599
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green fabrication of titanium dioxide nanoparticles via Syzygium cumini leaves extract: characterizations, photocatalytic activity and nematicidal evaluation

, , , , , & show all
Article: 2331063 | Received 31 Oct 2023, Accepted 11 Mar 2024, Published online: 26 Mar 2024

References

  • Abo-Zaid, G.A.; Matar, S.M.; Abdelkhalek, A. Induction of Plant Resistance Against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces Cellulosae Isolate Actino 48. Agron 2020, 10 (11), 1620. doi:10.3390/agronomy10111620.
  • Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Bacillus Licheniformis Strain POT1 Mediated Polyphenol Biosynthetic Pathways Genes Activation and Systemic Resistance in Potato Plants Against Alfalfa Mosaic Virus. Sci. Rep. 2020, 10, 1–16.
  • Maghsoudi, A.S.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int. J.Nanomed. 2021, 16, 803.
  • Haydock, P.P.J.; Woods, S.R.; Grove, I.G.; Hare, M.C. Chemical Control of Nematodes. In Plant Nematol; Perry, R.N., Moens, M., Eds.; CABI Publishing: Wallingford, 2013; pp. 259–279.
  • Khan, M.A.; Riaz, H.; Raheel, M.; Shakeel, Q.; Waheed, U.; Ahmed, N.; Bashair, M., Ashraf, W., et al. In-vitro and in Vivo Management of Meloidogyne Incognita (Kofoid and White) Chitwood and Rhizoctonia Bataticola (Taub.) Butler in Cotton Using Organic’s. Saudi J. Biol. Sci. 2021, 28 (1), 1–9.
  • Abd-El-Kareem, F.; Elshahawy, I.E.; Abd-Elgawad, M.M.M. Application of Bacillus Pumilus Isolates for Management of Black rot Disease in Strawberry. Egypt. J. Biol. Pest Cont. 2021, 31, 1–5. doi:10.1186/s41938-021-00371-z.
  • Fouda, M.M.; Abdelsalam, N.R.; Gohar, I.M.A.; Hanfy, A.E.; Othman, S.I.; Zaitoun, A.F.; Allam, A.A.; Morsy, O.M.; El-Naggar, M. Utilization of High Throughput Microcrystalline Cellulose Decorated Silver Nanoparticles as an eco-Nematicide on Root-Knot Nematodes. Colloids Surf. B Biointer. 2020, 188, 110805.
  • Jaouannet, M.; Magliano, M.; Arguel, M.J.; Gourgues, M.; Evangelisti, E.; Abad, P.; Rosso, M.N. The Root-Knot Nematode Calreticulin Mi-CRT is a key Effector in Plant Defense Suppression. Mol. Plant Microb. Interact. 2013, 26, 97–105. doi:10.1094/mpmi-05-12-0130-r.
  • Nicol, J.M.,Turner, S.J., Coyne, D.L., den Nijs, L.J.M.F., Hockland, S., Maafi, Z.T., 2011. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, pp.21–43.
  • Talavera, M.; Sayadi, S., Chirosa-Rios, M., et al. Perception of the Impact of Root-Knot Nematode-Induced Diseases in Horticultural Protected Crops of South-Eastern Spain. Nematol. 2012, 14, 517–527.
  • Stear, M.J.; Doligalska, M.; Donskow-Schmelter, K. Alternatives to Anthelmintics for the Control of Nematodes in Livestock. Parasitol. 2007, 134, 139–151. doi:10.1017/s0031182006001557.
  • Tian, H.; Kah, M.; Kariman, K. Are Nanoparticles a Threat to Mycorrhizal and Rhizobial Symbioses? A Critical Review. Front. Microbiol. 2019, 10, 1660.
  • Khandel, P.; Shahi, S.K. Microbes Mediated Synthesis of Metal Nanoparticles: Current Status and Future Prospects. Int. J. Nanomater. Biostruct. 2016, 6, 1–24.
