697
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Nanoemulsion strategies in controlling fungal contamination and toxin production on grain corn using essential oils

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2315138 | Received 28 Jun 2022, Accepted 01 Feb 2024, Published online: 21 Feb 2024

References

  • Yazid, S.N.E.; Ng, W.J.; Selamat, J.; Ismail, S.I.; Samsudin, N.I.P. Diversity and Toxigenicity of Mycobiota in Grain Corn: A Case Study at Pioneer Grain Corn Plantations in Terengganu, Malaysia. Agriculture 2021, 11, 237.
  • Lafitte, H.R. Identifying Production Problems in Tropical Maize: A Field Guide; CIMMYT, Mexico: Mexico, D.F., 1994.
  • Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The Effectiveness of Plant Essential Oils on the Growth of Botrytis Cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44.
  • Souza, E.L.; Stamford, T.L.M.; Lima, E.O.; Trajano, V.N. Effectiveness of Origanum Vulgare L. Essential Oil to Inhibit the Growth of Food Spoiling Yeasts. Food Control 2007, 18, 409–413.
  • Ford, E.D.; Cocke, A.; Horton, L.; Fellner, M.; Volkenburgh, E.V. Estimation, Variation and Importance of Leaf Curvature in Zea mays Hybrids. Agric. For. Meteorol 2008, 148, 1598–1610.
  • Khadzir, M.K.; Shari, E.S.; Ahmad, M.H.; Rani, R.A.; Sayuti, A.F.A. The Evaluation of Planting Spacing and Effects on the Yield for Malaysia Grain Corn Production. Adv. Agric. Food Res. J 2021, 2.
  • An Overview of the Grain Corn Industry in Malaysia. Available at https://ap.fftc.org.tw/article/1377.
  • Giorni, P.; Bertuzzi, T.; Battilani, P. Impact of Fungi Co-Occurrence on Mycotoxin Contamination in Maize During the Growing Season, Front. Microbiol 2019, 10.
  • Munkvold, G.P.; Arias, S.; Taschl, I.; C. Gruber-Dorninger, Chapter 9 - Mycotoxins in Corn: Occurrence, Impacts, and Management. In Corn (Third Edition): Serna-Saldivar, S. O., Ed.; AACC International Press: Oxford, 2019, pp. 235–287.
  • Warburton, M.; Williams, P. Aflatoxin Resistance in Maize: What Have we Learned Lately? Adv Bot 2014, 2014, 1–10.
  • Nasaruddin, N.; Jinap, S.; Samsudin, N.I.; Kamarulzaman, N.H.; Sanny, M. Prevalence of Mycotoxigenic Fungi and Assessment of Aflatoxin Contamination: A Multiple Case Study Along the Integrated Corn-Based Poultry Feed Supply Chain in Malaysia. J. Sci. Food Agric 2021, 101, 1812–1821.
  • Zain, M.E. Impact of Mycotoxins on Humans and Animals. J. Saudi Chem. Soc 2011, 15, 129–144.
  • Samsudin, N.I.P.; Rodriguez, A.; Medina, A.; Magan, N. Efficacy of Fungal and Bacterial Antagonists for Controlling Growth, FUM1 Gene Expression and Fumonisin B1 Production by Fusarium verticillioides on Maize Cobs of Different Ripening Stages. Int. J. Food Microbiol 2017, 246, 72–79.
  • Magan, N.; Medina, A. Integrating Gene Expression, Ecology and Mycotoxin Production by Fusarium and Aspergillus Species in Relation to Interacting Environmental Factors. World Mycotoxin J 2016, 9, 673–684.
  • Boissou, F.; Mühlbauer, A.; De Oliveira Vigier, K.; Leclercq, L.; Kunz, W.; Marinkovic, S.; Estrine, B.; Nardello-Rataj, V.; Jérôme, F. Transition of Cellulose Crystalline Structure in Biodegradable Mixtures of Renewably-Sourced Levulinate Alkyl Ammonium Ionic Liquids, γ-valerolactone and Water. Green Chem. 2014, 16, 2463–2471.
