246
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Removal of small-ring polycyclic aromatic hydrocarbons using cow and goat milk iron oxide nanoparticles

&
Article: 2335183 | Received 07 Nov 2023, Accepted 22 Mar 2024, Published online: 02 Apr 2024

References

  • Manzetti, S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycyclic Aromat. Compd. 2013, 33, 311–330.
  • Tirgar, A.; Aghalari, Z.; Sillanpää, M.; Dahms, H.U. A Glance at one Decade of Water Pollution Research in Iranian Environmental Health Journals. Int. J. Food Contamination 2020, 7, 2.
  • Alekseev, I.; Abakumov, E. Polycyclic Aromatic Hydrocarbons, Mercury, and Arsenic Content in Soils of Larsemann Hills, Pravda Coast and Fulmar Island, Eastern Antarctica. Bull. Environ. Contam. Toxicol. 2021, 106, 278–288.
  • Olayinka, O.O.; Adewusi, A.A.; Olarenwaju, O.O.; Aladesida, A.A. Concentration of Polycyclic Aromatic Hydrocarbons and Estimated Human Health Risk of Water Samples Around Atlas Cove, Lagos, Nigeria. J. Health Pollut. 2018, 8, 20.
  • Karyab, H.; Yunesian, M.; Nassseri, S.; Mahvi, A.H.; Ahmadkhaniha, R.; Rastkari, N.; Nabizadeh, R. Polycyclic Aromatic Hydrocarbons in Drinking Water of Tehran, Tran. J. Environ. Health Sci. Eng. 2013, 11, 25.
  • Shanker, U.; Jassal, V.; Rani, M. Green Synthesis of Iron Hexacyanoferrate Nanoparticles: Potential Candidate for the Degradation of Toxic PAHs. J. Environ. Chem. Eng. 2017, 5, 4108–4120.
  • Nepstad, R.; Hansen, B.H.; Skancke, J. North Sea Produced Water PAH Exposure and Uptake in Early Life Stages of Atlantic cod. Mar. Environ. Res. 2021, 163, 105203.
  • Marris, C.R.; Kompella, S.N.; Miller, M.R.; Incardona, J.P.; Brette, F.; Hancox, J.C.; Sørhus, E.; Shiels, H.A. Polyaromatic Hydrocarbons in Pollution: A Heart-Breaking Matter. J. Physiol. 2020, 598, 227–247.
  • Haneef, T.; Mustafa, M.R.U.; Wan Yusof, K.; Isa, M.H.; Bashir, M.J.K.; Ahmad, M.; Zafar, M. Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from Produced Water by Ferrate (VI) Oxidation. Water. 2020, 12, 3132.
  • Varjani, S.J.; Joshi, R.R.; Kumar, P.S.; Srivastava, V.K.; Kumar, V.; Banerjee, C.; Kumar, R.P. Polycyclic Aromatic Hydrocarbons from Petroleum Oil Industry Activities: Effect on Human Health and Their Biodegradation. In Waste Bioremediation. Energy, Environment, and Sustainability; Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z., eds.; Springer: Singapore. 2018, pp 185–199.
  • Adeola, A.O.; Forbes, P.B.C. Advances in Water Treatment Technologies for Removal of Polycyclic Aromatic Hydrocarbons: Existing Concepts, Emerging Trends, and Future Prospects. Water Environ. Res. 2021, 93, 343–359.
  • Hussein, I.; Abdel-Shafy, H.I.; Mansour, M.N.S. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egyptian J. Petroleum. 2016, 25, 107–123.
  • Williams, E.S.; Mahler, B.J.; Van Metre, P. Cancer Risk from Incidental Ingestion Exposures to PAHs Associated with Coal-Tar-Sealed Pavement. Environ. Sci. Technol. 2013, 47, 1101–1109.
  • Jajoo, A.; Mekala, N.R.; Tomar, R.S.; Grieco, M.; Tikkanen, M.; Aro, E.M. Inhibitory Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on Photosynthetic Performance are not Related to Their Aromaticity. J. Photochem. Photobiol., B 2014, 137, 151–155.
  • Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A Review of Human and Animals’ Exposure to Polycyclic Aromatic Hydrocarbons: Health Risk and Adverse Effects, Photo-Induced Toxicity and Regulating Effect of Microplastics. Sci. Total Environ. 2021, 773, 145403.
  • Burstyn, I.; Kromhout, H.; Partanen, T.; Svane, O.; Langård, S.; Ahrens, W.; Kauppinen, T.; Stücker, I.; Shaham, J.; Heederik, D.; Ferro, G.; Heikkilä, P.; Hooiveld, M.; Johansen, C.; Randem, B.G.; Boffetta, P. Polycyclic Aromatic Hydrocarbons and Fatal Ischemic Heart Disease. Epidemiology 2005, 16, 744–750.
  • Lewtas, J. Air Pollution Combustion Emissions: Characterization of Causative Agents and Mechanisms Associated with Cancer, Reproductive, and Cardiovascular Effects. Mut. Res. Reviews Mut. Res. 2007, 636, 95–133.
  • Boffetta, P.; Jourenkova, N.; Gustavsson, P. Cancer Risk from Occupational and Environmental Exposure to Polycyclic Aromatic Hydrocarbons. Cancer Causes and Control 1997, 8, 444–472.
  • Schober, W.; Lubitz, S.; Belloni, B.; Gebauer, G.; Lintelmann, J.; Matuschek, G.; Weichenmeier, I.; Eberlein-König, B.; Buters, J.; Behrendt, H. Environmental Polycyclic Aromatic Hydrocarbons (PAHs) Enhance Allergic Inflammation by Acting on Human Basophils. Inhal. Toxicol. 2007, 19 (Suppl 1), 151–156.
  • Tüchsen, F.; Andersen, O.; Costa, G.; Filakti, H.; Marmot, M.G. Occupation and Ischemic Heart Disease in the European Community: A Comparative Study of Occupations at Potential High Risk. Am. J. Ind. Med. 1996, 30, 407–414.
  • Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; Wang, W.; Jabar, A.; Naveed, M.; Li, J.H.; Zhang, Q. Polycyclic Aromatic Hydrocarbon and its Effects on Human Health: An Overview. Chemosphere 2022, 296, 133948.
  • Manousi, N.; Zachariadis, G.A. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020, 25, 2182.
  • Zhao, C.; Xu, J.; Shang, D.; Zhang, Y.; Zhang, J.; Xie, H.; Kong, Q.; Wang, Q. Application of Constructed Wetlands in the PAH Remediation of Surface Water: A Review. Sci. Total Environ. 2021, 780, 146605.
  • Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal Oxides and Metal Organic Frameworks for the Photocatalytic Degradation: A Review. J. Environ. Chem. Eng. 2020, 8, 103726.
  • Silva, M.J.; Soares, S.; Santos, I.; Pepe, I.M.; Teixeira, L.R.; Pereira, L.G.; Silva, L.; Celino, J.J. Optimization of the Photocatalytic Degradation Process of Aromatic Organic Compounds Applied to Mangrove Sediment. Heliyon. 2020, 6, e05163.
  • Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813.
  • Carratt, S.A.; Kovalchuk, N.; Ding, X.; Van Winkle, L.S. Metabolism and Lung Toxicity of Inhaled Naphthalene: Effects of Postnatal Age and Sex. Toxicol. Sci. 2019, 170, 536–548.
  • Zhu, L.; Liu, J.; Zhou, J.; Wu, X.; Yang, K.; Ni, Z.; Liu, Z.; Jia, H. The Overlooked Toxicity of Environmentally Persistent Free Radicals (EPFRs) Induced by Anthracene Transformation to Earthworms (Eisenia Fetida). Sci. Total Environ. 2022, 853, 158571.
  • Shafer, G.; Arunachalam, A.; Lohmann, P. Newborn with Perinatal Naphthalene Toxicity After Maternal Ingestion of Mothballs During Pregnancy. Neonatology 2020, 117, 127–130.
