1,202
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The recent developments of green and sustainable chemistry in multidimensional way: current trends and challenges

, &
Article: 2312848 | Received 25 Sep 2023, Accepted 29 Jan 2024, Published online: 08 Feb 2024

References

  • de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of Green Chemistry and its Multidimensional Impacts: A Review. Saudi. Pharm. J. 2019, 27 (1), 1–8. doi:10.1016/j.jsps.2018.07.011.
  • Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of First and Second Generation Biofuels: A Comprehensive Review. Renewable Sustainable Energy Rev. 2010, 14, 578–597. doi:10.1016/j.rser.2009.10.003.
  • Asiya, S.I.; Pal, K.; Kralj, S.; El-Sayyad, G.S.; de Souza, F.G.; Narayanan, T. Sustainable Preparation of Gold Nanoparticles via Green Chemistry Approach for Biogenic Applications. Mater. Today Chem. 2020, 17, 100327. doi:10.1016/j.mtchem.2020.100327.
  • Mohammadi, L.; Pal, K.; Bilal, M.; Rahdar, A.; Fytianos, G.; Kyzas, G.Z. Green Nanoparticles to Treat Patients with Malaria Disease: An Overview. J. Mol. Struct. 2021, 1229, 129857. doi:10.1016/j.molstruc.2020.129857.
  • Arshad, F.; Li, L.; Amin, K.; Fan, E.; Manurkar, N.; Ahmad, A.; Yang, J.; Wu, F.; Chen, R. A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS. Sustain. Chem. Eng. 2020, 8, 13527–13554. doi:10.1021/acssuschemeng.0c04940.
  • Pal, K.; Asthana, N.; Aljabali, A.A.; Bhardwaj, S.K.; Kralj, S.; Penkova, A.; Thomas, S.; Zaheer, T.; Gomes de Souza, F. A Critical Review on Multifunctional Smart Materials ‘Nanographene’ Emerging Avenue: Nanoimaging and Biosensor Applications. Crit. Rev. Solid State Mater. Sci. 2022, 47, 691–707. doi:10.1080/10408436.2021.1935717.
  • Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angew. Chem., Int. Ed. 2009, 48, 8409–8411. doi:10.1002/anie.200903893.
  • Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An Approach to Reconcile the Principles of Green Analytical Chemistry and Functionality. TrAC, Trends Anal. Chem. 2021, 138, 116223. doi:10.1016/j.trac.2021.116223.
  • Chatterjee, S.; Mishra, V. Green Chemistry – Remedy to Societal Hygiene: A Graphical Review. Curr. Res. Green Sustain. Chem. 2020, 3, 100025. doi:10.1016/j.crgsc.2020.100025.
  • Mestre-Manrique, F.; Payà-Pou, R.; Beneito-Cambra, M.; Simó-Alfonso, E.F.; Carrasco-Correa, E.J. Is 3D Printing a Good Alternative to Prepare Novel Devices for Green Analytical Sample Preparation? Adv. Sample Prep. 2023, 6, 100062. doi:10.1016/j.sampre.2023.100062.
  • Locatelli, M.; Kabir, A.; Perrucci, M.; Ulusoy, S.; Ulusoy, H.I.; Ali, I. Green Profile Tools: Current Status and Future Perspectives. Adv. Sample Prep. 2023, 6, 100068. doi:10.1016/j.sampre.2023.100068.
  • Falcone, P.M.; Hiete, M. Exploring Green and Sustainable Chemistry in the Context of Sustainability Transition: The Role of Visions and Policy. Curr. Opin. Green Sustain. Chem. 2019, 19, 66–75. doi:10.1016/j.cogsc.2019.08.002.
  • López-Lorente, ÁI; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC, Trends Anal. Chem. 2022, 148, 116530. doi:10.1016/j.trac.2022.116530.
  • Jurjeva, J.; Koel, M. Implementing Greening Into Design in Analytical Chemistry. Talanta Open 2022, 6, 100136. doi:10.1016/j.talo.2022.100136.
  • de María, P.D. Green Solvents and Biocatalysis: A Bigger Picture. EFB Bioeconomy J. 2023, 3, 100056. doi:10.1016/j.bioeco.2023.100056.
  • Claux, O.; Santerre, C.; Abert-Vian, M.; Touboul, D.; Vallet, N.; Chemat, F. Alternative and Sustainable Solvents for Green Analytical Chemistry. Curr. Opin. Green Sustain. Chem. 2021, 31, 100510. doi:10.1016/j.cogsc.2021.100510.