  • Jiang, C.; Li, Z.; Shi, Y.; Guo, D.; Pang, B.; Chen, X.; Shao, D.; Liu, Y.; Shi, J. Bacillus Subtilis Inhibits Aspergillus carbonarius by Producing iturin A, Which Disturbs the Transport, Energy Metabolism, and Osmotic Pressure of Fungal Cells as Revealed by Transcriptomics Analysis. Int. J. Food Microbiol 2020, 330, 108783.
  • Reddy, K.R.; Nurdijati, S.B.; Salleh, B. An Overview of Plant-Derived Products on Control of Mycotoxigenic Fungi and Mycotoxins. Asian J. Plant Sci 2010, 9, 126–133.
  • Balendres, M.A.O.; Karlovsky, P.; Cumagun, C.J.R. Mycotoxigenic Fungi and Mycotoxins in Agricultural Crop Commodities in the Philippines: A Review. Foods 2019, 8.
  • Samsudin, N.I.P.; Abdullah, N. A Preliminary Survey on the Occurrence of Mycotoxigenic Fungi and Mycotoxins Contaminating red Rice at Consumer Level in Selangor, Malaysia. Mycotoxin. Res. 2013, 29, 89–96.
  • Zakaria, L. Mycotoxigenic Fusarium Species from Agricultural Crops in Malaysia. Mycotoxins 2017, 67, 67–75.
  • Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer Science & Business Media, 2009.
  • Abdullah, N.; Nawawi, A.; Othman, I. Survey of Fungal Counts and Natural Occurrence of Aflatoxins in Malaysian Starch-Based Foods. Mycopathologia 1998, 143, 53–58.
  • Yazdani, D.; Zainal Abidin, M.A.; Tan, Y.H.; Kamaruzaman, S. Molecular Identification of Aspergillus and Eurotium Species Isolated from Rice and Their Toxin-Producing Ability. Mikrobiologiia 2011, 80, 707–713.
  • Loh, S.H.; Yusof, N.; Ling, H. Determination of Aflatoxins B1 and B2 in Peanuts and Corn Based Products. Sains Malays 2010, 39, 731–735.
  • Reddy, K.R.N.; Salleh, B. Co-occurrence of Moulds and Mycotoxins in Corn Grains Used for Animal Feeds in Malaysia. J. Anim. Vet. Adv 2011, 10, 668–673.
  • Kelly, A.C.; Clear, R.M.; O'Donnell, K.; McCormick, S.; Turkington, T.K.; Tekauz, A.; Gilbert, J.; Kistler, H.C.; Busman, M.; Ward, T.J. Diversity of Fusarium Head Blight Populations and Trichothecene Toxin Types Reveals Regional Differences in Pathogen Composition and Temporal Dynamics. Fungal Genet. Biol 2015, 82, 22–31.
  • McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728.
  • Mohd Zainudin, N.A.I.; Mohamed Sidique, S.N.; Johari, N.; Darnetty; Razak, A.; Salleh, B. Isolation and Identification of Fusarium Species Associated with Fusarium ear rot Disease of Corn. Pertanika J. Trop. Agric. Sci 2011, 34, 325–330.
  • Tiru, Z.; Mandal, P.; Chakraborty, A.P.; Pal, A.; Sadhukhan, S. Fusarium Disease of Maize and Its Management Through Sustainable Approach; IntechOpen, 2021.
  • Yazid, S.N.E.; Ng, W.J.; Selamat, J.; Ismail, S.I.; Samsudin, N.I.P. Diversity and Toxigenicity of Mycobiota in Grain Corn: A Case Study at Pioneer Grain Corn Plantations in Terengganu, Malaysia. Agriculture 2021, 11, 237.
  • Kanja, C.; Wood, A.K.M.; Baggaley, L.; Walker, C.; Hammond-Kosack, K.E. Cereal-Fusarium Interactions: Improved Fundamental Insights into Fusarium Pathogenomics and Cereal Host Resistance Reveals New Ways to Achieve Durable Disease Control, in Achieving durable disease resistance in cereals; Burleigh Dodds Science Publishing, 2021.
  • Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167.
