713
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ionogel hybrid polymer electrolytes encompassing room-temperature ionic liquids for 4V-class Li-metal batteries operating at ambient temperature

, , ORCID Icon & ORCID Icon
Article: 2321247 | Received 09 Nov 2023, Accepted 15 Feb 2024, Published online: 25 Feb 2024

References

  • Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S. Sustainable Development Using Renewable Energy Technology. Renew. Energy 2020, 146, 2430–2437. doi: 10.1016/j.renene.2019.08.094.
  • Abbas, Q.; Mirzaeian, M.; Hunt, M.R.C.; Hall, P.; Raza, R. Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies 2020, 13 (21). doi: 10.3390/en13215847.
  • Ediger, VŞ. An Integrated Review and Analysis of Multi-Energy Transition from Fossil Fuels to Renewables. Energy Procedia 2019, 156, 2–6. doi: 10.1016/j.egypro.2018.11.073.
  • Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS. Cent. Sci. 2017, 3 (10), 1063–1069. doi: 10.1021/acscentsci.7b00288.
  • Diouf, B.; Pode, R. Potential of Lithium-ion Batteries in Renewable Energy. Renew. Energy 2015, 76, 375–380. doi: 10.1016/j.renene.2014.11.058.
  • Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A 2019, 7 (7), 2942–2964. doi: 10.1039/c8ta10513h.
  • Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2 (10), 1991–2015. doi: 10.1016/j.joule.2018.07.009.
  • Chawla, N.; Bharti, N.; Singh, S. Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, 5 (1). doi: 10.3390/batteries5010019.
  • Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303–4417. doi: 10.1021/cr030203g.
  • Meutzner F.; de Vivanco, M.U. Electrolytes - Technology review. AIP Conf. Proc. 2014, 1957, 185–195. doi:10.1063/1.4878487.
  • Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B. A Review of Lithium-ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2019, 156, 83–99. doi: 10.1016/j.jechem.2020.10.017.
  • Chae, W.; Kim, B.; Ryoo, W.S.; Earmme, T. A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries. Polymers (Basel) 2023, 15 (4). doi: 10.3390/polym15040803.
  • Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5 (9), 2326–2352. doi: 10.1016/j.chempr.2019.05.009.
  • Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G. All-solid-state Lithium-ion and Lithium Metal Batteries – Paving the way to Large-Scale Production. J. Power Sources 2018, 382, 160–175. doi: 10.1016/j.jpowsour.2018.02.062.
  • Janek, J.; Zeier, W.G. A Solid Future for Battery Development. Nat. Energy 2016, 1 (9). doi: 10.1038/nenergy.2016.141.
  • Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5 (3), 229–252. doi: 10.1038/s41578-019-0165-5.
  • Yu, X.; Manthiram, A. A Review of Composite Polymer-Ceramic Electrolytes for Lithium Batteries. Energy Storage Mater. 2021, 34, 282–300. doi: 10.1016/j.ensm.2020.10.006.
  • Wang, L.; Li, J.; Lu, G.; Li, W.; Tao, Q.; Shi, C.; Jin, H.; Chen, G.; Wang, S. Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives. Front. Mater. 2020, 7. doi: 10.3389/fmats.2020.00111.
  • Meier, K.; Laino, T.; Curioni, A. Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations. J. Phys. Chem. C 2014, 118 (13), 6668–6679. doi: 10.1021/jp5002463.
  • Wagner, R.; Redhammer, G.J.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, M.; Amthauer, G. Crystal Structure of Garnet-Related Li-Ion Conductor Li7-3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? Chem. Mater. 2016, 28 (6), 1861–1871. doi: 10.1021/acs.chemmater.6b00038.
  • Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hitz, G.T.; Nolan, A.M.; Wachsman, E.D.; Mo, Y.; Thangadurai, V.; Hu, L. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 2020, 120 (10), 4257–4300. doi: 10.1021/acs.chemrev.9b00427.