  • Rahaman, M.H.; Islam, M.A.; Islam, M.M.; Rahman, M.A.; Alam, S.N. Biodegradable Composite Adsorbent of Modified Cellulose and Chitosan to Remove Heavy Metal Ions from Aqueous Solution. Curr. Opin. Green Sustain. Chem. 2021, 4, 100119. doi:10.1016/j.crgsc.2021.100119.
  • Nanda, B.; Sailaja, M.; Mohapatra, P.; Pradhan, R.K.; Nanda, B.B. Green Solvents: A Suitable Alternative for Sustainable Chemistry. Mater. Today: Proc. 2021, 47, 1234–1240. doi:10.1016/j.matpr.2021.06.458.
  • Santana-Mayor, Á; Rodríguez-Ramos, R.; Herrera-Herrera, A.V.; Socas-Rodríguez, B.; Rodríguez-Delgado, MÁ. Deep Eutectic Solvents. The New Generation of Green Solvents in Analytical Chemistry. TrAC, Trends Anal. Chem. 2021, 134, 116108. doi:10.1016/j.trac.2020.116108.
  • Theodorakopoulos, G.V.; Karousos, D.S.; Veziri, C.M.; Kouvelos, E.P.; Sapalidis, A.A.; Favvas, E.P. Green Chemistry-Based Fabrication of Hollow Fiber and Flat Sheet Polyimide Membranes for CO2/CH4 Separation. J. Membrane Sci. Lett. 2023, 3, 100057. doi:10.1016/j.memlet.2023.100057.
  • Goyal, R.; Sharma, A.; Thakur, V.K.; Ola, M.; Sharma, P.C. Green Chemistry Approaches Towards the Design and Synthesis of Anti-Infective Fluoroquinolone Derivatives. Curr. Opin. Green Sustain. Chem. 2021, 4, 100044. doi:10.1016/j.crgsc.2020.100044.
  • Alanazi, M.; Huwaimel, B.; Alanazi, J.; Alharby, T.N. Development of a Novel Machine Learning Approach to Optimize Important Parameters for Improving the Solubility of an Anti-Cancer Drug Within Green Chemistry Solvent. Case Stud. Therm. Eng. 2023, 49, 103273. doi:10.1016/j.csite.2023.103273.
  • Agrawal, R.K.; Ghorbani-Bidkorbeh, F.; Hussain, C.M. Green Miniaturized Technologies in Analytical and Bioanalytical Chemistry. TrAC, Trends Anal. Chem. 2021, 143, 116383. doi:10.1016/j.trac.2021.116383.
  • Kokilambigai, K.S.; Lakshmi, K.S. Analytical Quality by Design Assisted RP-HPLC Method for Quantifying Atorvastatin with Green Analytical Chemistry Perspective. J. Chromatogr. Open 2022, 2, 100052. doi:10.1016/j.jcoa.2022.100052.
  • Chang, X.X.; Mubarak, N.M.; Mazari, S.A.; Jatoi, A.S.; Ahmad, A.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Siddiqui, M.T.H.; Nizamuddin, S. A Review on the Properties and Applications of Chitosan, Cellulose and Deep Eutectic Solvent in Green Chemistry. J. Ind. Eng. Chem. 2021, 104, 362–380. doi:10.1016/j.jiec.2021.08.033.
  • Huwaimel, B.; Alharby, T.N. Development of Computational Intelligence Models for Assessment of Drug Nanonization Using Green Chemistry Technique: Improvement of Drug Solubility. Case Stud. Therm. Eng. 2023, 45, 103005. doi:10.1016/j.csite.2023.103005.
  • Nowak, P.M.; Bis, A.; Zima, A. ChlorTox Base – a Useful Source of Information on Popular Reagents in Terms of Chemical Hazards and Greenness Assessment. Green Anal. Chem. 2023, 6, 100065. doi:10.1016/j.greeac.2023.100065.
  • Zuin, V.G.; Stahl, A.M.; Zanotti, K.; Segatto, M.L. Green and Sustainable Chemistry in Latin America: Which Type of Research is Going on? And for What? Curr. Opin. Green Sustain. Chem. 2020, 25, 100379. doi:10.1016/j.cogsc.2020.100379.