  • Adetunji, M.C.; Aroyeun, S.O.; Osho, M.B.; Sulyok, M.; Krska, R.; Mwanza, M. Fungal Metabolite and Mycotoxins Profile of Cashew Nut from Selected Locations in Two African Countries. Food Addit. Contam. Part A 2019, 36, 1847–1859.
  • Sun, S.; Yao, K.; Zhao, S.; Zheng, P.; Wang, S.; Zeng, Y.; Liang, D.; Ke, Y.; Jiang, H. Determination of aflatoxin and zearalenone Analogs in Edible and Medicinal Herbs Using a Group-Specific Immunoaffinity Column Coupled to Ultra-High-Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci 2018, 1092, 228–236.
  • Goko, M.L.; Murimwa, J.C.; Gasura, E.; Rugare, J.T.; Ngadze, E. Identification and Characterisation of Seed-Borne Fungal Pathogens Associated with Maize (Zea mays L.). Int. J. Microbiol 2021, 2021, e6702856.
  • Wilson, D.M.; Mubatanhema, W.; Jurjevic, Z. Biology and Ecology of Mycotoxigenic Aspergillus Species as Related to Economic and Health Concerns. In Mycotoxins and Food Safety, DeVries, J. W., Trucksess, M.W., Jackson, L.S., Eds.; Springer US: Boston, MA, 2002, pp. 3–17.
  • Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin Contamination of Corn (Maize, Zea Mays) Hybrids in Arkansas. Crop Prot. 2006, 25, 1–9.
  • Nurul, A.H.; Noor, M.A. Food Preference of (Coleoptera:) to Different Types of Plant Products. Malays. J. Halal Res 2019, 2, 53–57.
  • Champ, B.R.; Dyte, C.E. Report of the FAO Global Survey of Pesticide Susceptibility of Stored Grain Pests. Collect. FAO Prod. Veg. Prot. Plantes FAO - Coleccion FAO Prod. Prot. Veg. FAO 1976.
  • Tournas, V.H.; Niazi, N.S. Potentially Toxigenic Fungi from Selected Grains and Grain Products. J. Food Saf 2018, 38, e12422.
  • Allameh, A.; Ziglari, T.; Rasooli, I. Phytoinhibition of Growth and Aflatoxin Biosynthesis in Toxigenic Fungi. In Aflatoxins - Detection, Measurement and Control, Torres-Pacheco, I., Ed.; InTech, 2011.
  • Guadalupe, E.; Patricia, S., Moreno-Martinez, E., Torres-Pacheco, I.; Virginia, A. Novel Methods for Preventing and Controlling Aflatoxins in Food: A Worldwide Daily Challenge. In Aflatoxins - Recent Advances and Future Prospects, Razzaghi-Abyaneh, M., Ed.; InTech, 2013.
  • Gowda, N.K.S.; Malathi, V.; Suganthi, R.U. Effect of Some Chemical and Herbal Compounds on Growth of Aspergillus parasiticus and Aflatoxin Production. Anim. Feed Sci. Technol 2004, 116, 281–291.
  • Abd-Elsalam, K.A.; Hashim, A.F.; Alghuthaymi, M.A.; Said-Galiev, E. Nanobiotechnological Strategies for Toxigenic Fungi and Mycotoxin Control. In Food Preservation; Elsevier, 2017, pp. 337–364.
  • Hu, D.; Yu, S.; Yu, D.; Liu, N.; Tang, Y.; Fan, Y.; Wang, C.; Wu, A. Biogenic Trichoderma Harzianum-Derived Selenium Nanoparticles with Control Functionalities Originating from Diverse Recognition Metabolites Against Phytopathogens and Mycotoxins. Food Control 2019, 106, 106748.
  • Liewen, M.B.; Marth, E.H. Growth of Sorbate-Resistant and -Sensitive Strains of Penicillium roqueforti in the Presence of Sorbate, J. Food Prot 1985, 48, 525–529.
  • Yin, Y.; Yan, L.; Jiang, J.; Ma, Z. Biological Control of Aflatoxin Contamination of Crops. J. Zhejiang Univ. Sci. B 2008, 9, 787–792.