  • Verduzco, J.C.; Vergados, J.N.; Strachan, A.; Marinero, E.E. Hybrid Polymer-Garnet Materials for All-Solid-State Energy Storage Devices. ACS Omega 2021, 6 (24), 15551–15558. doi: 10.1021/acsomega.1c01368.
  • Subramanian, K.; Alexander, G.V.; Karthik, K.; Patra, S.; Indu, M.S.; Sreejith, O.V.; Viswanathan, R.; Narayanasamy, J.; Murugan, R. A Brief Review of Recent Advances in Garnet Structured Solid Electrolyte Based Lithium Metal Batteries. J. Energy Storage 2021, 33. doi: 10.1016/j.est.2020.102157.
  • Shiiba, H.; Zettsu, N.; Yamashita, M.; Onodera, H.; Jalem, R.; Nakayama, M.; Teshima, K. Molecular Dynamics Studies on the Lithium Ion Conduction Behaviors Depending on Tilted Grain Boundaries with Various Symmetries in Garnet-Type Li7La3Zr2O12. J. Phys. Chem. C 2018, 122 (38), 21755–21762. doi: 10.1021/acs.jpcc.8b06275.
  • Karasulu, B.; Emge, S.P.; Groh, M.F.; Grey, C.P.; Morris, A.J. Al/Ga-Doped Li7La3Zr2O12 Garnets as Li-Ion Solid-State Battery Electrolytes: Atomistic Insights Into Local Coordination Environments and Their Influence on 17O, 27Al, and 71Ga NMR Spectra. J. Am. Chem. Soc. 2020, 142 (6), 3132–3148. doi: 10.1021/jacs.9b12685.
  • Isaac, J.A.; Devaux, D.; Bouchet, R. Dense Inorganic Electrolyte Particles as a Lever to Promote Composite Electrolyte Conductivity. Nat. Mater. 2022, 21 (12), 1412–1418. doi: 10.1038/s41563-022-01343-w.
  • Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M. A Review of Conduction Phenomena in Li-ion Batteries. J. Power Sources 2010, 195 (24), 7904–7929. doi: 10.1016/j.jpowsour.2010.06.060.
  • Li, S.; Zhang, S.Q.; Shen, L.; Liu, Q.; Ma, J.B.; Lv, W.; He, Y.B.; Yang, Q.H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7 (5). doi: 10.1002/advs.201903088.
  • Wu, X.; Zheng, Y.; Li, W.; Liu, Y.; Zhang, Y.; Li, Y.; Li, C. Solid Electrolytes Reinforced by Infinite Coordination Polymer Nano-Network for Dendrite-Free Lithium Metal Batteries. Energy Storage Mater. 2021, 41, 436–447. doi: 10.1016/j.ensm.2021.06.009.
  • Hu, J.; Chen, K.; Yao, Z.; Li, C. Unlocking Solid-State Conversion Batteries Reinforced by Hierarchical Microsphere Stacked Polymer Electrolyte. Sci Bull (Beijing) 2021, 66 (7), 694–707. doi: 10.1016/j.scib.2020.11.017.
  • Shin, J. Ionic Liquids to the Rescue? Overcoming the Ionic Conductivity Limitations of Polymer Electrolytes. Electrochem. Commun. 2003, 5 (12), 1016–1020. doi: 10.1016/j.elecom.2003.09.017.
  • Hu, Y.; Yu, L.; Meng, T.; Zhou, S.; Sui, X.; Hu, X. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges. Chem. Asian J. 2022, 17 (23), e202200794. doi: 10.1002/asia.202200794.
  • Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta 2006, 51 (26), 5567–5580. doi: 10.1016/j.electacta.2006.03.016.
  • Andrzejewska, E. Photoinitiated Polymerization in Ionic Liquids and its Application. Polym. Int. 2017, 66 (3), 366–381. doi: 10.1002/pi.5255.