  • Veeramanikandan, V.; Madhu, G.; Pavithra, V.; Jaianand, K.; Balaji, P. Green Synthesis, Characterization of Iron Oxide Nanoparticles Using Leucas Aspera Leaf Extract and Evaluation of Antibacterial and Antioxidant Studies. Int. J. Agri.Innov. Res. 2017, 6, 242–250.
  • Kaabipour, S.; Hemmati, S.A. A Review on the Green and Sustainable Synthesis of Silver Nanoparticles and one-Dimensional Silver Nanostructures. Beilstein J. Nanotechnol. 2021, 12, 102–136.
  • Elmer, W.; Ma, C.; White, J. Nanoparticles for Plant Disease Management. Sci. Direct Curr.Opin. Env. Sci. Health 2018, 66, 66–70.
  • Jaskulski, D.; Jaskulska, I.; Majewska, J.; Radziemska, M.; Bilgin, A.; Brtnicky, M. Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. Mat. 2022, 15, 870.
  • Khan, A.; Mfarrej, M.F.B.; Danish, M.; Shariq, M.; Khan, M.F.; Ansari, M.S.; Hashem, M.; Alamri, S.; Ahmad, F. Synthesized Copper Oxide Nanoparticles via the Green Route act as Antagonists to Pathogenic Root Knot Nematode, Meloidogyne Incognita. Green Chem. Lett. Rev. 2022, 15 (3), 491–507.
  • Nakamura, M.; Tahara, Y.; Fukata, S.; Zhang, M.; Yang, M.; Iijima, S.; Yudasaka, M. Significance of Optimization of Phospholipid Poly (Ethylene Glycol) Quantity for Coating Carbon Nanohorns to Achieve Low Cytotoxicity. Bull. Chem. Soc. Jpn 2017, 90, 662–666.
  • Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks. Toxicol. Appl.Pharmacol. 2017, 329, 96–111.
  • Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Abbas, M.W.; Mubarak, M.S.; Yuan, Y.; Barnard, R.T.; Ziora, Z.M.; Esatbeyoglu, T. Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium Cumini. Foods 2022, 11, 378. doi:10.3390/foods11030378.
  • Mahmoud, I.I.; Marzouk, M.S.; Moharram, F.A.; El-Gindi, M.R.; Hassan, A.M. Acylated Flavonol Glycosides from Eugenia Jambolana Leaves. Phytochem. 2001, 58 (8), 1239–1244. doi:10.1016/S0031-9422(01)00365-X.
  • Gupta, G.S.; Sharma, D.P. Triterpenoid and Other Constituents of Eugenia Jambolana Leaves. Phytochem. 1974, 13, 2013–2014.
  • Kumar, A.; Jayachandran, T.; Aravindan, P.; Deecaraman, D.; Ilavarasan, R.; Padmanabhan, N. Neutral Components in the Leaves and Seeds of Syzygium Cumini. African J Pharm Pharmacol. 2009, 3 (11), 560–561.
  • Jagetia, G.C. Antidiabetogenic Action of Jamun Syzygium Cumini Skeels: A Review. Int J Complement Alt Me. 2023, 16 (2), 88–97.
  • Ghosh, P.; Radha, N.R.C.; Mishra, S.; Patel, A.S.; Kar, A. Physicochemical and Nutritional Characterization of Jamun (Syzygium Cumini). Curr. Res. Nutr. Food Sci. 2017, 5, 25–35.
  • Ahmad, W.; Jaiswal, K.K.; Soni, S. Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Using Mentha Arvensis Leaves Extract and its Antimicrobial Properties. Inorg. Nano-Metal. Chem. 2020, 50 (10), 1032–1038. doi:10.1080/24701556.2020.1732419.
  • Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Physical Properties, Biological Applications and Biocompatibility Studies on Biosynthesized Single Phase Cobalt Oxide (Co3O4) Nanoparticles via Sageretiathea (Osbeck.). Arabian J. Chem. 2020, 13 (1), 606–619.