  • Lang, G.; Buchbauer, G. A Review on Recent Research Results (2008–2010) on Essential Oils as Antimicrobials and Antifungals. A review. Flavour Fragr. J 2012, 27, 13–39.
  • Soliman, K.M.; Badeaa, R.I. Effect of Oil Extracted from Some Medicinal Plants on Different Mycotoxigenic Fungi, Food Chem. Toxicol 2002, 40, 1669–1675.
  • Tian, J.; Ban, X.; Zeng, H.; He, J.; Huang, B.; Wang, Y. Chemical Composition and Antifungal Activity of Essential Oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol 2011, 145, 464–470.
  • Velluti, A. Inhibitory Effect of Cinnamon, Clove, Lemongrass, Oregano and Palmarose Essential Oils on Growth and Fumonisin B1 Production by Fusarium Proliferatum in Maize Grain. Int. J. Food Microbiol 2003, 89, 145–154.
  • Vilela, G.R.; de Almeida, G.S.; D'Arce, M.A.B.R.; Moraes, M.H.D.; Brito, J.O.; da Silva, M.F.D.G.; Silva, S.C.; de Stefano Piedade, S.M.; Calori-Domingues, M.A.; da Gloria, E.M. Activity of Essential Oil and Its Major Compound, 1,8-Cineole, from Eucalyptus globulus Labill., Against the Storage Fungi Aspergillus Flavus Link and Aspergillus parasiticus Speare. J. Stored Prod. Res 2009, 45, 108–111.
  • Czaja, K.; Góralczyk, K.; Struciński, P.; Hernik, A.; Korcz, W.; Minorczyk, M.; Łyczewska, M.; Ludwicki, J.K. Biopesticides - Towards Increased Consumer Safety in the EU. Pest Manag. Sci 2015, 71.
  • Gotmare, S.; Tambe, E. Identification of Chemical Constituents of Cinnamon Bark Oil by GCMS and Comparative Study Garnered from Five Different Countries, Glob. J. Sci. Front. Res. Biol. Sci 2019, 19, 35–42.
  • da Nóbrega Alves, D.; Monteiro, A.F.M.; Andrade, P.N.; Lazarini, J.G.; Abílio, G.M.F.; Guerra, F.Q.S.; Scotti, M.T.; Scotti, L.; Rosalen, P.L.; Castro, R.D.D. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity Against Human Cells of Cinnamaldehyde. Molecules 2020, 25, 5969.
  • Irshad, M.; Subhani, M.A.; Ali, S.; Hussain, A. Biological Importance of Essential Oils, Essent. Oils - Oils Nat 2019.
  • Ahmad, Z.A.B.; Yusoff, Z.B.; Awang, A.F.B.; Nor, M.A.F.B.M.; Zait, M.S.H.B.M.; Roslan, M.H.B.; Zaid, M.Z.I.B.M. Hydro-Distillation Process in Extracting of Agarwood Essential Oil, 2015.
  • Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical Composition, Antioxidant and Antimicrobial Activities of Basil (Ocimum basilicum) Essential Oils Depends on Seasonal Variations. Food Chem. 2008, 108, 986–995.
  • Hunter, M. Essential Oils: Art, Agriculture, Science, Industry and Entrepreneurship (a Focus on the Asia-Pacific Region), Agriculture Issues and Policies Series; Nova Science Publishers: New York, 2009.
  • Aziz, S.; Habib-ur-Rehman; Irshad, M.; Asghar, S.F.; Hussain, H.; Ahmed, I. Phytotoxic and Antifungal Activities of Essential Oils of Thymus serpyllum Grown in the State of Jammu and Kashmir. J. Essent. Oil Bear. Plants 2010, 13, 224–229.
  • Irshad, M. Antioxidant and Antimicrobial Activities of Essential Oil of Skimmea laureola Growing Wild in the State of Jammu and Kashmir. J. Med. Plants Res 2012, 6.
  • Irshad, M.; Aziz, S.; Ahmed, M.N.; Asghar, G.; Akram, M.; Shahid, M. Comparisons of Chemical and Biological Studies of Essential Oils of Stem, Leaves and Seeds of Zanthoxylum alatum Roxb Growing Wild in the State of Azad Jammu and Kashmir, Pakistan. Rec. Nat. Prod 2018, 12, 638–642.
