liu, Y. SPPEK/TPA Composite Membrane as a Separator of Vanadium Redox Flow Battery. J. Memb. Sci. 2013, 437, 114–121. doi:10.1016/j.memsci.2013.02.053.
  • Ling, X.; Jia, C.; Liu, J.; Yan, C. Preparation and Characterization of Sulfonated Poly(Ether Sulfone)/Sulfonated Poly(Ether Ether Ketone) Blend Membrane for Vanadium Redox Flow Battery. J. Memb. Sci. 2012, 415-416, 306–312. doi:10.1016/j.memsci.2012.05.014.
  • Jia, C.; Liu, J.; Yan, C. A Multilayered Membrane for Vanadium Redox Flow Battery. J. Power Sources 2012, 203, 190–194. doi:10.1016/j.jpowsour.2011.10.102.
  • Chen, D.; Kim, S.; Li, L.; Yang, G.; Hickner, M.A. Stable Fluorinated Sulfonated Poly(Arylene Ether) Membranes for Vanadium Redox Flow Batteries. RSC Adv. 2012, 2, 8087. doi:10.1039/c2ra20834b.
  • Fujimoto, C.; Kim, S.; Stains, R.; Wei, X.; Li, L.; Yang, Z.G. Vanadium Redox Flow Battery Efficiency and Durability Studies of Sulfonated Diels Alder Poly(Phenylene)s. Electrochem. Commun. 2012, 20, 48–51. doi:10.1016/j.elecom.2012.03.037.
  • Yin, B.; Li, Z.; Dai, W.; Wang, L.; Yu, L.; Xi, J. Highly Branched Sulfonated Poly(Fluorenyl Ether Ketone Sulfone)s Membrane for Energy Efficient Vanadium Redox Flow Battery. J. Power Sources 2015, 285, 109–118. doi:10.1016/j.jpowsour.2015.03.102.
  • MacKsasitorn, S.; Changkhamchom, S.; Sirivat, A.; Siemanond, K. Sulfonated Poly(Ether Ether Ketone) and Sulfonated Poly(1,4-Phenylene Ether Ether Sulfone) Membranes for Vanadium Redox Flow Batteries. High Perform. Polym. 2012, 24, 603–608. doi:10.1177/0954008312446762.
  • Vijayakumar, M.; Bhuvaneswari, M.S.; Nachimuthu, P.; Schwenzer, B.; Kim, S., Yang, Z.; Liu, J.; Graff, G.L.; Thevuthasan, S; Hu, J. Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries. J. Memb. Sci. 2011, 366, 325–334. doi:10.1016/j.memsci.2010.10.018.
  • Li, J.; Zhang, Y.; Zhang, S.; Huang, X.; Wang, L. Novel Sulfonated Polyimide/ZrO2 Composite Membrane as a Separator of Vanadium Redox Flow Battery. Polym. Adv. Technol. 2014, 25, 1610–1615. doi:10.1002/pat.3411.
  • Düerkop, D.; Widdecke, H.; Schilde, C.; Kunz, U.; Schmiemann, A. Polymer Membranes for all-Vanadium Redox Flow Batteries: A Review. Membranes (Basel) 2021, 11, 214. doi:10.3390/membranes11030214.
  • Kim, S.; Tighe, T.B.; Schwenzer, B.; Yan, J.; Zhang, J., Liu, J., Yang, Z; Hickner, M.A. Chemical and Mechanical Degradation of Sulfonated Poly(Sulfone) Membranes in Vanadium Redox Flow Batteries. J. Appl. Electrochem. 2011, 41, 1201–1213. doi:10.1007/s10800-011-0313-0.
  • Chen, D.; Hickner, M.A. V5+ Degradation of Sulfonated Radel Membranes for Vanadium Redox Flow Batteries. Phys. Chem. Chem. Phys. 2013, 15, 11299. doi:10.1039/c3cp52035h.
  • Hu, B.; Debruler, C.; Rhodes, Z.; Liu, T.L. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139, 1207–1214. doi:10.1021/jacs.6b10984.
  • Li, Y.; Liu, Y.; Xu, Z.; Yang, Z. Poly(Phenylene Oxide)-Based Ion-Exchange Membranes for Aqueous Organic Redox Flow Battery. Ind. Eng. Chem. Res. 2019, 58, 10707–10712. doi:10.1021/acs.iecr.9b01377.
  • Hagesteijn, K.F.L.; Jiang, S.; Ladewig, B.P. A Review of the Synthesis and Characterization of Anion Exchange Membranes. J. Mater. Sci. 2018, 53, 11131–11150. doi:10.1007/s10853-018-2409-y.
  • Li, K.; Chen, J.; Guan, M.; Tang, S. Novel Multi-Channel Anion Exchange Membrane Based on Poly Ionic Liquid-Impregnated Cationic Metal-Organic Frameworks. Int. J. Hydrogen Energy 2020, 45, 17813–17823. doi:10.1016/j.ijhydene.2020.04.196.
  • Yuan, X.Z.; Song, C.; Platt, A.; Zhao, N.; Wang, H., Li, H.; Fatih, K; Jang, D. A Review of all-Vanadium Redox Flow Battery Durability: Degradation Mechanisms and Mitigation Strategies. Int. J. Energy Res. 2019. doi:10.1002/er.4607.
  • Kreuer, K.D. Ion Conducting Membranes for Fuel Cells and Other Electrochemical Devices. Chem. Mater. 2014, 26, 361–380. doi:10.1021/cm402742u.
  • Chen, D.; Hickner, M.A.; Agar, E.; Kumbur, E.C. Selective Anion Exchange Membranes for High Coulombic Efficiency Vanadium Redox Flow Batteries. Electrochem. Commun. 2013, 26, 37–40. doi:10.1016/j.elecom.2012.10.007.
  • Qiu, J.; Li, M.; Ni, J.; Zhai, M.; Peng, J.; Xu, L.; Zhou, H.; Li, J.; Wei, G. Preparation of ETFE-Based Anion Exchange Membrane to Reduce Permeability of Vanadium Ions in Vanadium Redox Battery. J. Memb. Sci. 2007, 297, 174–180. doi:10.1016/j.memsci.2007.03.042.
  • Xing, D.; Zhang, S.; Yin, C.; Zhang, B.; Jian, X. Effect of Amination Agent on the Properties of Quaternized Poly(Phthalazinone Ether Sulfone) Anion Exchange Membrane for Vanadium Redox Flow Battery Application. J. Memb. Sci. 2010, 354, 68–73. doi:10.1016/j.memsci.2010.02.064.
  • Mohammadi, T.; Skyllas Kazacos, M. Modification of Anion-Exchange Membranes for Vanadium Redox Flow Battery Applications. J. Power Sources 1996, 63, 179–186. doi:10.1016/S0378-7753(96)02463-9.
  • Hwang, G.J.; Ohya, H. Crosslinking of Anion Exchange Membrane by Accelerated Electron Radiation as a Separator for the all-Vanadium Redox Flow Battery. J. Memb. Sci. 1997, 132, 55–61. doi:10.1016/S0376-7388(97)00040-9.
  • Yun, S.; Parrondo, J.; Ramani, V. A Vanadium-Cerium Redox Flow Battery with an Anion-Exchange Membrane Separator. Chempluschem 2015, 80, 412–421. doi:10.1002/cplu.201402096.
  • Lallo, E.; Khataee, A.; Lindström, R.W. Article Vanadium Redox Flow Battery Using AemionTM Anion Exchange Membranes. Processes 2022, 10, 270. doi:10.3390/pr10020270.