  • Abrantes, I.M.O.; Santos, M.S.N.A. Technique for Preparing Perineal Patterns of Root-Knot Nematodes for Scanning Electron Microscopy. J.Nematol. 1989, 21 (1), 138–139.
  • El-Rokiek, K.G.; El-Nagdi, W.M. Dual Effects of Leaf Extracts of Eucalyptus Citriodora on Controlling Purslane and Root-Knot Nematode in Sunflower. J. Plant Protec. Res. 2011, 51 (2), 121–129.
  • Aissani, N.; Urgeghe, P.P.; Oplos, C.; Saba, M.; Tocco, G., Petretto, G.L., et al. Nematicidal Activity of the Volatilome of Eruca Sativa on Meloidogyne Incognita. J. Agric. Food Chem. 2015, 63, 6120–6125.
  • Sakuma, M. Probit Analysis of Preference Data. Appl. Entomol. Zool. 1998, 33 (3), 339–347.
  • Behreus, A.S.; Karbeur, L. Determination of LD50. Archiv.Fur. Experiment. Pathol. und Pharmakol. 1953, 28, 177–183.
  • Almutairi, F.M.; Khan, A.; Ajmal, M.R.; Khan, R.H.; Khan, M.F.; Lal, H.; Ullah, M.F.; Ahmad, F.; Ahamad, L., Khan, A., et al. Phytochemical Analysis and Binding Interaction of Cotton Seed Cake Derived Compounds with Target Protein of Meloidogyne Incognita for Nematicidal Evaluation. Life. 2022, 12, 2109.
  • Mackinney, G. Absorption of Light by Chlorophyll Solutions. J. Biol. Chem. 1941, 140, 315–322.
  • MacLachlan, S.; Zalik, S. Plastid Structure Chlorophyll Concentration and Free Amino Acid Composition of a Chlorophyll Mutant of Barley. Cana. J. Bot. 1963, 41, 1053–1062.
  • Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematode (Meloidogyne Species); North Carolina State University, Graphics: Raleigh, 1978.
  • Cobb, N.A. Estimating the Nema Population of Soil, with Special Reference to the Sugar-Beet and Root-Gall Nemas, HeteroderaSchachtii Schmidt and HeteroderaRadicicola (Greef) MüLler. Agric Tech Circ Bur Pl Ind US Dep Agric. 1, 48, 1918
  • Southey, J.F. Laboratory Methods for Work with Plant and Soil Nematodes. Ministry of Agriculture, Fisheries and Food: London. Reference Book 402, pp. 202, 1986.
  • Sheoran, O.P., Tonk, D.S., Kaushik, L.S., Hasija, RC., Pannu, R.S., 1998. Statistical Software Package for Agricultural Research Workers. Recent Advances in information theory, Statistics & Computer Applications by D.S. Hooda & R.C. Hasija Department of Mathematics Statistics, CCS HAU, Hisar, pp. 139–143.
  • Nadeem, M.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Hashmi, S.S.; Ahmad, W. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and Their Applications. Green Chem Lett and Rev. 2018, 11 (4), 492–502.
  • Ouerghi, O.; Geesi, M.H.; Riadi, Y.; Ibnouf, E.O. Limon-citrus Extract as a Capping/Reducing Agent for the Synthesis of Titanium Dioxide Nanoparticles: Characterization and Antibacterial Activity. Green Chem Lett and Rev. 2022, 15 (3), 483–490.
  • Sundrarajan, M.; Bama, K.; Bhavani, M.; Jegatheeswaran, S.; Ambika, S.; Sangili, A.; Nithya, P.; Sumathi, R. Obtaining Titanium Dioxide Nanoparticles with Spherical Shape and Antimicrobial Properties Using M. Citrifolia Leaves Extract by Hydrothermal Method. J. Photochem. Photobiol. B. 2017, 171, 117–124.
