449
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The characteristics of adsorption Cr(VI) by iron-modified and iron-doped phosphorus-based biochar biochar

, , , &
Article: 2329607 | Received 20 Dec 2023, Accepted 07 Mar 2024, Published online: 19 Mar 2024

References

  • Zheng, J.; Lv, J., Liu, W., Dai, Z., Liao, H., Deng, H., and Lin, Z. Selective Recovery of Cr from Electroplating Nanosludge via Crystal Modification and Dilute Acid Leaching. Environ. Sci-Nano 2020, 7 (5), 1593–1601. doi: 10.1039/d0en00196a.
  • Kaur, M.; Kumar, A., Mehra, R., and Kaur, I. Quantitative Assessment of Exposure of Heavy Metals in Groundwater and Soil on Human Health in Reasi District, Jammu and Kashmir. Environ. Geochem. Health 2020, 42 (1), 77–94. doi: 10.1007/s10653-019-00294-7.
  • Chen, B.; Wang, M., Duan, M., Ma, X., Hong, J., Xie, F., Zhang, R., and Li, X. In Search of key: Protecting Human Health and the Ecosystem from Water Pollution in China. J. Cleaner Prod. 2019, 228, 101–111. doi: 10.1016/j.jclepro.2019.04.228.
  • Wang, Z.; Yang, J., Li, Y., Zhuaang, Q., and Gu, J. In Situ Carbothermal Synthesis of Nanoscale Zero-Valent Iron Functionalized Porous Carbon from Metal-Organic Frameworks for Efficient Detoxification of Chromium(VI). Eur. J. Inorg. Chem. 2018, 1, 23–30. doi: 10.1002/ejic.201701089.
  • Ramli, N. N.; Othman, A. R., Kurniawan, S. B., Abdullah, S. R. S., and Hasan, H. A. Metabolic Pathway of Cr(VI) Reduction by Bacteria: A Review. Microbiol. Res. 2023, 268. doi: 10.1016/j.micres.2022.127288.
  • Singh, V.; Abhishek, K., Rai, S. N., Sing, S. K., Vamanu, E., and Kumar, A. Source of Cr(VI) in the Aquatic Ecosystem, its Genotoxic Effects and Microbial Removal from Contaminated Water. Green Chem. Letters Rev 2023, 16 (1). doi: 10.1080/17518253.2023.2267079.
  • Mao, L.; Su, P., Huang, B., and Zhang, W. Y. Detoxification of Solid Waste Containing Cr(VI) with Phosphate by Thermal Treatment. Chem. Eng. J. 2017, 314, 114–122. doi: 10.1016/j.cej.2016.12.130.
  • Wei, L.; Liu, P., Lin, K., Yi, J., Liou, C., Yang, G., Hsu, H., and Tsai, T. Selective Iron Sorption for on-Line Reclaim of Chromate Electroplating Solution at Highly Acidic Condition. Chem. Eng. J. 2015, 281, 434–443. doi: 10.1016/j.cej.2015.06.080.
  • Li, W.; Zhang, C., Wei, X., Zhang H. L., Han, M. J., Sun, W., and Li, W. Z. Efficient Resource Treatment of Hexavalent Chromium Wastewater Based on Lead Carbonate (Cerussite)-Induced Precipitation Separation. Process Saf. Environ. Prot. 2022, 165, 475–486. doi: 10.1016/j.psep.2022.07.039.
  • Rivera, G. L. D.; Hernandez, A. M., Cabello, A. F. P., Barragan, E. L. R., Montes, A. L., Escamilla, G. A. F., Rangel, L. S., Vazquez, S. I. S., and De, D. A. Removal of Chromate Anions and Immobilization Using Surfactant-Modified Zeolites. J. Water Process Eng. 2021, 39. doi: 10.1016/j.jwpe.2020.101717.
  • Li, Z.; Yu, D., Wang, X., Liu, X., Xu, Z., and Wang, Y. A Novel Strategy of Tannery Sludge Disposalconverting Into Biochar and Reusing for Cr(VI) Removal from Tannery Wastewater. J. Environ. Sci. 2024, 138, 637–649. doi: 10.1016/j.jes.2023.04.014.
  • Hadiya, V.; Popat, K., Vyas, S., Varjaani, S., Vithaanage, M., Gupta, V., Delgado, A. N., Zhou, Y., Show, P. L., Bilal, M., et al. Biochar Production with Amelioration of Microwave-Assisted Pyrolysis: Current Scenario, Drawbacks and Perspectives. Bioresour. Technol. 2022, 355. doi: 10.1016/j.biortech.2022.127303.
  • Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Bio-Technol. 2020, 19 (1), 191–215. doi: 10.1007/s11157-020-09523-3.