  • Singh, A.K.; Kumar, S.; Bhushan, M.; Shahi, V.K. High Performance Cross-Linked Dehydro-Halogenated Poly (Vinylidene Fluoride-co-Hexafluoro Propylene) Based Anion-Exchange Membrane for Water Desalination by Electrodialysis. Sep. Purif. Technol. 2020, 234, 116078. doi:10.1016/j.seppur.2019.116078.
  • Luo, Q.; Zhang, H.; Chen, J.; You, D.; Sun, C.; Zhang, Y. Preparation and Characterization of Nafion/SPEEK Layered Composite Membrane and its Application in Vanadium Redox Flow Battery. J. Memb. Sci. 2008, 325, 553–558. doi:10.1016/j.memsci.2008.08.025.
  • Khoiruddin; Ariono, D.; Subagjo; Wenten, I.G. Surface Modification of ion-Exchange Membranes: Methods,: Characteristics, and Performance. J. Appl. Polym. Sci. 2017, 134. doi:10.1002/app.45540.
  • Pärnamäe, R.; Mareev, S.; Nikonenko, V.; Melnikov, S.; Sheldeshov, N.; Zabolotskii, V.; Hamelers, H.V.M.; Tedesco, M. Bipolar Membranes: A Review on Principles, Latest Developments, and Applications. J. Memb. Sci. 2021, 617, 118538. doi:10.1016/j.memsci.2020.118538.
  • Fu, L.; Gao, X.; Yang, Y.; Aiyong, F.; Hao, H.; Gao, C. Preparation of Succinic Acid Using Bipolar Membrane Electrodialysis. Sep. Purif. Technol. 2014, 127, 212–218. doi:10.1016/j.seppur.2014.02.028.
  • Ma, J.; Wang, Y.; Peng, J.; Qiu, J.; Xu, L.; Li, J.; Zhai, M. Designing a New Process to Prepare Amphoteric Ion Exchange Membrane with Well-Distributed Grafted Chains for Vanadium Redox Flow Battery. J. Memb. Sci. 2012, 419-420, 1–8. doi:10.1016/j.memsci.2012.04.034.
  • Qiu, J.; Zhang, J.; Chen, J.; Peng, J.; Xu, L.; Zhai, M.; Li, J.; Wei, G. Amphoteric ion Exchange Membrane Synthesized by Radiation-Induced Graft Copolymerization of Styrene and Dimethylaminoethyl Methacrylate Into PVDF Film for Vanadium Redox Flow Battery Applications. J. Memb. Sci. 2009, 334, 9–15. doi:10.1016/j.memsci.2009.02.009.
  • Qiu, J.; Zhai, M.; Chen, J.; Wang, Y.; Peng, J.; Xu, L.; Li, J.; Wei, G. Performance of Vanadium Redox Flow Battery with a Novel Amphoteric ion Exchange Membrane Synthesized by two-Step Grafting Method. J. Memb. Sci. 2009, 342, 215–220. doi:10.1016/j.memsci.2009.06.043.
  • Ramdin, M.; Morrison, A.R.T.; de Groen, M.; van Haperen, R.; de Kler, R.; van den Broeke, L.J.P.; Trusler, J.P.M.; de Jong, W.; Vlugt, T.J.H. High Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: A Comparison Between Bipolar Membranes and Cation Exchange Membranes. Ind. Eng. Chem. Res. 2019, 58, 1834–1847. doi:10.1021/acs.iecr.8b04944.
  • Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-fractionation of Lithium Ions from Magnesium Ions by Electrodialysis Using Monovalent Selective ion-Exchange Membranes. Desalination 2017, 403, 128–135. doi:10.1016/j.desal.2016.05.010.
  • Ge, L.; Wu, L.; Wu, B.; Wang, G.; Xu, T. Preparation of Monovalent Cation Selective Membranes Through Annealing Treatment. J. Memb. Sci. 2014, 459, 217–222. doi:10.1016/j.memsci.2014.02.025.
  • Li, J.; Zhou, M.l.; Lin, J.y.; Ye, W.y.; Xu, Y.q.; Shen, J.n.; Gao, C.-j.; Bruggen, B.V.d. Mono-valent Cation Selective Membranes for Electrodialysis by Introducing Polyquaternium-7 in a Commercial Cation Exchange Membrane. J. Memb. Sci. 2015, 486, 89–96. doi:10.1016/j.memsci.2014.12.056.
  • Güler, E.; van Baak, W.; Saakes, M.; Nijmeijer, K. Monovalent-ion-selective Membranes for Reverse Electrodialysis. J. Memb. Sci. 2014, 455, 254–270. doi:10.1016/j.memsci.2013.12.054.
  • Zhang, Y.; Liu, R.; Lang, Q.; Tan, M.; Zhang, Y. Composite Anion Exchange Membrane Made by Layer-by-Layer Method for Selective ion Separation and Water Migration Control. Sep. Purif. Technol. 2018, 192, 278–286. doi:10.1016/j.seppur.2017.10.022.
  • Xu, X.; Lin, L.; Ma, G.; Wang, H.; Jiang, W.; He, Q.; Nirmalakhandan, N.; Xu, P. Study of Polyethyleneimine Coating on Membrane Permselectivity and Desalination Performance During Pilot-Scale Electrodialysis of Reverse Osmosis Concentrate. Sep. Purif. Technol. 2018, 207, 396–405. doi:10.1016/j.seppur.2018.06.070.
  • Cohen, B.; Lazarovitch, N.; Gilron, J. Upgrading Groundwater for Irrigation Using Monovalent Selective Electrodialysis. Desalination 2018, 431, 126–139. doi:10.1016/j.desal.2017.10.030.
  • Chieng, S.C.; Kazacos, M.; Skyllas-Kazacos, M. Modification of Daramic,: Microporous Separator, for Redox Flow Battery Applications. J. Memb. Sci. 1992, 75, 81–91. doi:10.1016/0376-7388(92)80008-8.
  • Mohammadi, T.; Skyllas Kazacos, M. Evaluation of the Chemical Stability of Some Membranes in Vanadium Solution. J. Appl. Electrochem. 1997, 27, 153–160. doi:10.1023/A:1018495722379.
  • Mohammadi, T.; Skyllas-Kazacos, M. Preparation of Sulfonated Composite Membrane for Vanadium Redox Flow Battery Applications. J. Memb. Sci. 1995, 107, 35–45. doi:10.1016/0376-7388(95)00096-U.
  • Mohammadi, T.; Skyllas-Kazacos, M. Use of Polyelectrolyte for Incorporation of ion-Exchange Groups in Composite Membranes for Vanadium Redox Flow Battery Applications. J. Power Sources 1995, 56, 91–96. doi:10.1016/0378-7753(95)80014-8.
  • Mohammadi, T.; Skyllas-Kazacos, M. Characterisation of Novel Composite Membrane for Redox Flow Battery Applications. J. Memb. Sci. 1995, 98, 77–87. doi:10.1016/0376-7388(94)00178-2.
  • Wei, W.; Zhang, H.; Li, X.; Mai, Z.; Zhang, H. Poly(Tetrafluoroethylene) Reinforced Sulfonated Poly(Ether Ether Ketone) Membranes for Vanadium Redox Flow Battery Application. J. Power Sources 2012, 208, 421–425. doi:10.1016/j.jpowsour.2012.02.047.