  • Irshad, M.; Shahid, M.; Aziz, S.; Ghous, T. Antioxidant, Antimicrobial and Phytotoxic Activities of Essential Oil of Angelica glauca. Asian J. Chem. 2011, 23, 1947–1951.
  • El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial Activity of Cinnamon Essential Oils and Their Synergistic Potential with Antibiotics. J. Adv. Pharm. Technol. Res 2019, 10, 63–67.
  • Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon Oil Nanoemulsion Formulation by Ultrasonic Emulsification: Investigation of its Bactericidal Activity. J. Nanosci. Nanotechnol 2013, 13, 114–122.
  • Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential Oils Used in Aromatherapy: A Systemic Review. Asian Pac. J. Trop. Biomed 2015, 5, 601–611.
  • Fan, S.; Chang, J.; Zong, Y.; Hu, G.; Jia, J. GC-MS Analysis of the Composition of the Essential Oil from Dendranthema indicum Var. Aromaticum Using Three Extraction Methods and Two Columns. Molecules 2018, 23, 576–590.
  • Lee, S.; Kim, H.; Beuchat, L.R.; Kim, Y.; Ryu, J.-H. Synergistic Antimicrobial Activity of Oregano and Thyme Thymol Essential Oils Against Leuconostoc Citreum in a Laboratory Medium and Tomato Juice. Food Microbiol. 2020, 90, 103489.
  • Iori, A.; Grazioli, D.; Gentile, E.; Marano, G.; Salvatore, G. Acaricidal Properties of the Essential Oil of Melaleuca alternifolia Cheel (tea Tree Oil) Against nymphs of Ixodes ricinus. Vet. Parasitol 2005, 129, 173–176.
  • Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Formulation and Characterization of Plant Essential Oil Based Nanoemulsion: Evaluation of its Larvicidal Activity Against Aedes aegypti. Asian J. Chem 2013, 25, S321–S323.
  • Carrubba, A.; Catalano, C. Essential Oil Crops for Sustainable Agriculture – A Review, 2009, pp. 137–187.
  • Siddique, S.; Shah, Z.H.; Shahid, S.; Yasmin, F. Preparation, Characterization and Antibacterial Activity of ZnO Nanoparticles on Broad Spectrum of Microorganisms. Acta Chim. Slov 2013, 60, 660–665.
  • Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58.
  • Carmo, E.S.; de Oliveira Lima, E.; de Souza, E.L. The Potential of Origanum vulgare L. (Lamiaceae) Essential Oil in Inhibiting the Growth of Some Food-Related Aspergillus Species. Braz. J. Microbiol 2008, 39, 362–367.
  • Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86.
  • Kumar, A.; Kudachikar, V.B. Antifungal Properties of Essential Oils Against Anthracnose Disease: A Critical Appraisal. J. Plant Dis. Prot 2018, 125, 133–144.
  • Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem 2003, 10, 813–829.
  • Chee, H.Y.; Lee, M.H. Antifungal Activity of Clove Essential Oil and Its Volatile Vapour Against Dermatophytic Fungi. Mycobiology 2007, 35, 241–243.
  • Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of the Clove Essential Oil from Syzygium aromaticum on Candida, Aspergillus and Dermatophyte Species. J. Med. Microbiol 2009, 58, 1454–1462.
  • Abhishek Biswal, R.; Venkataraghavan, R.; Vivek, P.; Ivo Romauld, S. Molecular Docking of Various Bioactive Compounds from Essential Oil of Trachyaspermum ammi Against the Fungal Enzyme Candidapepsin-1. J. Appl. Pharm. Sci 2019, 9, 21–32.
  • Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Myristica fragrans Essential Oil nanoemulsion as Novel Green Preservative Against Fungal and Aflatoxin Contamination of Food Commodities with Emphasis on Biochemical Mode of Action and Molecular Docking of Major Components. LWT 2020, 130, 109495.