  • Yilan, G.; Cordella, M.; Morone, P. Evaluating and Managing the Sustainability Performance of Investments in Green and Sustainable Chemistry: Development and Application of an Approach to Assess bio-Based and Biodegradable Plastics. Curr. Opin. Green Sustain. Chem. 2023, 6, 100353. doi:10.1016/j.crgsc.2022.100353.
  • Mammino, L. Computational Chemistry for Green Design in Chemistry and Pharmacy: Building Awareness in the Classroom. Sustain. Chem. Pharm. 2020, 18, 100283. doi:10.1016/j.scp.2020.100283.
  • Chen, T.L.; Kim, H.; Pan, S.Y.; Tseng, P.C.; Lin, Y.-P.; Chiang, P.-C. Implementation of Green Chemistry Principles in Circular Economy System Towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716, 136998. doi:10.1016/j.scitotenv.2020.136998.
  • Askarniya, Z.; Baradaran, S.; Sonawane, S.H.; Boczkaj, G. A Comparative Study on the Decolorization of Tartrazine, Ponceau 4R, and Coomassie Brilliant Blue Using Persulfate and Hydrogen Peroxide Based Advanced Oxidation Processes Combined with Hydrodynamic Cavitation. Chem. Eng. Process. Process Intensif. 2022, 181, 109160. doi:10.1016/j.cep.2022.109160.
  • López, J.; Rey, A.; Viñuelas-Zahinos, E.; Álvarez, P.M. Preparation of a New Green Magnetic Fe3O4 @TiO2-P25 Photocatalyst for Solar Advanced Oxidation Processes in Water. J. Environ. Chem. Eng. 2023, 11 (3), 109999. doi:10.1016/j.jece.2023.109999.
  • Pacheco, C.R.; Cruz, M.R.R.; Garcia, J.C.; Hilares, R.T.; Colina Andrade, G.D.J.; Pacheco Tanaka, D.A.; Mogrovejo-Valdivia, A. Adsorption and Degradation of Rhodamine B and Bromocresol Green by FeOCl Under Advanced Oxidation Process. Arab. J. Chem. 2023, 16 (9), 105049. doi:10.1016/j.arabjc.2023.105049.
  • Kumari, P.; Kumar, A. Advanced Oxidation Process: A Remediation Technique for Organic and non-Biodegradable Pollutant. Results Surf. Interfaces 2023, 11, 100122. doi:10.1016/j.rsurfi.2023.100122.
  • Jabar, J.M.; Adebayo, M.A.; Odusote, Y.A.; Yılmaz, M.; Rangabhashiyam, S. Valorization of Microwave-Assisted H3PO4-Activated Plantain (Musa paradisiaca L) Leaf Biochar for Malachite Green Sequestration: Models and Mechanism of Adsorption. Results Eng. 2023, 18, 101129. doi:10.1016/j.rineng.2023.101129.
  • AL-Salman, H.N.K.; Sabbar Falih, M.; Deab, H.B.; Altimari, U.S.; Shakier, H.G.; Dawood, A.H.; Ramadan, M.F.; Mahmoud, Z.H.; Farhan, M.A., Köten, H., et al. A Study in Analytical Chemistry of Adsorption of Heavy Metal Ions Using Chitosan/Graphene Nanocomposites. Case Stud. Chem. Environ. Eng. 2023, 8, 100426. doi:10.1016/j.cscee.2023.100426.
  • Mbachu, C.A.; Babayemi, A.K.; Egbosiuba, T.C.; Ike, J.I.; Jacinta Ani, I.; Mustapha, S. Green Synthesis of Iron Oxide Nanoparticles by Taguchi Design of Experiment Method for Effective Adsorption of Methylene Blue and Methyl Orange from Textile Wastewater. Results Eng. 2023, 19, 101198. doi:10.1016/j.rineng.2023.101198.
  • Wang, K.; Wang, K.; Chen, Y.; Liang, S., Guo, C., et al. Adsorption–Desorption Behavior of Malachite Green by Potassium Permanganate pre-Oxidation Polyvinyl Chloride Microplastics. Environ. Technol. Innov. 2023, 30, 103138. doi:10.1016/j.eti.2023.103138.
  • Zeghoud, S.; Hemmami, H.; Seghir, B.B.; Amor, I.B.; Kouadri, I.; Rebiai, A.; Messaoudi, M.; Ahmed, S.; Pohl, P.; Simal-Gandara, J. A Review on Biogenic Green Synthesis of ZnO Nanoparticles by Plant Biomass and Their Applications. Mater. Today Commun 2022, 33, 104747. doi:10.1016/j.mtcomm.2022.104747.