  • Urducea, C.B.; Nechifor, A.C.; Dimulescu, I.A.; Oprea, O.; Nechifor, G.; Totu, E.E.; Isildak, I.; Albu, P.C.; Bungău, S.G. Control of Nanostructured Polysulfone Membrane Preparation by Phase Inversion Method. Nanomaterials 2020, 10, 2349. doi:10.3390/nano10122349.
  • Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Wei, W. Silica Modified Nanofiltration Membranes with Improved Selectivity for Redox Flow Battery Application. Energy Environ. Sci. 2012, 5, 6299–6303. doi:10.1039/c1ee02571f.
  • Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Zhang, J. Nanofiltration (NF) Membranes: The Next Generation Separators for all Vanadium Redox Flow Batteries (VRBs)? Energy Environ. Sci. 2011, 4, 1676. doi:10.1039/c1ee01117k.
  • Xu, W.; Li, X.; Cao, J.; Yuan, Z.; Zhang, H. Morphology and Performance of Poly(Ether Sulfone)/Sulfonated Poly(Ether Ether Ketone) Blend Porous Membranes for Vanadium Flow Battery Application. RSC Adv. 2014, 4, 40400–40406. doi:10.1039/c4ra05083e.
  • Wei, W.; Zhang, H.; Li, X.; Zhang, H.; Li, Y.; Vankelecom, I. Hydrophobic Asymmetric Ultrafiltration PVDF Membranes: An Alternative Separator for VFB with Excellent Stability. Phys. Chem. Chem. Phys. 2013, 15, 1766–1771. doi:10.1039/c2cp43761a.
  • Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent Resistant Nanofiltration: Separating on a Molecular Level. Chem. Soc. Rev. 2008, 37, 365–405. doi:10.1039/b610848m.
  • Wei, X.; Nie, Z.; Luo, Q.; Li, B.; Chen, B.; Simmons, K.; Sprenkle, V.; Wang, W. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance all-Vanadium Redox Flow Battery Membrane. Adv. Energy. Mater. 2013, 3, 1215–1220. doi:10.1002/aenm.201201112.
  • Xi, X.; Ding, C.; Zhang, H.; Li, X.; Cheng, Y.; Zhang, H. Solvent Responsive Silica Composite Nanofiltration Membrane with Controlled Pores and Improved ion Selectivity for Vanadium Flow Battery Application. J. Power Sources 2015, 274, 1126–1134. doi:10.1016/j.jpowsour.2014.10.160.
  • Kim, J.G.; Lee, S.H.; Choi, S.i.; Jin, C.S.; Kim, J.C.; Ryu, C.H.; Hwang, G.-J. Application of Psf-PPSS-TPA Composite Membrane in the all-Vanadium Redox Flow Battery. J. Ind. Eng. Chem. 2010, 16, 756–762. doi:10.1016/j.jiec.2010.07.007.
  • Teng, X.; Zhao, Y.; Xi, J.; Wu, Z.; Qiu, X.; Chen, L. Nafion/Organically Modified Silicate Hybrids Membrane for Vanadium Redox Flow Battery. J. Power Sources 2009, 189, 1240–1246. doi:10.1016/j.jpowsour.2008.12.040.
  • Pan, J.; Wang, S.; Xiao, M.; Hickner, M.; Meng, Y. Layered Zirconium Phosphate Sulfophenylphosphonates Reinforced Sulfonated Poly (Fluorenyl Ether Ketone) Hybrid Membranes with High Proton Conductivity and low Vanadium ion Permeability. J. Memb. Sci. 2013, 443, 19–27. doi:10.1016/j.memsci.2013.04.068.
  • Aziz, M.A.; Shanmugam, S. High-Performance Cobalt-Tungsten All-Heteropolyacid Redox Flow Battery with a TiZrO4-Decorated Advanced Nafion Composite Membrane. ACS Appl Energy Mater 2021, 4, 2115–2129. doi:10.1021/acsaem.0c02538.
  • Lee, K.J.; Chu, Y.H. Preparation of the Graphene Oxide (GO)/Nafion Composite Membrane for the Vanadium Redox Flow Battery (VRB) System. Vacuum 2014, 107, 269–276. doi:10.1016/j.vacuum.2014.02.023.
  • Li, X.; Sabir, I. Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs. Int. J. Hydrogen Energy 2005, 30, 359–371. doi:10.1016/j.ijhydene.2004.09.019.
  • Liao, S.H.; Yen, C.Y.; Weng, C.C.; Lin, Y.F.; Ma, C.C.M.; Yang, C.H.; TSAI, M.; YEN, M.; HSIAO, M.; LEE, S. Preparation and Properties of Carbon Nanotube/Polypropylene Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2008, 185, 1225–1232. doi:10.1016/j.jpowsour.2008.06.097.
  • Wang, Z.; Xiao, B.; Lin, Z.; Xu, Y.; Lin, Y.; Meng, F.; Zhang, Q.; Gu, L.; Fang, B.; Guo, S.; Zhong, W. PtSe2/Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angew. Chem. – Int. Ed. 2021, 60, 23388–23393. doi:10.1002/anie.202110335.
  • Wang, Z.; Lin, Z.; Deng, J.; Shen, S.; Meng, F.; Zhang, J.; Zhang, Q.; Zhong, W.; Gu, L. Elevating the d-Band Center of Six-Coordinated Octahedrons in Co9S8 Through Fe-Incorporated Topochemical Deintercalation. Adv. Energy. Mater. 2021, 11, doi:10.1002/aenm.202003023.
  • Shen, S.; Lin, Z.; Song, K.; Wang, Z.; Huang, L.; Yan, L.; Meng, F.; Zhang, Q.; Gu, L.; Zhong, W. Reversed Active Sites Boost the Intrinsic Activity of Graphene-Like Cobalt Selenide for Hydrogen Evolution. Angew. Chem. – Int. Ed. 2021, 60, 12360–12365. doi:10.1002/anie.202102961.
  • Caglar, B.; Richards, J.; Fischer, P.; Tuebke, J. Conductive Polymer Composites and Coated Metals as Alternative Bipolar Plate Materials for all-Vanadium Redox-Flow Batteries. Adv Mater Lett 2014, 5, 299–308. doi:10.5185/amlett.2014.amwc.1023.
  • Reed, D.; Thomsen, E.; Li, B.; Wang, W.; Nie, Z.; Koeppel, B.; Kizewski, J.; Sprenkle, V. Stack Developments in a kW Class All Vanadium Mixed Acid Redox Flow Battery at the Pacific Northwest National Laboratory. J. Electrochem. Soc. 2016, 163, A5211–A5219. doi:10.1149/2.0281601jes.
  • Reynard, D.; Vrubel, H.; Dennison, C.R.; Battistel, A.; Girault, H. On-Site Purification of Copper-Contaminated Vanadium Electrolytes by Using a Vanadium Redox Flow Battery. ChemSusChem. 2019, 12, 1222–1228. doi:10.1002/cssc.201802895.
  • Kim, S.; Yoon, Y.; Narejo, G.M.; Jung, M.; Kim, K.J.; Kim, Y.J. Flexible Graphite Bipolar Plates for Vanadium Redox Flow Batteries. Int. J. Energy Res. 2021, 45, 11098–11108. doi:10.1002/er.6592.
  • Jung, S.; Choi, B.; Park, S.; Lee, D.W.; Kim, Y.B.; Kim, S. Computational Study of Effects of Contact Resistance on a Large-Scale Vanadium Redox Flow Battery Stack. Int. J. Energy Res. 2019, 43, 2343–2360. doi:10.1002/er.4453.