  • Mojiri, A.; Zhou, J. L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. (2019). Comprehensive Review of Polycyclic Aromatic Hydrocarbons in Water Sources, Their Effects and Treatments. Sci. Total Environ. 2022, 696, 133971.
  • Mdaini, Z.; Telahigue, K.; Hajji, T.; Rabeh, I.; Pharand, P.; El Cafsi, M.; Tremblay, R.; Gagné, J. P. (2022). Bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAH) in Polychaeta Marphysa Sanguinea in the Anthropogenically Impacted Tunis Lagoon: DNA Damage and Immune Biomarkers. Mar. Pollut. Bull. 2022, 184, 114104.
  • Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int.J. Environ. Res. Public Health 2020, 17, 1363.
  • Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495.
  • Trotte, N. S. F.; Aben-Athar, M. T. G.; Carvalho, N. M. F. Yerba Mate Tea Extract: A Green Approach for the Synthesis of Silica Supported Iron Nanoparticles for Dye Degradation. J. Braz. Chem. Soc. 2016, 27, 2093-2104.
  • Hassan, S.S.M.; Abdel-Shafy, H.I.; Mansour, M.S.M. Removal of Pyrene and Benzo(a)Pyrene Micropollutant from Water via Adsorption by Green Synthesized Iron Oxide Nanoparticles. Adv. Nat. Sci: Nanosci. Nanotechnol. 2018, 9, 015006.
  • Oliveira, R.V.M.; Lima, J.R.A.; da Costa Cunha, G.; Romão, L.P.C. Use of eco-Friendly Magnetic Materials for the Removal of Polycyclic Aromatic Hydrocarbons and Metals from Environmental Water Samples. J. Environ. Chem. Eng. 2020, 8, 2213–3437.
  • Saif, S.; Tahir, A.; Chen, Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials 2016, 6, 209.
  • Gholami-Shabani, M.; Shams-Ghahfarokhi, M.; Gholami-Shabani, Z.; Akbarzadeh, A.; Riazi, G.; Razzaghi-Abyaneh, M. Biogenic Approach Using Sheep Milk for the Synthesis of Platinum Nanoparticles: The Role of Milk Protein in Platinum Reduction and Stabilization. Int. J. NanoSci. Nanotechnol. 2016, 12, 199–206.
  • Lee, K.; Park, S.; Govarthanan, M.; Hwang, P.; Seo, Y.; Cho, M.; Lee, W.; Lee, J.; Kamala-Kannan, S.; Oh, B. Synthesis of Silver Nanoparticles Using cow Milk and Their Antifungal Activity Against Phytopathogens. Mater. Lett. 2013, 105, 128–131.
  • Athreya, A.G.; Shareef, M.I.; Gopinath, S.M. Antibacterial Activity of Silver Nanoparticles Isolated from Cow’s Milk, Hen’s Egg White and Lysozyme: A Comparative Study. Arab. J. Sci. Eng. 2019, 44, 6231–6240.
  • Hegazi, A.; Elshazly, E.H.; Abdou, A.M.; Abdou, A.F.; Allah, F.A.; Abdel-Rahman, E.H. Potential Antibacterial Properties of Silver Nanoparticles Conjugated with Cow and Camel Milks. Glob. Vet. 2014, 12, 745–749.
  • Ihum, T.A.; Iheukwumere, C.C.; Ogbonna, I.; Gberikon, G.M. Antimicrobial Activity of Silver Nanoparticles Synthesized Using Goat Milk Against Pathogens of Selected Vegetables. Int. J. Biochem. Res. Rev. 2019, 25, 1–10.
  • Athreya, A.G.; Shareef, M.I.; Gopinath, S.M. Silver Nanoparticles from Cow’s Milk to Combat Multidrug-Resistant Gram-Negative Bacteria from Clinical Isolates. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2020, 90, 863–871.