  • Aylanc, V.; Peixoto, A.F.; Vale, N.; Freire, C.; Vilas-Boas, M. Sporopollenin-based bio-Microcapsules as Green Carriers for Controlled Delivery of Pharmaceutical Drugs. Appl. Mater. Today 2023, 33, 101860. doi:10.1016/j.apmt.2023.101860.
  • Didion, Y.P.; Tjalsma, T.G.; Su, Z.; Malankowska, M.; Pinelo, M. What Is Next? The Greener Future of Solid Liquid Extraction of Biobased Compounds: Novel Techniques and Solvents Overpower Traditional Ones. Sep. Purif. Technol. 2023, 320, 124147. doi:10.1016/j.seppur.2023.124147.
  • Khataei, M.M.; Epi, S.B.H.; Lood, R.; Spégel, P.; Yamini, Y.; Turner, C. A Review of Green Solvent Extraction Techniques and Their Use in Antibiotic Residue Analysis. J. Pharm. Biomed. Anal. 2022, 209, 114487. doi:10.1016/j.jpba.2021.114487.
  • Airouyuwa, J.O.; Mostafa, H.; Riaz, A.; Maqsood, S. Utilization of Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction as Green Extraction Technique for the Recovery of Bioactive Compounds from Date Palm (Phoenix dactylifera L.) Seeds: An Investigation Into Optimization of Process Parameters. Ultrason. Sonochem. 2022, 91, 106233. doi:10.1016/j.ultsonch.2022.106233.
  • Makwakwa, T.A.; Moema, D.; Nyoni, H.; Msagati, T.A.M. Ranking of Dispersive-Extraction Solvents Pairs with TOPSIS for the Extraction of Mifepristone in Water Samples Using Dispersive Liquid-Liquid Microextraction. Talanta Open 2023, 7, 100206. doi:10.1016/j.talo.2023.100206.
  • Kiwfo, K.; Saenjum, C.; Aphichatpanichakul, S.; Grudpan, K. Vegetable oil as an Alternative Solvent in a Simple Green Colorimetric Liquid-Liquid Partitioning Extraction for Diphenhydramine Hydrochloride Determination. Talanta Open 2023, 7, 100193. doi:10.1016/j.talo.2023.100193.
  • Emam, H.E. Accessibility of Green Synthesized Nanopalladium in Water Treatment. Results Eng. 2022, 15, 100500. doi:10.1016/j.rineng.2022.100500.
  • Witthayolankowit, K.; Marson, A.; Baddigam, K.R.; Lebedeva, D.; Shaikh, M.; Kane, A.; Gupta, D.; Wide, M.I.; Mathew, A.P., Kubička, D., et al. Valorization of Beetle Infected Spruce to Produce Textile Fibers and Biofuels: Environmental Sustainability Evaluated by Life Cycle Assessment. Chem. Eng. J. 2023, 470, 144179. doi:10.1016/j.cej.2023.144179.
  • Al-Yafei, H.; AlNouss, A.; Aseel, S.; Kucukvar, M.; Onat, N.C.; Al-Ansari, T. How Sustainable is Liquefied Natural gas Supply Chain? An Integrated Life Cycle Sustainability Assessment Model. Energy Convers. Manag.: X 2022, 15, 100246. doi:10.1016/j.ecmx.2022.100246.
  • Tsafack, P.; Ngwashi, D.; Ducharne, B.; Tanyi, E. Greenness Percentage of the Said Green Renewable Energy: A Case Study. Energy Rep. 2019, 5, 979–986. doi:10.1016/j.egyr.2019.06.004.
  • Wang, F.; Swinbourn, R.; Li, C.E. Shipping Australian Sunshine: Liquid Renewable Green Fuel Export. Int. J. Hydrogen Energy 2023, 48, 14763–14784. doi:10.1016/j.ijhydene.2022.12.326.
  • Gordon, J.A.; Balta-Ozkan, N.; Nabavi, S.A. Gauging Public Perceptions of Blue and Green Hydrogen Futures: Is the Twin-Track Approach Compatible with Hydrogen Acceptance? Int. J. Hydrogen Energy 2024, 49, 75–104. doi:10.1016/j.ijhydene.2023.06.297.
  • Ongis, M.; Di Marcoberardino, G.; Manzolini, G.; Gallucci, F.; Binotti, M. Membrane Reactors for Green Hydrogen Production from Biogas and Biomethane: A Techno-Economic Assessment. Int. J. Hydrogen Energy 2023, 48 (51), 19580–19595. doi:10.1016/j.ijhydene.2023.01.310.