  • Jing, M.; Zhang, C.; Qi, X.; Yang, Y.; Liu, J., Fan, X., Yan, C.; Fang, D. Gradient-microstructural Porous Graphene Gelatum/Flexible Graphite Plate Integrated Electrode for Vanadium Redox Flow Batteries. Int. J. Hydrogen Energy 2020, 45, 916–923. doi:10.1016/j.ijhydene.2019.10.123.
  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical Applications of Polymer-Composite Materials: A Review. Compos. Sci. Technol. 2001, 61, 1189–1224. doi:10.1016/S0266-3538(00)00241-4.
  • Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Progress in Polymer Science (Oxford) 2011, 36, 638–670. doi:10.1016/j.progpolymsci.2010.11.003.
  • Wulfsberg, J.; Herrmann, A.; Ziegmann, G.; Lonsdorfer, G.; Stöß, N.; Fette, M. Combination of Carbon Fibre Sheet Moulding Compound and Prepreg Compression Moulding in Aerospace Industry. Procedia. Eng. 2014, 81, 1601–1607. doi:10.1016/j.proeng.2014.10.197.
  • Tiusanen, J.; Vlasveld, D.; Vuorinen, J. Review on the Effects of Injection Moulding Parameters on the Electrical Resistivity of Carbon Nanotube Filled Polymer Parts. Compos. Sci. Technol. 2012, 72, 1741–1752. doi:10.1016/j.compscitech.2012.07.009.
  • Gautam, R.K.; Kar, K.K. Synthesis and Properties of Highly Conducting Natural Flake Graphite/Phenolic Resin Composite Bipolar Plates for PEM Fuel Cells. Adv. Compos. Lett. 2016, 25, 096369351602500. doi:10.1177/096369351602500402.
  • Kim, M.; Lim, J.W.; Kim, K.H.; Lee, D.G. Bipolar Plates Made of Carbon Fabric/Phenolic Composite Reinforced with Carbon Black for PEMFC. Compos. Struct. 2013, 96, 569–575. doi:10.1016/j.compstruct.2012.09.017.
  • Bairan, A.; Selamat, M.Z.; Sahadan, S.N.; Malingam, S.D.; Mohamad, N. Effect of Carbon Nanotubes Loading in Multifiller Polymer Composite as Bipolar Plate for PEM Fuel Cell. Procedia. Chem. 2016, 19, 91–97. doi:10.1016/j.proche.2016.03.120.
  • Sykam, N.; Gautam, R.K.; Kar, K.K. Electrical, Mechanical, and Thermal Properties of Exfoliated Graphite/Phenolic Resin Composite Bipolar Plate for Polymer Electrolyte Membrane Fuel Cell. Polym. Eng. Sci. 2015, 55, 917–923. doi:10.1002/pen.23959.
  • Serban, D.; Opran, C.G. Injection Moulded Composite Bipolar Plates for a Portable Hydrogen Fuel Cell Charger. IOP Conf Ser Mater Sci Eng 2020, 916, 012104. doi:10.1088/1757-899X/916/1/012104.
  • Adloo, A.; Sadeghi, M.; Masoomi, M.; Pazhooh, H.N. High Performance Polymeric Bipolar Plate Based on Polypropylene/Graphite/Graphene/Nano-Carbon Black Composites for PEM Fuel Cells. Renew. Energy 2016, 99, 867–874. doi:10.1016/j.renene.2016.07.062.
  • Choe, J.; Kim, K.H.; Lee, D.G. Corrugated Carbon/Epoxy Composite Bipolar Plate for Vanadium Redox Flow Batteries. Compos. Struct. 2015, 119, 534–542. doi:10.1016/j.compstruct.2014.09.022.
  • Chang, T.C.; Zhang, J.P.; Fuh, Y.K. Electrical, Mechanical and Morphological Properties of Compressed Carbon Felt Electrodes in Vanadium Redox Flow Battery. J. Power Sources 2014, 245, 66–75. doi:10.1016/j.jpowsour.2013.06.018.
  • Lee, D.; Lee, D.G.; Lim, J.W. Development of Multifunctional Carbon Composite Bipolar Plate for Vanadium Redox Flow Batteries. J. Intell. Mater. Syst. Struct. 2018, 29, 3386–3395. doi:10.1177/1045389X17708345.
  • Liu, Z.; Wang, B.; Yu, L. Preparation and Surface Modification of PVDF-Carbon Felt Composite Bipolar Plates for Vanadium Flow Battery. Journal of Energy Chemistry 2018, 27, 1369–1375. doi:10.1016/j.jechem.2018.04.010.
  • Ruban, E.; Stepashkin, A.; Gvozdik, N.; Konev, D.; Kartashova, N.; Antipov, A.; Lyange, M.; Usenko, A. Carbonized Elastomer Composite Filled with Hybrid Carbon Fillers for Vanadium Redox Flow Battery Bipolar Plates. Mater. Today Commun. 2021, 26, 101967. doi:10.1016/j.mtcomm.2020.101967.
  • Caglar, B.; Fischer, P.; Kauranen, P.; Karttunen, M.; Elsner, P. Development of Carbon Nanotube and Graphite Filled Polyphenylene Sulfide Based Bipolar Plates for all-Vanadium Redox Flow Batteries. J. Power Sources 2014, 256, 88–95. doi:10.1016/j.jpowsour.2014.01.060.
  • Jiang, F.; Liao, W.; Ayukawa, T.; Yoon, S.H.; Nakabayashi, K.; Miyawaki, J. Enhanced Performance and Durability of Composite Bipolar Plate with Surface Modification of Cactus-Like Carbon Nanofibers. J. Power Sources 2021, 482, 228903. doi:10.1016/j.jpowsour.2020.228903.
  • Shao, Y.; Wang, X.; Engelhard, M.; Wang, C.; Dai, S.; Liu, J.; Yang, Z.; Lin, Y. Nitrogen-Doped Mesoporous Carbon for Energy Storage in Vanadium Redox Flow Batteries. J. Power Sources 2010, 195, 4375–4379. doi:10.1016/j.jpowsour.2010.01.015.
  • Zhu, H.Q.; Zhang, Y.M.; Yue, L.; Li, W.S.; Li, G.L., Shu, D.; Chen, H.Y. Graphite-Carbon Nanotube Composite Electrodes for all Vanadium Redox Flow Battery. J. Power Sources 2008, 184, 637–640. doi:10.1016/j.jpowsour.2008.04.016.
  • Ponce-de-León, C.; Reade, G.W.; Whyte, I.; Male, S.E.; Walsh, F.C. Characterization of the Reaction Environment in a Filter-Press Redox Flow Reactor. Electrochim. Acta 2007, 52, 5815–5823. doi:10.1016/j.electacta.2007.02.080.
  • Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox Flow Batteries: A Review. J. Appl. Electrochem. 2011, 41, 1137–1164. doi:10.1007/s10800-011-0348-2.
  • Chakrabarti, M.H.; Brandon, N.P.; Hajimolana, S.A.; Tariq, F.; Yufit, V.; Hashim, M.A.; Hussain, M.A.; Low, C.T.J.; Aravind, P.V. Application of Carbon Materials in Redox Flow Batteries. J. Power Sources 2014, 253, 150–166. doi:10.1016/j.jpowsour.2013.12.038.
  • Zhong, S.; Kazacos, M.; Burford, R.P.; Skyllas-Kazacos, M. Fabrication and Activation Studies of Conducting Plastic Composite Electrodes for Redox Cells. J. Power Sources 1991, 36, 29–43. doi:10.1016/0378-7753(91)80042-V.