  • Zubiolo, C.; de Santana, H. E. P., Pereira, L. L., Ruzene, D., Silva, D. P., and Freitas, L. S. Bio-Oil Production and Characterization from Corn Cob and Sunflower Stem Pyrolysis. Ind. Eng. Chem. Res. 2023, 63 (1), 65–77. doi: 10.1021/acs.iecr.3c03337.
  • Richa, L.; Colin, B., Petrissans, A., Wallace, C., Wolfgrm, J., Quirino, R., Chen, W., and Petrissans, M. Potassium Carbonate Impregnation and Torrefaction of Wood Block for Thermal Properties Improvement: Prediction of Torrefaction Performance Using Artificial Neural Network. Appl. Energy 2023, 351. doi: 10.1016/j.apenergy.2023.121894.
  • Yuan, J.; Wang, C., Tang, Z., Chu, T., Zheng, C., Han, Q., Chen, H., and Tan, T. Biochar Derived from Traditional Chinese Medicine Residues: An Efficient Adsorbent for Heavy Metal Pb(II). Arabian Journal Of Chemistry 2024, 17 (3). doi: 10.1016/j.arabjc.2024.105606.
  • Huang, Y.; Huang, F., Dong, B., Cao, X., Shang, Y., and Xu, X. Degradation of Ofloxacin by High-Efficiency Almond Shell-Based Biochar via Peroxymonosulfate Activation: A Study of the Effect of Pore Structure. Chem. Eng. J. 2023, 474. doi: 10.1016/j.cej.2023.145757.
  • Zhang, L.; Hu, J., Li, C., Chen, Y., Zheng, L., Ding, D., and Shan, S. Synergistic Mechanism of Iron Manganese Supported Biochar for Arsenic Remediation and Enzyme Activity in Contaminated Soil. J. Environ. Manag. 2023, 347. doi: 10.1016/j.jenvman.2023.119127.
  • Yi, Y.; Tu, G., Zhao, D., Tsang, P. E., and Fang, Z. Key Role of FeO in the Reduction of Cr(VI) by Magnetic Biochar Synthesised Using Steel Pickling Waste Liquor and Sugarcane Bagasse. J. Cleaner Prod. 2020, 245. doi: 10.1016/j.jclepro.2019.118886.
  • Nguyen, T. T.; Chen, H. H., To, T. H., Chang, Y. C., Tsai, C. K., Chen, K. F., and Tsai, Y. P. Development of Biochars Derived from Water Bamboo (Zizania Latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater. Water 2021, 13 (12). doi: 10.3390/w13121615.
  • Oh, S.; Kim, J. Degradation of Phenol by Perborate in the Presence of Iron-Bearing and Carbonaceous Materials. RSC Adv. 2023, 13 (46), 32833–32841. doi: 10.1039/d3ra06986a.
  • Guo, M.; Ma, X., Han, X., Zhang, S., Yuan, M., Wang, B., and Li, M. Effects of Corn Stalks Biochar Amendment and Freezing-Thawing on the Cd Adsorption of Saline-Alkali Soil. Soil Sediment Contam. 2022, 31 (8), 925–940. doi: 10.1080/15320383.2021.2024141.
  • Liu, Y.; Gao, C., Wang, Y., He, L., Lu, H., and Yang, S. Vermiculite Modification Increases Carbon Retention and Stability of Rice Straw Biochar at Different Carbonization Temperatures. J. Cleaner Prod. 2020, 254. doi: 10.1016/j.jclepro.2020.120111.
  • Cao, Y.; Wang, L., Kang, X., Song, J., Guo, H., and Zhang, Q. Insight Into Atrazine Removal by Fallen Leaf Biochar Prepared at Different Pyrolysis Temperatures: Batch Experiments, Column Adsorption and DFT Calculations. Environ. Pollut. 2023, 317. doi: 10.1016/j.envpol.2022.120832.
  • Dai, W.; Xu, M., Zhao, Z., Zheng, J., Huang, F., Wang, H., Liu, C., and Xiao, R. Characteristics and Quantification of Mechanisms of Cd2+ Adsorption by Biochars Derived from Three Different Plant-Based Biomass. Arab. J. Chem. 2021, 14 (5). doi: 10.1016/j.arabjc.2021.103119.
  • Long, X.; Zhang, R., Rong, R., Wu, P., Chen, S., Ao, J., Fu, Y., and Xie, H. Adsorption Characteristics of Heavy Metals Pb2+ and Zn2+ by Magnetic Biochar Obtained from Modified AMD Sludge. Toxics 2023, 11 (7). doi: 10.3390/toxics11070590.