  • Moradnia, F.; Fardood, S.T.; Ramazani, A.; Osali, S.; Abdolmaleki, I. Green sol–gel Synthesis of CoMnCrO4 Spinel Nanoparticles and Their Photocatalytic Application. Micro Nano Lett. 2020, 15 (10), 674–677.
  • Karthik, S.; Siva, P.; Balu, K.S.; Suriyaprabha, R.; Rajendran, V.; Maaza, M. Acalypha Indica–Mediated Green Synthesis of ZnO Nanostructures Under Diferential Thermal Treatment: Effect on Textile Coating, Hydrophobicity, UV Resistance, and Antibacterial Activity. Adv. Powder Technol. 2017, 28 (12), 3184–3194.
  • Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretiathea (Osbeck.) Modulated Biosynthesis of NiO Nanoparticles and Their in Vitro Pharmacognostic, Antioxidant and Cytotoxic Potential. Artif. Cells Nanomed. Biotechnol. 2018, 46 (4), 838–852.
  • Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic Synthesis of Iron Oxide Nanorods Using Moringa Oleifera Leaf Extract for Antibacterial Applications. Appl. Nanosci. 2020, 10 (1), 305–315.
  • Leon, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7 (1), 4.
  • Mayedwa, N.; Mongwaketsi, N.; Khamlich, S.; Kaviyarasu, K.; Matinise, N.; Maaza, M. Green Synthesis of Nickel Oxide, Palladium and Palladium Oxide Synthesized via Aspalathus Linearis Natural Extracts: Physical Properties and Mechanism of Formation. Appl. Surf Sci. 2018, 446, 266–272.
  • Fardood, S.T.; Forootan, R.; Moradnia, F.; Afshari, Z.; Ramazani, A. Green Synthesis, Characterization, and Photocatalytic Activity of Cobalt Chromite Spinel Nanoparticles. Mater. Res. Express 2020, 7 (1), 015086.
  • Moradnia, F.; Ramazani, A.; Fardood, S.T.; Gouranlou, F. A Novel Green Synthesis and Characterization of Tetragonal-Spinel MgMn2O4 Nanoparticles by Tragacanth gel and Studies of its Photocatalytic Activity for Degradation of Reactive Blue 21 dye Under Visible Light. Mater Res. Express. 2019, 6 (7), 075057.
  • Raza, A.; Shoeb, M.; Mashkoor, F.; Rahaman, S., Mobin, M., et al. Phoenix Dactylifera Mediated Green Synthesis of Mn Doped ZnO Nanoparticles and its Adsorption Performance for Methyl Orange dye Removal: A Comparative Study. Mat. Chem. Phy. 2022, 286, 0254–0584.
  • Aravind, M.; Amalanathan, M.; Mary, M.S.M. Synthesis of TiO2 Nanoparticles by Chemical and Green Synthesis Methods and Their Multifaceted Properties. SN Appl. Sci. 2021, 3, 409.
  • Matinise, N.; Kaviyarasu, K.; Mongwaketsi, N.; Khamlich, S.; Kotsedi, L.; Mayedwa, N.; Maaza, M. Green Synthesis of Novel Zinc Iron Oxide (ZnFe2O4) Nanocomposite via Moringa Oleifera Natural Extract for Electrochemical Applications. Appl. Surf Sci. 2018, 446, 66–73.
  • Tripathi, K.; Mathpal, A.C., Kumar, M., et al. Photoluminescence And Photoconductivity Of Ni Doped Titania Nanoparticles. Adv. Mat. Let. 2015, 6 (3), 201–208.
  • Mousa, S.A.; Shalan, A.E.; Hassan, H.H.; Ebnawaled, A.A.; Khairy, S.A. Enhanced the Photocatalytic Degradation of Titanium Dioxide Nanoparticles Synthesized by Different Plant Extracts for Wastewater Treatment. J. Mol. Struct. 2022, 1250, 131912.