  • Yazici, M.S.; Krassowski, D.; Prakash, J. Flexible Graphite as Battery Anode and Current Collector. J. Power Sources 2005, 141, 171–176. doi:10.1016/j.jpowsour.2004.09.009.
  • Rychcik, M.; Skyllas-Kazacos, M. Evaluation of Electrode Materials for Vanadium Redox Cell. J. Power Sources 1987, 19, 45–54. doi:10.1016/0378-7753(87)80006-X.
  • Dong, Y.-R.; Kaku, H.; Hanafusa, K.; Moriuchi, K.; Shigematsu, T. A Novel Titanium/Manganese Redox Flow Battery. ECS Trans. 2015, 69, 59–67. doi:10.1149/06918.0059ecst.
  • Kim, H.S. Electrochemical Properties of Graphite-Based Electrodes for Redox Flow Batteries. Bull. Korean Chem. Soc. 2011, 32, 571–575. doi:10.5012/bkcs.2011.32.2.571.
  • Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L. Evaluation of Electrolytes for Redox Flow Battery Applications. Electrochim. Acta 2007, 52, 2189–2195. doi:10.1016/j.electacta.2006.08.052.
  • Zhu, K.; Li, Z.; Sun, Z.; Liu, P.; Jin, T.; Chen, X.; Li, H.; Lu, W.; Jioa, L. Inorganic Electrolyte for Low-Temperature Aqueous Sodium Ion Batteries. Small 2022, 18. doi:10.1002/smll.202107662.
  • Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002, 149, A1190. doi:10.1149/1.1498256.
  • Wang, Y.; He, P.; Zhou, H. Li-redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road Between Li-ion and Redox Flow Batteries. Adv. Energy. Mater. 2012, 2, 770–779. doi:10.1002/aenm.201200100.
  • Kocyigit, N.; Gencten, M.; Sahin, M.; Sahin, Y. A Novel Electrolytes for Redox Flow Batteries: Cerium and Chromium Couples in Aqueous System. Int. J. Energy Res. 2021, 45, 16176–16188. doi:10.1002/er.6850.
  • Noack, J.; Berkers, M.; Ortner, J.; Pinkwart, K. The Influence of Some Electrolyte Additives on the Electrochemical Performance of Fe/Fe2+ Redox Reactions for Iron/Iron Redox Flow Batteries. J. Electrochem. Soc. 2021, 168, 040529. doi:10.1149/1945-7111/abf5a3.
  • Lopez-Atalaya, M.; Codina, G.; Perez, J.R.; Vazquez, J.L.; Aldaz, A. Optimization Studies on a Fe/Cr Redox Flow Battery. J. Power Sources 1992, 39, 147–154. doi:10.1016/0378-7753(92)80133-V.
  • Ulaganathan, M.; Aravindan, V.; Yan, Q.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T.M. Recent Advancements in All-Vanadium Redox Flow Batteries. Adv. Mater. Interfaces. 2016, 3. doi:10.1002/admi.201500309.
  • Venkatesan, N.; Archana, K.S.; Suresh, S.; Aswathy, R.; Ulaganthan, M.; Periasamy, P.; Ragupathy, P. Boron-Doped Graphene as Efficient Electrocatalyst for Zinc-Bromine Redox Flow Batteries. ChemElectroChem 2019, 6, 1107–1114. doi:10.1002/celc.201801465.
  • Wang, W.; Kim, S.; Chen, B.; Nie, Z.; Zhang, J.; Xia, G.G.; Li, L.; Yang, Z. A new Redox Flow Battery Using Fe/V Redox Couples in Chloride Supporting Electrolyte. Energy Environ. Sci. 2011, 4, 4068. doi:10.1039/c0ee00765j.
  • Weng, G.M.; Li, Z.; Cong, G.; Zhou, Y.; Lu, Y.C. Unlocking the Capacity of Iodide for High-Energy-Density Zinc/Polyiodide and Lithium/Polyiodide Redox Flow Batteries. Energy Environ. Sci. 2017, 10, 735–741. doi:10.1039/c6ee03554j.
  • Xie, C.; Duan, Y.; Xu, W.; Zhang, H.; Li, X. A Low-Cost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angew. Chem. Int. Ed. 2017, 56, 14953–14957. doi:10.1002/anie.201708664.
  • Huang, Z.; Mu, A. Research and Analysis of Performance Improvement of Vanadium Redox Flow Battery in Microgrid: A Technology Review. Int. J. Energy Res. 2021, 45, 14170–14193. doi:10.1002/er.6716.
  • Kear, G.; Shah, A.A.; Walsh, F.C. Development of the all-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects. Int. J. Energy Res. 2012, 36, 1105–1120. doi:10.1002/er.1863.
  • Aaron, D.S.; Liu, Q.; Tang, Z.; Grim, G.M.; Papandrew, A.B.; Turhan, A.; Zawodzinski, T.A.; Mench, M.M. Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture. J. Power Sources 2012, 206, 450–453. doi:10.1016/j.jpowsour.2011.12.026.
  • Ma, X.; Zhang, H.; Sun, C.; Zou, Y.; Zhang, T. An Optimal Strategy of Electrolyte Flow Rate for Vanadium Redox Flow Battery. J. Power Sources 2012, 203, 153–158. doi:10.1016/j.jpowsour.2011.11.036.
  • Rydh, C.J. Environmental Assessment of Vanadium Redox and Lead-Acid Batteries for Stationary Energy Storage. J. Power Sources 1999, 80, 21–29. doi:10.1016/S0378-7753(98)00249-3.
  • Tang, A.; Bao, J.; Skyllas-Kazacos, M. Thermal Modelling of Battery Configuration and Self-Discharge Reactions in Vanadium Redox Flow Battery. J. Power Sources 2012, 216, 489–501. doi:10.1016/j.jpowsour.2012.06.052.
  • Liu, H.; Xu, Q.; Yan, C.; Qiao, Y. Corrosion Behavior of a Positive Graphite Electrode in Vanadium Redox Flow Battery. Electrochim. Acta 2011, 56, 8783–8790. doi:10.1016/j.electacta.2011.07.083.
  • Skyllas-Kazacos, M.; Peng, C.; Cheng, M. Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery. Electrochem. Solid-State Lett. 1999, 2, 121. doi:10.1149/1.1390754.
  • Zhao, P.; Zhang, H.; Zhou, H.; Chen, J.; Gao, S.; Yi, B. Characteristics and Performance of 10 kW Class all-Vanadium Redox-Flow Battery Stack. J. Power Sources 2006, 162, 1416–1420. doi:10.1016/j.jpowsour.2006.08.016.
  • Kumar, S.; Jayanti, S. Effect of Flow Field on the Performance of an all-Vanadium Redox Flow Battery. J. Power Sources 2016, 307, 782–787. doi:10.1016/j.jpowsour.2016.01.048.
  • Ngamsai, K.; Arpornwichanop, A. Analysis and Measurement of the Electrolyte Imbalance in a Vanadium Redox Flow Battery. J. Power Sources 2015, 282, 534–543. doi:10.1016/j.jpowsour.2015.01.188.
  • Yue, L.; Li, W.; Sun, F.; Zhao, L.; Xing, L. Highly Hydroxylated Carbon Fibres as Electrode Materials of all-Vanadium Redox Flow Battery. Carbon. N. Y. 2010, 48, 3079–3090. doi:10.1016/j.carbon.2010.04.044.