  • Ueki, T.; Watanabe, M. Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials. Bull. Chem. Soc. Jpn. 2012, 85 (1), 33–50. doi: 10.1246/bcsj.20110225.
  • Lewandowski, A.; Świderska-Mocek, A. Ionic Liquids as Electrolytes for Li-ion Batteries - An Overview of Electrochemical Studies. J. Power Sources 2009, 194 (2), 601–609. doi: 10.1016/j.jpowsour.2009.06.089.
  • Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent Development of Ionic Liquid-Based Electrolytes in Lithium-ion Batteries. J. Power Sources 2022, 542. doi: 10.1016/j.jpowsour.2022.231792.
  • Andrzejewska, E.; Marcinkowska, A.; Zgrzeba, A. Ionogels – Materials Containing Immobilized Ionic Liquids. Polimery 2017, 62 (05), 344–352. doi: 10.14314/polimery.2017.344.
  • Manasa, C.; Basavanna, V.; Ningaiah, S. Ionic Liquid-Based Hybrid Materials: Ionogel Review. Biointerface Res. Appl. Chem. 2022, 13 (4). doi: 10.33263/briac134.391.
  • Wang, S.; Jiang, Y.; Hu, X. Ionogel-Based Membranes for Safe Lithium/Sodium Batteries. Adv. Mater. 2022, 34 (52), e2200945. doi: 10.1002/adma.202200945.
  • Park, M.J.; Choi, I.; Hong, J.; Kim, O. Polymer Electrolytes Integrated with Ionic Liquids for Future Electrochemical Devices. J. Appl. Polym. Sci. 2013, 129 (5), 2363–2376. doi: 10.1002/app.39064.
  • Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angew. Chem. Int. Ed. Engl. 2016, 55 (2), 500–513. doi: 10.1002/anie.201504971.
  • Sivakkumar, S.R.; MacFarlane, D.R.; Forsyth, M.; Kim, D.-W. Ionic Liquid-Based Rechargeable Lithium Metal-Polymer Cells Assembled with Polyaniline/Carbon Nanotube Composite Cathode. J. Electrochem. Soc. 2007, 154 (9), 6. doi: 10.1149/1.2750443.
  • Sun, J.; MacFarlane, D.R.; Forsyth, M. Lithium Polyelectrolyte–Ionic Liquid Systems. Solid State Ionics 2002, 147 (3-4), 333–339. doi: 10.1016/S0167-2738(02)00028-0.
  • Nair, J.R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V. UV-cured Methacrylic Membranes as Novel Gel–Polymer Electrolyte for Li-ion Batteries. J. Power Sources 2007, 178 (2), 751–757. doi: 10.1016/j.jpowsour.2007.08.004.
  • Porthault, H.; Piana, G.; Cesbron, M.; Armel, V.; Bazin, A.; Franger, S.; Oukassi, S. Photo-Initiated Cross-Linking of a Methacrylate/Ionic Liquid Based Gel Polymer Electrolyte: Effect of the Curing Sequence on the Electrochemical Properties. J. Phys. Chem. C 2019, 123 (30), 18171–18179. doi: 10.1021/acs.jpcc.9b02831.
  • Susan, M.A.B.H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes. J. Am. Chem. Soc. 2005, 127 (13), 4976–4983. doi: 10.1021/ja045155b.
  • Kubisa, P. Kinetics of Radical Polymerization in Ionic Liquids. Eur. Polym. J. 2020, 133. doi: 10.1016/j.eurpolymj.2020.109778.
  • Nair, J.R.; Gerbaldi, C.; Destro, M.; Bongiovanni, R.; Penazzi, N. Methacrylic-based Solid Polymer Electrolyte Membranes for Lithium-Based Batteries by a Rapid UV-Curing Process. React. Funct. Polym. 2011, 71 (4), 409–416. doi: 10.1016/j.reactfunctpolym.2010.12.007.