  • Sivanandhan, S.; Pathalam, G.; Antony, S.; Michael, G.P.; Balakrishna, K.; Boovaragamurthy, A.; Shirota, O.; Alwahibi, M.S.; El-Shikh, M.S.; Ignacimuthu, S. Effect of Monoterpene Ester from Blumea axillaris (Lam.) DC and Its Acetyl Derivative Against Plant Pathogenic Fungi and Their in Silico Molecular Docking. Nat. Prod. Res 2021, 35, 5744–5751.
  • Cruz, J.N.; Silva, S.G.; Pereira, D.S.; Souza Filho, A.P.D.S.; de Oliveira, M.S.; Lima, R.R.; Andrade, E.H.D.A. In Silico Evaluation of the Antimicrobial Activity of Thymol—Major Compounds in the Essential Oil of Lippia thymoides Mart. & Schauer (Verbenaceae). Molecules 2022, 27, 4768.
  • Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Banerjee, R.; Biswas, S.; McClements, D.J. Application of nanoemulsion-Based Approaches for Improving the Quality and Safety of Muscle Foods: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf 2020, 19, 2677–2700.
  • Donovan, B.W.; Reuter, J.D.; Cao, Z.; Myc, A.; Johnson, K.J.; Baker, J.R. Prevention of Murine Influenza a Virus Pneumonitis by Surfactant Nano-Emulsions. Antivir. Chem. Chemother 2000, 11, 41–49.
  • Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841.
  • Çinar, K. A Review On Nanoemulsions: Preparation Methods and Stability, 2017, pp. 11.
  • Gurpret, K.; Singh, S.K. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci 2018, 80.
  • Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst 2019, 3, 95.
  • Koroleva, M.Y.; Yurtov, E.V. Nanoemulsions: The Properties, Methods of Preparation and Promising Applications. Russ. Chem. Rev 2012, 81, 21.
  • Borrin, T.R.; Georges, E.L.; Moraes, I.C.F.; Pinho, S.C. Curcumin-loaded Nanoemulsions Produced by the Emulsion Inversion Point (EIP) Method: An Evaluation of Process Parameters and Physico-Chemical Stability. J. Food Eng 2016.
  • Hien, L.T.M.; Khoa, T.D.; Dao, D.T.A. Characterization of Black Pepper Essential Oil nanoemulsion Fabricated by Emulsion Phase Inversion Method. J. Food Process. Preserv 2022, 46, e16207.
  • Karadag, A.; Yang, X.; Ozcelik, B.; Huang, Q. Optimization of Preparation Conditions for quercetin Nanoemulsions Using Response Surface Methodology. J. Agric. Food Chem 2013, 61, 2130–2139.
  • Liang, R.; Xu, S.; Shoemaker, C.F.; Li, Y.; Zhong, F.; Huang, Q. Physical and Antimicrobial Properties of peppermint Oil Nanoemulsions. J. Agric. Food Chem 2012, 60, 7548–7555.
  • Liu, X.; Chen, L.; Kang, Y.; He, D.; Yang, B.; Wu, K. Cinnamon Essential Oil Nanoemulsions by High-Pressure Homogenization: Formulation, Stability, and Antimicrobial Activity. LWT 2021, 147, 111660.
  • Li, L.W.; Chen, X.Y.; Liu, L.C.; Yang, Y.; Wu, Y.J.; Chen, G.; Zhang, Z.F.; Luo, P. Oil-in-Water camellia Seeds Oil Nanoemulsions via High Pressure microfluidization: Formation and Evaluation. LWT 2021, 140, 110815.
  • Kim, S.-H.; Ji, Y.-S.; Lee, E.-S.; Hong, S.-T. Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers. Prev. Nutr. Food Sci 2016, 21, 289–295.
  • Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Deng, Y.; McClements, D.J. Fabrication of β-Carotene Nanoemulsion-Based Delivery Systems Using Dual-Channel Microfluidization: Physical and Chemical Stability. J. Colloid Interface Sci 2017, 490, 328–335.