  • Xiong, B.; Zhao, J.; Tseng, K.J.; Skyllas-Kazacos, M.; Lim, T.M.; Zhang, Y. Thermal Hydraulic Behavior and Efficiency Analysis of an all-Vanadium Redox Flow Battery. J. Power Sources 2013, 242, 314–324. doi:10.1016/j.jpowsour.2013.05.092.
  • Vafiadis, H.; Skyllas-Kazacos, M. Evaluation of Membranes for the Novel Vanadium Bromine Redox Flow Cell. J. Memb. Sci. 2006, 279, 394–402. doi:10.1016/j.memsci.2005.12.028.
  • Poon, G.; Parasuraman, A.; Lim, T.M.; Skyllas-Kazacos, M. Evaluation of N-Ethyl-N-Methyl-Morpholinium Bromide and N-Ethyl-N-Methyl-Pyrrolidinium Bromide as Bromine Complexing Agents in Vanadium Bromide Redox Flow Batteries. Electrochim. Acta 2013, 107, 388–396. doi:10.1016/j.electacta.2013.06.084.
  • Rui, X.; Oo, M.O.; Sim, D.H.; Raghu, S.C.; Yan, Q.; Lim, T.M.; Skyllas-Kazacos, M. Graphene Oxide Nanosheets/Polymer Binders as Superior Electrocatalytic Materials for Vanadium Bromide Redox Flow Batteries. Electrochim. Acta 2012, 85, 175–181. doi:10.1016/j.electacta.2012.08.119.
  • Rui, X.; Parasuraman, A.; Liu, W.; Sim, D.H.; Hng, H.H.; Yan, Q.; Lim, T.M.; Skyllas-Kazacos, M. Functionalized Single-Walled Carbon Nanotubes with Enhanced Electrocatalytic Activity for Br-/Br3-Redox Reactions in Vanadium Bromide Redox Flow Batteries. Carbon. N. Y. 2013, 64, 464–471. doi:10.1016/j.carbon.2013.07.099.
  • Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox Flow Batteries: Status and Perspective Towards Sustainable Stationary Energy Storage. J. Power Sources 2021, 481, 228804. doi:10.1016/j.jpowsour.2020.228804.
  • Gentil, S.; Reynard, D.; Girault, H.H. Aqueous Organic and Redox-Mediated Redox Flow Batteries: A Review. Curr Opin Electrochem 2020, 21, 7–13. doi:10.1016/j.coelec.2019.12.006.
  • Piwek, J.; Dennison, C.R.; Frackowiak, E.; Girault, H.; Battistel, A. Vanadium–Oxygen Cell for Positive Electrolyte Discharge in Dual-Circuit Vanadium Redox Flow Battery. J. Power Sources 2019, 439, 227075. doi:10.1016/j.jpowsour.2019.227075.
  • Lee, H.J.; Park, S.; Kim, H. Analysis of the Effect of MnO2 Precipitation on the Performance of a Vanadium/Manganese Redox Flow Battery. J. Electrochem. Soc. 2018, 165, A952–A956. doi:10.1149/2.0881805jes.
  • Park, S.; Lee, H.; Lee, H.J.; Kim, H. New Hybrid Redox Flow Battery with High Energy Density Using V–Mn/V–Mn Multiple Redox Couples. J. Power Sources 2020, 451, 227746. doi:10.1016/j.jpowsour.2020.227746.
  • Bartolozzi, M. Development of Redox Flow Batteries. A Historical Bibliography. J. Power Sources 1989, 27, 219–234. doi:10.1016/0378-7753(89)80037-0.
  • Hawthorne, K.L.; Wainright, J.S.; Savinell, R.F. Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application. J. Electrochem. Soc. 2014, 161, A1662–A1671. doi:10.1149/2.0761410jes.
  • Dinesh, A.; Olivera, S.; Venkatesh, K.; Santosh, M.S.; Priya, M.G.; Inamuddin; Asiri, A.M.; Muralidhara, H.B. Iron-based Flow Batteries to Store Renewable Energies. Environ. Chem. Lett. 2018, 16, 683–694. doi:10.1007/s10311-018-0709-8.
  • Gong, K.; Xu, F.; Grunewald, J.B.; Ma, X.; Zhao, Y., Gu, S., Yan Y, All-Soluble All-Iron Aqueous Redox-Flow Battery. ACS Energy Lett. 2016, 1, 89–93. doi:10.1021/acsenergylett.6b00049.
  • Yu, S.; Yue, X.; Holoubek, J.; Xing, X.; Pan, E.; Pascal, T.; Liu, P. A Low-Cost Sulfate-Based all Iron Redox Flow Battery. J. Power Sources 2021, 513, 230457. doi:10.1016/j.jpowsour.2021.230457.
  • Zhang, Q.G.; Wang, N.N.; Yu, Z.W. The Hydrogen Bonding Interactions Between the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Water. J. Phys. Chem. B 2010, 114, 4747–4754. doi:10.1021/jp1009498.
  • Zhen, Y.; Zhang, C.; Yuan, J.; Zhao, Y.; Li, Y. A High-Performance all-Iron non-Aqueous Redox Flow Battery. J. Power Sources 2020, 445, 227331. doi:10.1016/j.jpowsour.2019.227331.
  • Cheng, D.; Hollax, E. The Influence of Thallium on the Redox Reaction Cr3+/Cr2+. J. Electrochem. Soc. 1985, 132, 269–273. doi:10.1149/1.2113807.
  • Zeng, Y.K.; Zhao, T.S.; An, L.; Zhou, X.L.; Wei, L. A Comparative Study of all-Vanadium and Iron-Chromium Redox Flow Batteries for Large-Scale Energy Storage. J. Power Sources 2015, 300, 438–443. doi:10.1016/j.jpowsour.2015.09.100.
  • Zeng, Y.K.; Zhao, T.S.; Zhou, X.L.; Zeng, L.; Wei, L. The Effects of Design Parameters on the Charge-Discharge Performance of Iron–Chromium Redox Flow Batteries. Appl. Energy 2016, 182, 204–209. doi:10.1016/j.apenergy.2016.08.135.
  • Zeng, Y.K.; Zhou, X.L.; Zeng, L.; Yan, X.H.; Zhao, T.S. Performance Enhancement of Iron-Chromium Redox Flow Batteries by Employing Interdigitated Flow Fields. J. Power Sources 2016, 327, 258–264. doi:10.1016/j.jpowsour.2016.07.066.
  • Wang, S.; Xu, Z.; Wu, X.; Zhao, H.; Zhao, J.; Liu, J.; Yan, C.; Fan, X. Analyses and Optimization of Electrolyte Concentration on the Electrochemical Performance of Iron-Chromium Flow Battery. Appl. Energy 2020, 271, 115252. doi:10.1016/j.apenergy.2020.115252.
  • Yang, B.; Murali, A.; Nirmalchandar, A.; Jayathilake, B.; Prakash, G.K.S.; Narayanan, S.R. A Durable, Inexpensive and Scalable Redox Flow Battery Based on Iron Sulfate and Anthraquinone Disulfonic Acid. J. Electrochem. Soc. 2020, 167, 060520. doi:10.1149/1945-7111/ab84f8.
  • Trudgeon, D.P.; Qiu, K.; Li, X.; Mallick, T.; Taiwo, O.O.; Chakrabarti, B.; Yufit, V.; Brandon, N.P.; Crevillen-Garcia, D.; Shah, A. Screening of Effective Electrolyte Additives for Zinc-Based Redox Flow Battery Systems. J. Power Sources 2019, 412, 44–54. doi:10.1016/j.jpowsour.2018.11.030.