  • Gerbaldi, C. All-solid-state Lithium-Based Polymer Cells for High-Temperature Applications. Ionics 2010, 16 (9), 777–786. doi: 10.1007/s11581-010-0484-4.
  • Nair, J.R.; Colò, F.; Kazzazi, A.; Moreno, M.; Bresser, D.; Lin, R.; Bella, F.; Meligrana, G.; Fantini, S.; Simonetti, E.; Appetecchi, G.B.; Passerini, S.; Gerbaldi, C. Room Temperature Ionic Liquid (RTIL)-Based Electrolyte Cocktails for Safe, High Working Potential Li-Based Polymer Batteries. J. Power Sources 2019, 412, 398–407. doi: 10.1016/j.jpowsour.2018.11.061.
  • Gerbaldi, C.; Nair, J.R.; Ahmad, S.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. UV-cured Polymer Electrolytes Encompassing Hydrophobic Room Temperature Ionic Liquid for Lithium Batteries. J. Power Sources 2010, 195 (6), 1706–1713. doi: 10.1016/j.jpowsour.2009.09.047.
  • Gerbaldi, C.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. Highly Ionic Conducting Methacrylic-Based Gel-Polymer Electrolytes by UV-Curing Technique. J. Appl. Electrochem. 2009, 39 (11), 2199–2207. doi: 10.1007/s10800-009-9805-6.
  • Gerbaldi, C.; Nair, J.R.; Ferrari, S.; Chiappone, A.; Meligrana, G.; Zanarini, S.; Mustarelli, P.; Penazzi, N.; Bongiovanni, R. New Electrolyte Membranes for Li-Based Cells: Methacrylic Polymers Encompassing Pyrrolidinium-Based Ionic Liquid by Single Step Photo-Polymerisation. J. Membr. Sci. 2012, 423-424, 459–467. doi: 10.1016/j.memsci.2012.08.057.
  • Wang, W.; Alexandridis, P. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties. Polymers (Basel) 2016, 8 (11). doi: 10.3390/polym8110387.
  • Choi, Y.G.; Shin, J.C.; Park, A.; Jeon, Y.M.; Kim, J.I.; Kim, S.; Kim, S.; Lee, W.B.; Lee, M.; Park, J.H. Pyrrolidinium-PEG Ionic Copolyester: Li-Ion Accelerator in Polymer Network Solid-State Electrolytes. Adv. Energy. Mater. 2021, 11 (44). doi: 10.1002/aenm.202102660.
  • Kerner, M.; Johansson, P. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries. Batteries 2018, 4 (1). doi: 10.3390/batteries4010010.
  • Lahiri, A.; Schubert, T.J.; Iliev, B.; Endres, F. LiTFSI in 1-Butyl-1-Methylpyrrolidinium bis(Fluorosulfonyl)Amide: A Possible Electrolyte for Ionic Liquid Based Lithium ion Batteries. Phys. Chem. Chem. Phys. 2015, 17 (17), 11161–11164. doi: 10.1039/c5cp01337b.
  • Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Ionic Liquid Based Lithium Battery Electrolytes: Fundamental Benefits of Utilising Both TFSI and FSI Anions? Phys. Chem. Chem. Phys. 2015, 17 (29), 19569–19581. doi: 10.1039/c5cp01891a.
  • Corsaro, C.; Neri, G.; Santoro, A.; Fazio, E. Acrylate and Methacrylate Polymers’ Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. Materials (Basel) 2021, 15 (1). doi: 10.3390/ma15010282.
  • Pirman, T.; Ocepek, M.; Likozar, B. Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling. Ind. Eng. Chem. Res. 2021, 60 (26), 9347–9367. doi: 10.1021/acs.iecr.1c01649.