  • Li, M.; Zhang, Z.S., Li, Z., and Wu, H. T. Removal of Nitrogen and Phosphorus Pollutants from Water by FeCl 3 -Impregnated Biochar. Ecol. Eng. 2020, 149. doi: 10.1016/j.ecoleng.2020.105792.
  • Fang, L.; Yang, W., Hou, J., Zheng, K., Hussain, A., Zhang, Y., Hou, Z., and Wang, X. Tofukasu-derived Biochar with Interconnected and Hierarchical Pores for High Efficient Removal of Cr(VI). Biochar 2023, 5 (1). doi: 10.1007/s42773-023-00268-0.
  • Yi, Y.; Wang, X., Ma, J., and Ning, P. Fe(III) Modified Egeria Najas Driven-Biochar for Highly Improved Reduction and Adsorption Performance of Cr(VI). Powder Technol. 2021, 388, 485–495. doi: 10.1016/j.powtec.2021.04.066.
  • Gourai, M.; Nayak, A. K., Nial, P. S., Satpathy, B., Bhuyan, R., Singh, S., and Subudhi, U. Thermal Plasma Processing of Moringa Oleifera Biochars: Adsorbents for Fluoride Removal from Water. RSC Adv. 2023, 13 (7), 4340–4350. doi: 10.1039/d2ra07514h.
  • Ding, H.; Liu, J., Li, Q., Liu, Z., Xia, K., Hu, L., Wu, X., and Yan, Q. Highly Effective Adsorption and Passivation of Cd from Wastewater and Soil by MgO- and Fe3O4 -Loaded Biochar Nanocomposites. Front. Environ. Sci. 2023, 11. doi: 10.3389/fenvs.2023.1239842.
  • Deng, R.; Huang, D., Wan, J., Xue, W., Lei, L., Wen, X., Liu, X., Chen, S., Yang, Y., Li, Z., et al. Chloro-phosphate Impregnated Biochar Prepared by co-Precipitation for the Lead, Cadmium and Copper Synergic Scavenging from Aqueous Solution. Bioresour. Technol. 2019, 293. doi: 10.1016/j.biortech.2019.122102.
  • Tai, S.; Li, Y., Yang, L., Zhao, Y., Wang, S., Xia, J., and Li, H. Magnetic-Transition-Metal Oxides Modified Pollen-Derived Porous Carbon for Enhanced Absorption Performance. Int. J. Environ. Res. Public Health 2022, 19 (24). doi: 10.3390/ijerph192416740.
  • Li, J. Adsorption of Cd(II) and Pb(II) by Mg-Modified Straw Biochar. Desalin. Water Treat. 2023, 292, 131–140. doi: 10.3390/app12094725.
  • Jin, X.; Liu, R., Wang, H., Han, L., Qiu, M., and Hu, B. Functionalized Porous Nanoscale Fe 3 O 4 Particles Supported Biochar from Peanut Shell for Pb(II) Ions Removal from Landscape Wastewater. Environ. Sci. Pollut. Res. 2022, 29 (25), 37159–37169. doi: 10.1007/s11356-021-18432-z.
  • Zhao, Y.; Gao, J., Liang, T., Chen, T., Han, X., Hu, G., and Li, B. Efficient Removal of Cr(VI) by Protonated Amino-Bamboo Char Prepared via Radiation Grafting: Behavior and Mechanism. Sustainability 2023, 15 (18). doi: 10.3390/su151813560.
  • Usmani, W.; Inam, M. A., Iftikhar, R., Irfan, I., Adnan, R., Niazi, M. B. K., Khan, R., and Hassan, M. Efficient Removal of Hexavalent Chromium Cr (VI) Using Magnesium-Iron Layered Double Hydroxide Supported on Orange Peel (Mg-Fe LDH@OPP): A Synthetic Experimental and Mechanism Studies. J. Water Process Eng. 2023, 55. doi: 10.1016/j.jwpe.2023.104233.
  • Qiu, S.; Zhao, D., Feng, Y. Y., Li, M. M., Liang, X. F., Zhang, L. S., Luo, Y., Zhang, K. Q., and Wang, F. Adsorption Performance and Mechanism of Ca-Al-LDHs Prepared by Oyster Shell and pop Can for Phosphate from Aqueous Solutions. J. Environ. Manag. 2022, 303. doi: 10.1016/j.jenvman.2021.114235.
  • Liu, N.; Zhang, Y., Xu, C., Liu, P., Lv, J., Liu, Y., and Wang, Q. Removal Mechanisms of Aqueous Cr(VI) Using Apple Wood Biochar: A Spectroscopic Study. J. Hazard. Mater. 2020, 384. doi: 10.1016/j.jhazmat.2019.121371.