  • Yin, Y.; Yuan, Z.; Li, X. Rechargeable Aqueous Zinc-Bromine Batteries: An Overview and Future Perspectives. Phys. Chem. Chem. Phys. 2021, 23, 26070–26084. doi:10.1039/d1cp03987c.
  • Li, X.; de Léon, C.P.; Walsh, F.C.; Wills, R.G.A.; Pletcher, D. Zinc-based Flow Batteries for Medium- and Large-Scale Energy Storage. Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications; Menictas, Chris, Skyllas-Kazacos, Maria, Lim, Tuti Mariana, Eds.; Woodhead Publishing; 2015; pp 293–315. doi:10.1016/B978-1-78242-013-2.00008-X.
  • Vanýsek, P.; Novák, V. Redox Flow Batteries as the Means for Energy Storage. J Energy Storage 2017, 13, 435–441. doi:10.1016/j.est.2017.07.028.
  • Matz, D.L.; Jones, D.G.; Roewe, K.D.; Gorbet, M.J.; Zhang, Z.; Chen, Z.; Prior, T.J.; Archibald, S.J.; Yin, G.; Hubin, T.J. Synthesis, Structural Studies, Kinetic Stability, and Oxidation Catalysis of the Late First row Transition Metal Complexes of 4,10-Dimethyl-1,4,7,10-Tetraazabicyclo[6.5.2]Pentadecane. Dalton Trans. 2015, 44, 12210–12224. doi:10.1039/c5dt00742a.
  • Rose, D.M.; Ferreira, S.R. Performance Testing of Zinc-Bromine Flow Batteries for Remote Telecom Sites. The BattconTM 2013 Stationary Battery Conference and Trade Show. 2013.
  • Xu, Z.; Fan, Q.; Li, Y.; Wang, J.; Lund, P.D. Review of Zinc Dendrite Formation in Zinc Bromine Redox Flow Battery. Renewable Sustainable Energy Rev. 2020, 127, 109838. doi:10.1016/j.rser.2020.109838.
  • Walsh, F.C.; Poncedeléon, C.; Berlouis, L.; Nikiforidis, G.; Arenas-Martínez, L.F.; Hodgson, D.; Hall, D. The Development of Zn-Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges. Chempluschem 2015, 80, 288–311. doi:10.1002/cplu.201402103.
  • Yu, X.; Song, Y.; Tang, A. Tailoring Manganese Coordination Environment for a Highly Reversible Zinc-Manganese Flow Battery. J. Power Sources 2021, 507, 230295. doi:10.1016/j.jpowsour.2021.230295.
  • Kreh, R.P.; Spotnitz, R.M.; Lundquist, J.T. Mediated Electrochemical Synthesis of Aromatic Aldehydes, Ketones, and Quinones Using Ceric Methanesulfonate. J. Org. Chem. 1989, 54, 1526–1531. doi:10.1021/jo00268a010.
  • Li, G.; Chen, W.; Zhang, H.; Gong, Y.; Shi, F.; Wang, J.; Zhang, R.; Chen, G.; Jin, Y.; Wu, T.; Tang, Z.; Cui, Y. Membrane-Free Zn/MnO2 Flow Battery for Large-Scale Energy Storage. Adv. Energy. Mater. 2020, 10, doi:10.1002/aenm.201902085.
  • Amini, K.; Pritzker, M.D. Improvement of Zinc-Cerium Redox Flow Batteries Using Mixed Methanesulfonate-Chloride Negative Electrolyte. Appl. Energy 2019, 255, 113894. doi:10.1016/j.apenergy.2019.113894.
  • Jian, Q.P.; Wu, M.C.; Jiang, H.R.; Lin, Y.K.; Zhao, T.S. A Trifunctional Electrolyte for High-Performance Zinc-Iodine Flow Batteries. J. Power Sources 2021, 484, 229238. doi:10.1016/j.jpowsour.2020.229238.
  • Wadia, C.; Albertus, P.; Srinivasan, V. Resource Constraints on the Battery Energy Storage Potential for Grid and Transportation Applications. J. Power Sources 2011, 196, 1593–1598. doi:10.1016/j.jpowsour.2010.08.056.
  • Chen, C.; Yang, X. MnO2 Modified TiN Nanotube Arrays on Ti Mesh for Flexible Supercapacitors Electrode. RSC Adv. 2017, 7, 56440–56446. doi:10.1039/c7ra10961j.
  • Rodrigues, S.; Munichandraiah, N.; Shukla, A.K. A Cyclic Voltammetric Study of the Kinetics and Mechanism of Electrodeposition of Manganese Dioxide. J. Appl. Electrochem. 1998, 28, 1235–1241. doi:10.1023/A:1003472901760.
  • Nan, M.; Qiao, L.; Liu, Y.; Zhang, H.; Ma, X. Improved Titanium-Manganese Flow Battery with High Capacity and High Stability. J. Power Sources 2022, 522, 230995. doi:10.1016/j.jpowsour.2022.230995.
  • Rubio-Garcia, J.; Kucernak, A.; Zhao, D.; Li, D.; Fahy, K.; Yufit, V.; Brandon, N.; Gomez-Gonzalez, M. Hydrogen/Manganese Hybrid Redox Flow Battery. JPhys Energy 2019, 1, 015006. doi:10.1088/2515-7655/aaee17.
  • Reynard, D.; Maye, S.; Peljo, P.; Chanda, V.; Girault, H.H.; Gentil, S. Vanadium–Manganese Redox Flow Battery: Study of MnIII Disproportionation in the Presence of Other Metallic Ions. Chem. A Eur. J. 2020, 26, 7250–7257. doi:10.1002/chem.202000340.
  • Cho, J.; Jeong, S.; Kim, Y. Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. doi:10.1016/j.pecs.2015.01.002.
  • Murcia-López, S.; Chakraborty, M.; Carretero, N.M.; Flox, C.; Morante, J.R.; Andreu, T. Adaptation of Cu(In, Ga)Se2 Photovoltaics for Full Unbiased Photocharge of Integrated Solar Vanadium Redox Flow Batteries. Sustain Energy Fuels 2020, 4, 1135–1142. doi:10.1039/c9se00949c.
  • Wang, K.; Wu, Y.; Cao, X.; Gu, L.; Hu, J. A Zn–CO2 Flow Battery Generating Electricity and Methane. Adv. Funct. Mater. 2020, 30. doi:10.1002/adfm.201908965.
  • Li, Z.; Pan, M.S.; Su, L.; Tsai, P.C.; Badel, A.F.; Valle, J.M.; Eiler, S.L.; Xiang, K.; Brushett, F.R.; Chiang, Y.-M. Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage. Joule 2017. doi:10.1016/j.joule.2017.08.007.
  • Mousavi, M.; Jiang, G.; Zhang, J.; Kashkooli, A.G.; Dou, H.; Silva, C.J.; Cano, Z.P.; Niu, Y.; Yu, A.; Chen, Z. Decoupled low-Cost Ammonium-Based Electrolyte Design for Highly Stable Zinc–Iodine Redox Flow Batteries. Energy Storage Mater 2020, 32, 465–476. doi:10.1016/j.ensm.2020.06.031.