  • Farshbaf-Sadigh, A.; Jafarizadeh-Malmiri, H.; Anarjan, N.; Najian, Y. Preparation of Ginger Oil in Water Nanoemulsion Using Phase Inversion Composition Technique: Effects of Stirring and Water Addition Rates on Their Physico-Chemical Properties and Stability. Z. Für Phys. Chem 2021, 235, 295–314.
  • Safaya, M.; Rotliwala, Y. Neem Oil Based Nano-Emulsion Formulation by Low Energy Phase Inversion Composition Method: Characterization and Antimicrobial Activity, Mater. Today Proc 2022, 57, 1793–1797.
  • Wang, J.; Chen, H.; Guo, T.; Yue, P.; Qian, T.; Zeng, X.; Luo, Y.; Li, J.; Teng, L.; Liu, Q.; Hong, L. Isoliquiritigenin Nanoemulsion Preparation by Combined Sonication and Phase-Inversion Composition Method: In Vitro Anticancer Activities. Bioengineering 2022, 9, 382.
  • Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion Formulation of fisetin Improves Bioavailability and Antitumour Activity in Mice. Int. J. Pharm 2012, 427, 452–459.
  • Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; McClements, D.J. Optimization of Cinnamon Oil Nanoemulsions Using Phase Inversion Temperature Method: Impact of Oil Phase Composition and Surfactant Concentration. J. Colloid Interface Sci 2018, 514, 208–216.
  • Mashhadi, S.; Javadian, H.; Tyagi, I.; Agarwal, S.; Gupta, V.K. The Effect of Na2SO4 Concentration in Aqueous Phase on the Phase Inversion Temperature of Lemon Oil in Water Nano-Emulsions. J. Mol. Liq 2016, 215, 454–460.
  • Zhao, Y.; Wang, C.; Chow, A.H.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Zedoary Essential Oil: Formulation and Bioavailability Studies. Int. J. Pharm 2010, 383, 170–177.
  • Ujilestari, T.; Martien, R.; Ariyadi, B.; Dono, N.D. Antibacterial Effects of Essential Oils of Cymbopogon Citratus and Amomum Compactum Under Self-Nanoemulsifying Drug Delivery System (SNEDDS). IOP Conf. Ser. Earth Environ. Sci 2019, 387, 012071.
  • Baskara, A.; Ariyadi, B.; Dono, N.; Martien, R.; Zuprizal, Z. Effect of Self-Nanoemulsifying Drug Delivery System (SNEDDS) of Cinnamon Bark Essential Oil on Broiler Chicken Performance. Livest. Res. Rural Dev 2020, 32.
  • Hashtjin, A.M.; Abbasi, S. Optimization of Ultrasonic Emulsification Conditions for the Production of Orange Peel Essential Oil Nanoemulsions. J. Food Sci. Technol 2015, 52, 2679–2689.
  • Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer Activity of an Ultrasonic Nanoemulsion Formulation of Nigella Sativa L. Essential Oil on Human Breast Cancer Cells. Ultrason. Sonochem 2016, 31, 449–455.
  • Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion: Antibacterial Activity Against Staphylococcus Aureus and Wound Healing Activity in Wistar Rats, Ultrason. Sonochem 2014, 21, 1044–1049.
  • Isailović, T.M.; Todosijević, M.N.; Đorđević, S.M.; Savić, S.D. Chapter 7 - Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDs—Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances. In Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs: B. Čalija, Ed.; Academic Press: Boston, 2017; pp. 179–217.
  • Zheng, Y.; Zheng, M.;Ma, Z.; Xin, B.; Guo, R.; Xu, X. 8 - Sugar Fatty Acid Esters. In Polar Lipids: Ahmad, M. U., Xu, X., Eds.; AOCS Press: Urbana, IL, 2015; pp. 215–243.
  • Liu, T.; Gao, Z.; Zhong, W.; Fu, F.; Li, G.; Guo, J.; Shan, Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants 2022, 11, 650.
  • Agatonovic-Kustrin, S.; Chan, C.K.Y.; Gegechkori, V.; Morton, D.W. Models for Skin and Brain Penetration of Major Components from Essential Oils Used in Aromatherapy for Dementia Patients. J. Biomol. Struct. Dyn 2020, 38, 2402–2411.
  • McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr 2011, 51, 285–330.
  • Pascual-Mathey, L.I.; Briones-Concha, J.A.; Jiménez, M.; Beristain, C.I.; Pascual-Pineda, L.A. Elaboration of Essential Oil Nanoemulsions of Rosemary (Rosmarinus Officinalis L.) and its Effect on Liver Injury Prevention. Food Bioprod. Process 2022, 134, 46–55.
  • Sessa, M.; Balestrieri, M.L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D'Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of Encapsulated Resveratrol into Nanoemulsion-Based Delivery Systems. Food Chem. 2014, 147, 42–50.
  • Artiga-Artigas, M.; Lanjari-Pérez, Y.; Martín-Belloso, O. Curcumin-loaded Nanoemulsions Stability as Affected by the Nature and Concentration of Surfactant. Food Chem. 2018, 266, 466–474.
  • Nasser, S.T.; Abdulrassol, A.A.; Ghareeb, M.M. Design, Preparation, and In-Vitro Evaluation of Novel Ocular Antifungal Nanoemulsion Using Posaconazole as a Model Drug. Int. J. DRUG Deliv. Technol 2021, 11, 1058–1064.
  • Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and Characterization of nanoemulsion as Carrier for the Enhancement of Bioavailability of artemether. Artif. Cells Nanomedicine Biotechnol 2015, 43, 334–344.
  • Kumar, N.; Mandal, A. Thermodynamic and Physicochemical Properties Evaluation for Formation and Characterization of Oil-in-Water Nanoemulsion. J. Mol. Liq 2018, 266, 147–159.
  • Hassanzadeh, H.; Alizadeh, M.; Hassanzadeh, R.; Ghanbarzadeh, B. Garlic Essential Oil-Based Nanoemulsion Carrier: Release and Stability Kinetics of Volatile Components. Food Sci. Nutr 2022, 10, 1613–1625.
  • Sharma, N.; Kaur, G.; Khatkar, S.K. Optimization of Emulsification Conditions for Designing Ultrasound Assisted Curcumin Loaded nanoemulsion: Characterization, Antioxidant Assay and Release Kinetics. LWT 2021, 141, 110962.
  • Mcclements, D.J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr 2007, 47, 611–649.
  • Aisyah, Y.; Haryani, S.; Safriani, N.; Husna, N.E. Optimization of Emulsification Process Parameters of Cinnamon Oil Nanoemulsion. Int. J. Adv. Sci. Eng. Inf. Technol 2018, 8, 2092–2098.
  • Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at Multi-Locations in Texas. Sci. Rep 2020, 10, 5037.
  • Cantó-Tejero, M.; Pascual-Villalobos, M.J.; Guirao, P. Aniseed Essential Oil botanical Insecticides for the Management of the currant-lettuce aphid, Ind. Crops Prod 2022, 181, 114804.
  • Bui, V.C.; Le, T.T.; Nguyen, T.H.; Pham, N.T.; Vu, H.D.; Nguyen, X.C.; De Tran, Q.; Hoang, T.; Le Dang, Q.; Lam, T.D. Curcumin-removed Turmeric Oleoresin Nano-Emulsion as a Novel Botanical Fungicide to Control anthracnose (Colletotrichum gloeosporioides) in litchi, Green Process. Synth 2021, 10, 729–741.
  • [BIONANOSEM 2022] Noor Azlina Binti Masdor, MARDI (V-Vir-My-006). Available at https://www.youtube.com/watch?v=nBY5_4AsKuI.
  • Yerramilli, M.; Longmore, N.; Ghosh, S. Stability and Bioavailability of Curcumin in Mixed Sodium Caseinate and Pea Protein Isolate Nanoemulsions. J. Am. Oil Chem. Soc 2018, 95, 1013–1026.
  • Ghiasi, Z.; Esmaeli, F.; Aghajani, M.; Ghazi-Khansari, M.; Faramarzi, M.A.; Amani, A. Enhancing Analgesic and Anti-Inflammatory Effects of Capsaicin When Loaded Into Olive Oil Nanoemulsion: An in Vivo Study. Int. J. Pharm 2019, 559, 341–347.