  • Williams, B.; Gautham, I.; Grady, T.L.; Fernando, H. Redox Properties and Temperature Dependence of Silver Nanoparticles Synthesized Using Pasteurized Cow and Goat Milk. Green Chem. Lett. Rev. 2022, 15, 71–82.
  • Gautam, I.; Grady, T.L.; Fernando, H. Degradation of the dye Methyl Orange Using cow and Goat Milk Iron Nanoparticles. Green Chem. Lett. Rev. 2023, 6, 2174818.
  • Bibi, I.; Nazar, N.; Ata, S.; Sultan, M.; Ali, A.; Abbas, A.; Jilani, K.; Kamal, S.; Sarim, F.M.; Khan, M.I.; Jalal, F.; Iqbal, M. Green Synthesis of Iron Oxide Nanoparticles Using Pomegranate Seeds Extract and Photocatalytic Activity Evaluation for the Degradation of Textile dye. J. Mater. Res. Technol. 2019, 8, 6115–6124.
  • Lohrasbi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A.M.; Taghizadeh, S. Green Synthesis of Iron Nanoparticles Using Plantago Major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye. BioNanoScience 2019, 9, 317–322.
  • Kouhbanani, M.A.J.; Beheshtkhoo, N.; Amani, A.M.; Taghizadeh, S.; Beigi, V.; Bazmandeh, A.Z.; Khalaf, N. Green Synthesis of Iron Oxide Nanoparticles Using Artemisia Leaf Extract and Their Application as a Heterogeneous Fenton-Like Catalyst for the Degradation of Methyl Orange. Mater. Res. Express 2018, 5, 115013.
  • Nathan, V.K.; Ammini, P.; Vijayan, J. Photocatalytic Degradation of Synthetic Dyes Using Iron (III) Oxide Nanoparticles (Fe2O3-Nps) Synthesised Using Rhizophora Mucronata Lam. IET Nanobiotechnol. 2019, 13, 120–123.
  • Pattanayak, M.; Nayak, P. Ecofriendly Green Synthesis of Iron Nanoparticles from Various Plants and Spices Extract. Int. J. Plant, Animal Env. Sci. 2013, 3, 68–78.
  • Mahmudin, L.; Suharyadi, E.; Utomo, A.; Abraha, K. Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. J. Mod. Phys. 2015, 06, 1071–1076.
  • Tharunya, P.; Subha, V.; Kirubanandan, S.; Sandhaya, S.; Renganathan, S. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticle from Ficus Carica Fruit Extract, Characterization Studies and Its Application on Dye Degradation Studies. Asian J. Pharm. Clin. Res. 2017, 10, 125–128.
  • Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871.
  • Ijaz, M.; Zafar, M.; Iqbal, T. Green Synthesis of Silver Nanoparticles by Using Various Extracts: A Review. Inorg. Nano-Met. Chem. 2021, 51, 744–755.
  • Frelink, T.; Visscher, W.; Veen, J.A.R.v. Particle Size Effect of Carbon-Supported Platinum Catalysts for the Electrooxidation of Methanol. J. Electroanal. Chem. 1995, 382, 65–72.
  • Kumar, B. Green Synthesis of Gold, Silver, and Iron Nanoparticles for the Degradation of Organic Pollutants in Wastewater. J. Compos. Sci. 2021, 5, 219.
  • Valdiglesias, V.; Fernández-Bertólez, N.; Kilic, G.; Costa, C.; Costa, S.; Fraga, S.; Bessa, M.; Pásaro, E.; Teixeira, J.P.; Laffon, B. Are Iron Oxide Nanoparticles Safe? Current Knowledge and Future Perspectives. J. Trace Elem. Med. Biol. 2016, 38, 53–63.
  • Ambade, B.; Sethi, S.S.; Kumar, A.; Sankar, T.K.; Kurwadkar, S. Health Risk Assessment, Composition, and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Drinking Water of Southern Jharkhand, East India. Arch. Environ. Contam. Toxicol. 2021, 80, 120–133.