  • Safranski, D.L.; Gall, K. Effect of Chemical Structure and Crosslinking Density on the Thermo-Mechanical Properties and Toughness of (Meth)Acrylate Shape Memory Polymer Networks. Polymer 2008, 49 (20), 4446–4455. doi: 10.1016/j.polymer.2008.07.060.
  • Noe, C.; Tonda-Turo, C.; Chiappone, A.; Sangermano, M.; Hakkarainen, M. Light Processable Starch Hydrogels. Polymers (Basel) 2020, 12 (6). doi: 10.3390/polym12061359.
  • Endruweit, A.; Johnson, M.S.; Long, A.C. Curing of Composite Components by Ultraviolet Radiation: A Review. Polym. Compos. 2006, 27 (2), 119–128. doi: 10.1002/pc.20166.
  • Zagórski, J.; Silván, B.; Saurel, D.; Aguesse, F.; Llordés, A. Importance of Composite Electrolyte Processing to Improve the Kinetics and Energy Density of Li Metal Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3 (9), 8344–8355. doi: 10.1021/acsaem.0c00935.
  • Nguyen, Q.H.; Luu, V.T.; Nguyen, H.L.; Lee, Y.W.; Cho, Y.; Kim, S.Y.; Jun, Y.S.; Ahn, W. Li7La3Zr2O12 Garnet Solid Polymer Electrolyte for Highly Stable All-Solid-State Batteries. Front. Chem. 2020, 8, 619832. doi: 10.3389/fchem.2020.619832.
  • Luu, V.T.; Nguyen, Q.H.; Park, M.G.; Nguyen, H.L.; Seo, M.-H.; Jeong, S.-K.; Cho, N.; Lee, Y.-W.; Cho, Y.; Lim, S.N.; Jun, Y.-S.; Ahn, W. Cubic Garnet Solid Polymer Electrolyte for Room Temperature Operable All-Solid-State-Battery. J. Mater. Res. Technol. 2021. doi: 10.1016/j.jmrt.2021.11.055.
  • Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Mater. Sci. Eng. R Rep. 2019, 136, 27–46. doi: 10.1016/j.mser.2018.10.004.
  • Kravchyk, K.V.; Karabay, D.T.; Kovalenko, M.V. On the Feasibility of All-Solid-State Batteries with LLZO as a Single Electrolyte. Sci. Rep. 2022, 12 (1), 1177. doi: 10.1038/s41598-022-05141-x.
  • Falco, M.; Castro, L.; Nair, J.R.; Bella, F.; Bardé, F.; Meligrana, G.; Gerbaldi, C. UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries. ACS Appl. Energy Mater. 2019, 2 (3), 1600–1607. doi: 10.1021/acsaem.8b02185.
  • Noè, C.; Hakkarainen, M.; Malburet, S.; Graillot, A.; Adekunle, K.; Skrifvars, M.; Sangermano, M. Frontal-Photopolymerization of Fully Biobased Epoxy Composites. Macromol. Mater. Eng. 2022, 307 (6). doi: 10.1002/mame.202100864.
  • Tkachenko, Y.; Niedzielski, P. FTIR as a Method for Qualitative Assessment of Solid Samples in Geochemical Research: A Review. Molecules 2022, 27 (24). doi: 10.3390/molecules27248846.
  • Agafonov, A.V.; Grishina, E.P.; Kudryakova, N.O.; Ramenskaya, L.M.; Kraev, A.S.; Shibaeva, V.D. Ionogels: Squeeze Flow Rheology and Ionic Conductivity of Quasi-Solidified Nanostructured Hybrid Materials Containing Ionic Liquids Immobilized on Halloysite. Arab. J. Chem. 2022, 15 (1). doi: 10.1016/j.arabjc.2021.103470.
  • Liew, C.W.; Durairaj, R.; Ramesh, S. Rheological Studies of PMMA-PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt. PLoS One 2014, 9 (7), e102815. doi: 10.1371/journal.pone.0102815.