  • Yang, W.; Lei, G., Quan, S., Zhang, L., Wang, B., Hu, H., Li, L., Ma, H., Yin, C., Feng, F., et al. The Removal of Cr(VI) from Aqueous Solutions with Corn Stalk Biochar. Int. J. Environ. Res. Public Health 2022, 19 (21). doi: 10.3390/ijerph192114188.
  • Zhang, H.; Wu, Z., Shi, Q., Khan, A., Rad, S., Shahab, A., Ullah, H., Ali, E., Arafat, A. A., Zeng, H., et al. Fabrication and Characterization of Magnetic Eucalyptus Carbon for Efficient Cr(VI) Removal in Aqueous Solution and its Mechanisms. Arab. J. Chem. 2023, 16 (9). doi: 10.1016/j.arabjc.2023.105047.
  • Singh, S.; Naik, T. S. S. K., Thamaraiselvan, C., Behera, S. K., Pavithra, N., Nath, B., Dwivedi, P., Singh, J., and Ramamurthy, P. C. Applicability of new Sustainable and Efficient Green Metal-Based Nanoparticles for Removal of Cr(VI): Adsorption Anti-Microbial, and DFT Studies. Environ. Pollut. 2023, 320. doi: 10.1016/j.envpol.2023.121105.
  • Wu, J.; Yang, J., Feng, P., Wen, L., Huang, G., Xu, C., and Lin, B. Highly Efficient and Ultra-Rapid Adsorption of Malachite Green by Recyclable Crab Shell Biochar. J. Ind. Eng. Chem. 2022, 113, 206–214. doi: 10.1016/j.jiec.2022.05.047.
  • Liu, L.; Liu, X., Wang, D., Lin, H., and Huang, L. Removal and Reduction of Cr(VI) in Simulated Wastewater Using Magnetic Biochar Prepared by co-Pyrolysis of Nano-Zero-Valent Iron and Sewage Sludge. J. Cleaner Prod. 2020, 257. doi: 10.1016/j.jclepro.2020.120562.
  • Zeghioud, H.; Mouhamadou, S. Easy Recovered Magnetic Bark Biochar for Methylene Blue Removal: Preparation Characterization and Adsorption Parameters Study. Chem Sel 2023, 8 (42). doi: 10.1002/slct.202302788.
  • Ma, S.; Ji, J., Mou, Y., Shen, X., and Xu, S. Enhanced Adsorption for Trivalent Antimony by Nano-Zero-Valent Iron-Loaded Biochar: Performance, Mechanism, and Sustainability. Environ. Sci. Pollut. Res. 2023. doi: 10.1007/s11356-023-30299-w.
  • Yang, Y.; Zhong, Z., Li, J., Du, H., and Li, Z. Efficient with low-Cost Removal and Adsorption Mechanisms of Norfloxacin, Ciprofloxacin and Ofloxacin on Modified Thermal Kaolin: Experimental and Theoretical Studies. J. Hazard. Mater. 2022, 430. doi: 10.1016/j.jhazmat.2022.128500.
  • Ergan, B.T.; Aydin, E.S.; Gengec, E. The Effect of Various Thermochemical Methods on the Production of Biochar and Removal of 2-Naphthol Orange from Wastewater. J. Chem. Technol. Biotechnol. 2023. doi: 10.1002/jctb.7513.
  • Panchu, S. E.; Sekar, S., Kolanthai, E., Gandhi, M. B., Sridharan, M. B., and Subbaraya, N. K. Physical Modification of Hydroxyapatite: The Drastic Enhancement of Both Cation (Cd2+) and Anion (F-) Adsorption and Recycling Efficiency. Environ. Sci-Nano 2023, 10 (10), 2701–2719. doi: 10.1039/d3en00297g.
  • Qin, H.; Shao, X., Shaghaleh, H., Gao, W., and Hamoud, Y. A. Adsorption of Pb2+ and Cd2+ in Agricultural Water by Potassium Permanganate and Nitric Acid-Modified Coconut Shell Biochar. Agronomy-Basel 2023, 13 (7). doi: 10.3390/agronomy13071813.
  • Batool, F.; Qadir, R., Adeeb, F., Kanwal, S., Abdelraahman, E. A., Noreen, S., Albaalawi, B. F. A., Mustaqeem, M., Imtiaz, M., Ditta, A., et al. Biosorption Potential of Arachis Hypogaea -Derived Biochar for Cd and Ni, as Evidenced Through Kinetic, Isothermal, and Thermodynamics Modeling. Acs Omega 2023, 8 (43), 40128–40139. doi: 10.1021/acsomega.3c02986.
  • Pathak, S.; Pant, K.K.; Kaushal, P. Analysis of Naphthalene Adsorption from Wastewater Using Activated and non-Activated Biochar Produced from Bagasse. Biomass Convers. Biorefinery 2023. doi: 10.1007/s13399-023-04070-7.