  • Archana, K.S.; Naresh, R.P.; Enale, H.; Rajendran, V.; Mohan, A.M.V.; Bhaskar, A.; Ragupathy, P.; Dixon, D. Effect of Positive Electrode Modification on the Performance of Zinc-Bromine Redox Flow Batteries. J Energy Storage 2020, 29, 101462. doi:10.1016/j.est.2020.101462.
  • Lai, Q.; Zhang, H.; Li, X.; Zhang, L.; Cheng, Y. A Novel Single Flow Zinc-Bromine Battery with Improved Energy Density. J. Power Sources 2013, 235, 1–4. doi:10.1016/j.jpowsour.2013.01.193.
  • Wu, M.C.; Zhao, T.S.; Jiang, H.R.; Zeng, Y.K.; Ren, Y.X. High-performance Zinc Bromine Flow Battery via Improved Design of Electrolyte and Electrode. J. Power Sources 2017, 355, 62–68. doi:10.1016/j.jpowsour.2017.04.058.
  • Hewa Dewage, H.; Wu, B.; Tsoi, A.; Yufit, V.; Offer, G.; Brandon, N. A Novel Regenerative Hydrogen Cerium Fuel Cell for Energy Storage Applications. J Mater Chem A Mater 2015, 3, 9446–9450. doi:10.1039/c5ta00571j.
  • Amini, K.; Pritzker, M.D. Life-cycle Analysis of Zinc-Cerium Redox Flow Batteries. Electrochim. Acta 2020, 356, 136785. doi:10.1016/j.electacta.2020.136785.
  • Xie, Z.; Zhou, D.; Xiong, F.; Zhang, S.; Huang, K. Cerium-zinc Redox Flow Battery: Positive Half-Cell Electrolyte Studies. J. Rare Earths 2011, 29, 567–573. doi:10.1016/S1002-0721(10)60499-1.
  • Mousavi, M.; Dou, H.; Fathiannasab, H.; Silva, C.J.; Yu, A.; Chen, Z. Elucidating and Tackling Capacity Fading of Zinc-Iodine Redox Flow Batteries. Chem. Eng. J. 2021, 412, 128499. doi:10.1016/j.cej.2021.128499.
  • Shakerihosseinabad, F.; Daemi, S.R.; Momodu, D.; Brett, D.J.L.; Shearing, P.R.; Roberts, E.P.L. Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery. ACS Appl. Mater. Interfaces 2021, 13, 41563–41572. doi:10.1021/acsami.1c09770.
  • Liu N, K.M.; Pan, J.; Hu, Y.; Sun, Y.; Liu, X. A Facile Preparation of λ-MnO2 as Cathode Material for High-Performance Zinc-Manganese Redox Flow Battery. J. Electrochem. Soc. 2020, 167, 040517. doi:10.1149/1945-7111/ab75c2.
  • Naresh, R.P.; Mariyappan, K.; Dixon, D.; Ulaganathan, M.; Ragupathy, P. Investigations on New Electrolyte Composition and Modified Membrane for High Voltage Zinc−Manganese Hybrid Redox Flow Batteries. Batter Supercaps 2021, 4, 1464–1472. doi:10.1002/batt.202100071.
  • Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H.R., Goodenough, J.B.; Yu, G. A Chemistry and Material Perspective on Lithium Redox Flow Batteries Towards High-Density Electrical Energy Storage. Chem. Soc. Rev. 2015, 44, 7968–7996. doi:10.1039/c5cs00289c.
  • Bebelis, S.; Bouzek, K.; Cornell, A.; Ferreira, M.G.S.; Kelsall, G.H.; Lapicque, F.; Ponce de León, C.; Rodrigo, M.A.; Walsh, F.C. Highlights During the Development of Electrochemical Engineering. Chem. Eng. Res. Des. 2013. doi:10.1016/j.cherd.2013.08.029.
  • Hou, S.; Chen, L.; Fan, X.; Fan, X.; Ji, X.; Wang, B.; Cui, C.; Chen, J.; Yang, C.; Wang, W.; Li, C.; Wang, C. High-energy and low-Cost Membrane-Free Chlorine Flow Battery. Nat. Commun. 2022, 13. doi:10.1038/s41467-022-28880-x.
  • Kim, S.; Vijayakumar, M.; Wang, W.; Zhang, J.; Chen, B.; Nie, Z.; Chen, F.; Hu, J.; Li, L.; Yang, Z. Chloride Supporting Electrolytes for all-Vanadium Redox Flow Batteries. Phys. Chem. Chem. Phys. 2011, 13, 18186. doi:10.1039/c1cp22638j.
  • Cao, L.; Skyllas-Kazacos, M.; Menictas, C.; Noack, J. A Review of Electrolyte Additives and Impurities in Vanadium Redox Flow Batteries. J. Energy Chem. 2018, 27, 1269–1291. doi:10.1016/j.jechem.2018.04.007.
  • Tian, F.; Wang, L.; Wang, C.S. The Effect of Phosphate Additive on the Positive Electrolyte Stability of Vanadium Redox Flow Battery. J. Energy Chem. 2018, 27, 1376–1380. doi:10.1016/j.jechem.2018.05.018.
  • Gattrell, M.; Qian, J.; Stewart, C.; Graham, P.; MacDougall, B. The Electrochemical Reduction of VO2+ in Acidic Solution at High Overpotentials. Electrochim. Acta 2005, 51, 395–407. doi:10.1016/j.electacta.2005.05.001.
  • Liu, T.; Li, X.; Zhang, H.; Chen, J. Progress on the Electrode Materials Towards Vanadium Flow Batteries (VFBs) with Improved Power Density. J. Energy Chem. 2018, 27, 1292–1303. doi:10.1016/j.jechem.2018.07.003.
  • Chakrabarti, B.; Nir, D.; Yufit, V.; Tariq, F.; Rubio-Garcia, J.; Maher, R.; Kucernak, A.; Aravind, P.V.; Brandon, N. Performance Enhancement of Reduced Graphene Oxide-Modified Carbon Electrodes for Vanadium Redox-Flow Systems. ChemElectroChem 2017, 4, 194–200. doi:10.1002/celc.201600402.
  • Xu, Z.; Xu, H.; Hu, Z.; Wu, W.; Xu, J.; Zhong, F.; Ding, M.; Zhu, X.; Fu, H.; Jia, C. Carbon Felt Decorated with Carbon Derived from Spent Asphalt as a Low-Cost and High-Performance Electrode for Vanadium Redox Flow Batteries. ChemNanoMat 2022, 8. doi:10.1002/cnma.202200027.
  • Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C. Preparation of Silica Nanocomposite Anion-Exchange Membranes with low Vanadium-ion Crossover for Vanadium Redox Flow Batteries. Electrochim. Acta 2013, 105, 584–592. doi:10.1016/j.electacta.2013.04.155.
  • Lourenssen, K.; Williams, J.; Ahmadpour, F.; Clemmer, R.; Tasnim, S. Vanadium Redox Flow Batteries: A Comprehensive Review. J. Energy Storage 2019, 25, 100844. doi:10.1016/j.est.2019.100844.
  • Bamgbopa, M.O.; Almheiri, S.; Sun, H. Prospects of Recently Developed Membraneless Cell Designs for Redox Flow Batteries. Renewable Sustainable Energy Rev. 2017, 70, 506–518. doi:10.1016/j.rser.2016.11.234.
  • Kim, D.J.; Jo, M.J.; Nam, S.Y. A Review of Polymer-Nanocomposite Electrolyte Membranes for Fuel Cell Application. J. Ind. Eng. Chem. 2015, 21, 36–52. doi:10.1016/j.jiec.2014.04.030.