  • Doumeng, M.; Berthet, F.; Delbé, K.; Marsan, O.; Denape, J.; Chabert, F. Effect of Size, Concentration, and Nature of Fillers on Crystallinity, Thermal, and Mechanical Properties of Polyetheretherketone Composites. J. Appl. Polym. Sci. 2021, 139 (5). doi: 10.1002/app.51574.
  • Liang, W.; Shao, Y.; Chen, Y.-M.; Zhu, Y. A 4V Cathode Compatible, Superionic Conductive Solid Polymer Electrolyte for Solid Lithium Metal Batteries with Long Cycle Life. ACS Appl. Energy Mater. 2018, 1 (11), 6064–6071. doi: 10.1021/acsaem.8b01138.
  • Xu, X.; Lee, S.; Jeong, S.; Kim, Y.; Cho, J. Recent Progress on Nanostructured 4 V Cathode Materials for Li-ion Batteries for Mobile Electronics. Mater. Today 2013, 16 (12), 487–495. doi: 10.1016/j.mattod.2013.11.021.
  • Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J.R. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Sci. Rep. 2016, 6, 19892. doi: 10.1038/srep19892.
  • Chiappone, A.; Nair, J.R.; Gerbaldi, C.; Bongiovanni, R.; Zeno, E. UV-cured Al2O3-Laden Cellulose Reinforced Polymer Electrolyte Membranes for Li-Based Batteries. Electrochim. Acta 2015, 153, 97–105. doi: 10.1016/j.electacta.2014.11.141.
  • Nair, J.R.; Destro, M.; Gerbaldi, C.; Bongiovanni, R.; Penazzi, N. Novel Multiphase Electrode/Electrolyte Composites for Next Generation of Flexible Polymeric Li-ion Cells. J. Appl. Electrochem. 2012, 43 (2), 137–145. doi: 10.1007/s10800-012-0492-3.
  • Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L.A. Solid-state Polymer Electrolytes with in-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nat. Energy 2019, 4 (5), 365–373. doi: 10.1038/s41560-019-0349-7.
  • Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J.R. In Situ Polymerization Process: An Essential Design Tool for Lithium Polymer Batteries. Energy Environ. Sci. 2021, 14 (5), 2708–2788. doi: 10.1039/d0ee03527k.
  • Liao, C.; Sun, X.-G.; Dai, S. Crosslinked gel Polymer Electrolytes Based on Polyethylene Glycol Methacrylate and Ionic Liquid for Lithium ion Battery Applications. Electrochim. Acta 2013, 87, 889–894. doi: 10.1016/j.electacta.2012.10.027.
  • Tsurumaki, A.; Rettaroli, R.; Mazzapioda, L.; Navarra, M.A. Inorganic–Organic Hybrid Electrolytes Based on Al-Doped Li7La3Zr2O12 and Ionic Liquids. Appl. Sci. 2022, 12 (14). doi: 10.3390/app12147318.
  • Zhang, L.; Zhuang, Q.; Zheng, R.; Wang, Z.; Sun, H.; Arandiyan, H.; Wang, Y.; Liu, Y.; Shao, Z. Recent Advances of Li7La3Zr2O12-Based Solid-State Lithium Batteries Towards High Energy Density. Energy Storage Mater. 2022, 49, 299–338. doi: 10.1016/j.ensm.2022.04.026.
  • Lechartier, M.; Porcarelli, L.; Zhu, H.; Forsyth, M.; Guéguen, A.; Castro, L.; Mecerreyes, D. Single-ion Polymer/LLZO Hybrid Electrolytes with High Lithium Conductivity. Mater. Adv. 2022, 3 (2), 1139–1151. doi: 10.1039/d1ma00857a.
  • Li, Z.; Huang, H.M.; Zhu, J.K.; Wu, J.F.; Yang, H.; Wei, L.; Guo, X. Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Appl. Mater. Interfaces 2019, 11 (1), 784–791. doi: 10.1021/acsami.8b17279.