  • Vitillo, J.G.; Eisaman, M.D.; Aradóttir, E.S.; Passarini, F.; Wang, T.; Sheehan, S.W. The Role of Carbon Capture, Utilization, and Storage for Economic Pathways That Limit Global Warming to Below 1.5°C. iScience 2022, 25 (5), 104237. doi:10.1016/j.isci.2022.104237.
  • Diederichsen, K.M.; Liu, Y.; Ozbek, N.; Seo, H.; Hatton, T.A. Toward Solvent-Free Continuous-Flow Electrochemically Mediated Carbon Capture with High-Concentration Liquid Quinone Chemistry. Joule 2022, 6 (1), 221–239. doi:10.1016/j.joule.2021.12.001.
  • Zheng, R.; Liu, Z.; Wang, Y.; Xie, Z.; He, M. The Future of Green Energy and Chemicals: Rational Design of Catalysis Routes. Joule 2022, 6 (6), 1148–1159. doi:10.1016/j.joule.2022.04.014.
  • Loy, A.C.M.; Teng, S.Y.; How, B.S.; Zhang, X.; Cheah, K.W.; Butera, V.; Leong, W.D.; Chin, B.L.F.; Yiin, C.L., Taylor, M.J., et al. Elucidation of Single Atom Catalysts for Energy and Sustainable Chemical Production: Synthesis, Characterization and Frontier Science. Prog. Energy Combust. Sci. 2023, 96, 101074. doi:10.1016/j.pecs.2023.101074.
  • Popien, J.L.; Husmann, J.; Barke, A.; Thies, C.; Cerdas, F.; Herrmann, C.; Spengler, T.S. Comparison of Lithium-ion Battery Supply Chains – a Life Cycle Sustainability Assessment. Procedia CIRP 2023, 116, 131–136. doi:10.1016/j.procir.2023.02.023.
  • Schoeters, F.; Thoré, E.S.; De Cuyper, A.; Noyens, I.; Goossens, S.; Lybaert, S.; Meers, E.; Van Miert, S.; de Souza, M.F. Microalgal Cultivation on Grass Juice as a Novel Process for a Green Biorefinery. Algal. Res. 2023, 69, 102941. doi:10.1016/j.algal.2022.102941.
  • Alahmad, W.; Kaya, S.I.; Cetinkaya, A.; Varanusupakul, P.; Ozkan, S.A. Green Chemistry Methods for Food Analysis: Overview of Sample Preparation and Determination. Adv. Sample Prep. 2023, 5, 100053. doi:10.1016/j.sampre.2023.100053.
  • Alahmad, W.; Kraiya, C.; Varanusupakul, P.; Tabani, H.; Varanusupakul, P. Gel Electromembrane Microextraction Followed by ion Chromatography for Direct Determination of Iodine in Supplements and Fortified Food Samples: Green Chemistry for Food Analysis. Food Chem. 2021, 358, 129857. doi:10.1016/j.foodchem.2021.129857.
  • Kessler, J.C.; Vieira, V.; Martins, I.M.; Manrique, Y.A.; Ferreira, P.; Calhelha, R.C.; Afonso, A.; Barros, L.; Rodrigues, A.E.; Dias, M.M. Chemical and Organoleptic Properties of Bread Enriched with Rosmarinus officinalis L.: The Potential of Natural Extracts Obtained Through Green Extraction Methodologies as Food Ingredients. Food Chem. 2022, 384, 132514. doi:10.1016/j.foodchem.2022.132514.
  • Murcia, J.E.; Martinez, S.; Martins, V.; Herrera, D.; Buitrago, C.; Velasquez, A.; Ruiz, F.; Torres, M. Risk Assessment and Green Chemistry Applied to Waste Generated in University Laboratories. Heliyon 2023, 9 (5), e15900. doi:10.1016/j.heliyon.2023.e15900.
  • Fiorentini, E.F.; Llaver, M.; Oviedo, M.N.; Quintas, P.Y.; Wuilloud, R.G. State-of-the-art Analytical Methods Based on Ionic Liquids for Food and Beverage Analysis. Green Anal. Chem. 2022, 1, 100002. doi:10.1016/j.greeac.2022.100002.