  • Alhalili, Z.; Smiri, M. The Influence of the Calcination Time on Synthesis of Nanomaterials with Small Size, High Crystalline Nature and Photocatalytic Activity in the TiO2 Nanoparticles Calcined at 500° C. Crystals. (Basel) 2022, 12 (11), 1629.
  • Muniandy, S.S.; Kaus, N.H.M.; Jiang, Z.T.; Altarawneh, M.; Lee, H.L. Green Synthesis of Mesoporous Anatase TiO2 Nanoparticles and Their Photocatalytic Activities. RSC Adv. 2017, 7 (76), 48083–48094.
  • Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.A.; O’shea, K. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. 2012, 125, 331–349.
  • Ahamed, M.; Posgai, R.; Gorey, T.J.; Nielsen, M.; Hussain, S.M.; Rowe, J.J. Silver Nanoparticles Induced Heat Shock Protein 70, Oxidative Stress and Apoptosis in Drosophila Melanogaster. Toxicol. Appl. Pharmacol. 2010, 242, 263–269.
  • Lim, D.; Roh, J.Y.; Eom, H.J.; Choi, J.Y.; Hyun, J.; Choi, J. Oxidative Stress-Related PMK-1 P38 MAPK Activation as a Mechanism for Toxicity of Silver Nanoparticles to Reproduction in the Nematode Caenorhabditis Elegans. Environ. Toxicol. Chem. 2012, 31, 585–592.
  • Tauseef, A.; Hisamuddin, T.; Gupta, J.; Rehman, A.; Uddin, I. Differential Response of Cowpea Towards the CuO Nanoparticles Under Meloidogyne Incognita Stress. S. Afric. J. Bot. 2021, 139, 175–182.
  • Maghsoudloo, M.; Aliakbari, R.B.S. Lutein with Various Therapeutic Activities Based on Micro and Nanoformulations: A Systematic Mini-Review. Micro Nano Bio Aspects 2023, 2 (4), 1–7.
  • Alavi, M.; Hamblin, M.R.; Kennedy, J.F. Antimicrobial Applications of Lichens: Secondary Metabolites and Green Synthesis of Silver Nanoparticles: A Review. Nano Micro Biosys. 2022, 1 (1), 15–21.
  • Dehkharghani, F.M.; Ghahremanlou, M.; Zandi, Z.; Jalili, M.; Mozafari, M.R.; Mardani, P. Future Energy and Therapeutic Perspectives of Green Nano-Technology: Recent Advances and Challenges. Nano Micro Biosys. 2023, 2 (1), 11–21.
  • Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in Agricultural Diseases and Food Safety. J. Phytol. 2010, 2 (4), 83–92.
  • Nguyen, V.T.; Vu, V.T.; Nguyen, T.A.; Tran, V.K.; Nguyen-Tri, P. Antibacterial Activity of TiO-and ZnO-Decorated with Silver Nanoparticles, J. Composites Sci. 2019, 3 (2), 61. doi:10.3390/jcs3020061.
  • Pragathiswaran, C.; Smitha, C.; Barabadi, H.; Al-Ansari, M.M.; Al-Humaid, L.A.; Saravanan, M. TiO2@ZnO Nanocomposites Decorated with Gold Nanoparticles: Synthesis, Characterization and Their Antifungal, Antibacterial, Anti-Inflammatory and Anticancer Activities. Inorg Chem. Commun. 2020, 121, 108210. doi:10.1016/j.inoche.2020.108210.
  • Pragathiswarana, C.; Thulasi, G.; Al-Ansari, M.M.; Al-Humaid, L.A.; Saravanan, M. Experimental Investigation and Electrochemical Characterization of Titanium Coated Nanocomposite Materials for Biomedical Applications. J. Molecular Struct. 2021, 1231, 129932. doi:10.1016/j.molstruc.2021.129932.