  • Barzan, G.; Sacco, A.; Giovannozzi, A.M.; Portesi, C.; Schiavone, C.; Salafranca, J.; Wrona, M.; Nerín, C.; Rossi, A.M. Development of Innovative Antioxidant Food Packaging Systems Based on Natural Extracts from Food Industry Waste and Moringa oleifera Leaves. Food Chem. 2024, 432, 137088. doi:10.1016/j.foodchem.2023.137088.
  • Boone, L.; Préat, N.; Nhu, T.T.; Fiordelisi, F.; Guillard, V.; Blanckaert, M.; Dewulf, J. Environmental Performance of Plastic Food Packaging: Life Cycle Assessment Extended with Costs on Marine Ecosystem Services. Sci. Total Environ. 2023, 894, 164781. doi:10.1016/j.scitotenv.2023.164781.
  • Bodlalo, L.H.; Sabbaghan, M.; Jome, S.M.R.E. A Comparative Study in Green Chemistry Education Curriculum in America and China. Procedia-Soc. Behav. Sci. 2013, 90, 288–292. doi:10.1016/j.sbspro.2013.07.093.
  • Pisani, S.; Haw, M.D. Learner Agency in a Chemical Engineering Curriculum: Perceptions and Critical Thinking. Educ. Chem. Eng. 2023, 44, 200–215. doi:10.1016/j.ece.2023.06.003.
  • Wang, M.Y.; Li, X.Y.; He, L.N. Green Chemistry Education and Activity in China. Curr. Opin. Green Sustain. Chem. 2018, 13, 123–129. doi:10.1016/j.cogsc.2018.07.001.
  • Hurst, G.A. Systems Thinking Approaches for International Green Chemistry Education. Curr. Opin. Green Sustain. Chem. 2020, 21, 93–97. doi:10.1016/j.cogsc.2020.02.004.
  • Karpudewan, M.; Kulandaisamy, Y. Malaysian Teachers’ Insights Into Implementing Green Chemistry Experiments in Secondary Schools. Curr. Opin. Green Sustain. Chem. 2018, 13, 113–117. doi:10.1016/j.cogsc.2018.06.015.
  • Aghamolaei, R.; Fallahpour, M. Strategies Towards Reducing Carbon Emission in University Campuses: A Comprehensive Review of Both Global and Local Scales. J. Build. Eng. 2023, 76, 107183. doi:10.1016/j.jobe.2023.107183.
  • Rey-Hernández, J.M.; Rey-Martínez, F.J.; Yousif, C.; Krawczyk, D. Assessing the Performance of a Renewable District Heating System to Achieve Nearly Zero-Energy Status in Renovated University Campuses: A Case Study for Spain. Energy Convers. Manage. 2023, 292, 117439. doi:10.1016/j.enconman.2023.117439.
  • Costantini, V.; Mazzanti, M. On the Green and Innovative Side of Trade Competitiveness? The Impact of Environmental Policies and Innovation on EU Exports. Res. Policy. 2012, 41 (1), 132–153. doi:10.1016/j.respol.2011.08.004.
  • Koytcheva, M.K.; Sauerwein, L.K.; Webb, T.L.; Baumgarn, S.A.; Skeels, S.A.; Duncan, C.G. A Systematic Review of Environmental Sustainability in Veterinary Practice. Top. Companion. Anim. Med. 2021, 44, 100550. doi:10.1016/j.tcam.2021.100550.
  • Tregear, A.; Aničić, Z.; Arfini, F.; Biasini, B.; Bituh, M.; Bojović, R.; Brečić, R.; Brennan, M.; Colić Barić, I., Del Rio, D., et al. Routes to Sustainability in Public Food Procurement: An Investigation of Different Models in Primary School Catering. J. Cleaner Prod. 2022, 338, 130604. doi:10.1016/j.jclepro.2022.130604.
  • Ratti, R. Industrial Applications of Green Chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2 (2), 263. doi:10.1007/s42452-020-2019-6.
  • Lenoir, D.; Schramm, K.W.; Lalah, J.O. Green Chemistry: Some Important Forerunners and Current Issues. Sustain. Chem. Pharm. 2020, 18, 100313. doi:10.1016/j.scp.2020.100313.
  • Płotka-Wasylka, J.; Mohamed, H.M.; Kurowska-Susdorf, A.; Dewani, R.; Fares, M.Y.; Andruch, V. Green Analytical Chemistry as an Integral Part of Sustainable Education Development. Curr. Opin. Green Sustain. Chem. 2021, 31, 100508. doi:10.1016/j.cogsc.2021.100508.