338
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functionalized corn stalk carboxymethyl cellulose and mesoporous silica SBA-15 composite hydrogel-immobilized lipase for the resolution of racemic ibuprofen ethyl ester

ORCID Icon, , ORCID Icon, , , & show all
Article: 2338241 | Received 29 Nov 2023, Accepted 28 Mar 2024, Published online: 22 Apr 2024

References

  • Fernandez-Lafuente, R. Lipase from Thermomyces Lanuginosus: Uses and Prospects as an Industrial Biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212.
  • Gamayurova, V.S.; Zinov’eva, M.E.; Shnaider, K.L.; Davletshina, G.A. Lipases in Esterification Reactions: A Review. Catal. Ind. 2021, 13, 58–72.
  • Rodrigues, R.C.; Ayub, M.A.Z. Effects of the Combined use of Thermomyces Lanuginosus and Rhizomucor Miehei Lipases for the Transesterification and Hydrolysis of Soybean oil. Process. Biochem. 2011, 46, 682–688.
  • Robles-Medina, A.; González-Moreno, P.A.; Esteban-Cerdán, L.; Molina-Grima, E. Biocatalysis: Towards Ever Greener Biodiesel Production. Biotechnol. Adv. 2009, 27, 398–408.
  • Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A Review of the Current State of Biodiesel Production Using Enzymatic Transesterification. Biotechnol. Bioeng. 2009, 102, 1298–1315.
  • Chávez-Flores, D.; Salvador, J.M. Commercially Viable Resolution of Ibuprofen. Biotechnol. J. 2009, 4, 1222–1224.
  • Shanbhag, V.; Crider, R.; Gokhale, A.M.; Harpalani, R.; Dick, R.M. Ester and Amide Prodrugs of Ibuprofen and Naproxen: Synthesis, Anti-Inflammatory Activity, and Gastrointestinal Toxicity. J. Pharmaceut. Sci. 1992, 81, 149–154.
  • Sánchez, A.; Valero, F.; Lafuente, J.; Solá, C. Highly Enantioselective Esterification of Racemic Ibuprofen in a Packed bed Reactor Using Immobilized Rhizomucor Miehei Lipase. Enzyme Microb. Technol. 2000, 27, 157–166.
  • Yousefi, M.; Mohammadi, M.; Habibi, Z. Enantioselective Resolution of Racemic Ibuprofen Esters Using Different Lipases Immobilized on Octyl Sepharose. J. Mol. Catal. B Enzym. 2014, 104, 87–94.
  • Garcia-Galan, C.; Berenguer-Murcia, Á; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904.
  • Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251–6291.
  • Fernandez-Lafuente, R. Editorial for Special Issue: Enzyme Immobilization and Its Applications. Molecules 2019, 24, 4619–4623.
  • Garcia-Galan, C.; Berenguer-Murcia, Á; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904.
  • Bayramoglu, G.; Altintas, B.; Arica, M.Y. Immobilization of Glucoamylase Onto Polyaniline-Grafted Magnetic Hydrogel via Adsorption and Adsorption/Cross-Linking. Appl. Microbiol. Biot. 2013, 97, 1149–1159.
  • Kim, M.H.; An, S.; Won, K.; Kim, H.J.; Lee, S.H. Entrapment of Enzymes Into Cellulose- Biopolymer Composite Hydrogel Beads Using Biocompatible Ionic Liquid. J. Mol. Catal. B Enzym. 2012, 75, 68–72.
  • Gan, S.; Zakaria, S.; Chia, C.H.; Padzil, F.N.M.; Ng, P. Effect of Hydrothermal Pretreatment on Solubility and Formation of Kenaf Cellulose Membrane and Hydrogel. Cararbohyd. Polym. 2015, 115, 62–68.
  • Wang, L.; Wang, M. Removal of Heavy Metal Ions by Poly (Vinyl Alcohol) and Carboxymethyl Cellulose Composite Hydrogels Prepared by a Freeze-Thaw Method. Acs. Sustain. Chem. Eng. 2016, 4, 2830–2837.
  • Wu, R.; He, B.; Zhang, B.; Zhao, G.; Li, J.; Li, X. Preparation of Immobilized Pectinase on Regenerated Cellulose Beads for Removing Anionic Trash in Whitewater from Papermaking. J. Nanobiotechnol. 2014, 89, 1103–1109.
  • Wang, S.; Zhang, C.; Qi, B.; Sui, X.; Jiang, L.; Li, Y.; Wang, Z.; Feng, H.; Wang, R.; Zhang, Q. Immobilized Alcalase Alkaline Protease on the Magnetic Chitosan Nanoparticles Used for soy Protein Isolate Hydrolysis. Eur. Food. Res. Technol. Echnol. 2014, 239, 1051–1059.
  • Liu, S.; Luo, W.; Huang, H. Characterization and Behavior of Composite Hydrogel Prepared from Bamboo Shoot Cellulose and β-Cyclodextrin. Int. J. Biol. Macromol. 2016, 89, 527–534.
  • Wu, X.M.; Hu, C.C. Greener Solution to Waste Corn Stalks and Shortage of Asphalt Resource: Hydrochar Produced by Hydrothermal Carbonization as a Novel Performance Enhancer for Asphalt Binder. Materials. (Basel) 2021, 14, 1427–1441.
  • Wang, W.; Yang, D.; Mou, L.; Wu, M.; Wang, Y.; Tan, F.; Yang, F. Remodeling of Waste Corn Stalks Into Renewable, Compressible and Hydrophobic Biomass-Based Aerogel for Efficient and Selective oil/Organic Solvent Absorption. Colloid. Surface. A. 2022, 645, 128940–128940.
  • Zou, Y.P.; Hu, J.H.; Zhang, S.Y.; Shi, K.X.; Liu, X.C.; Zhao, S.J.; Yang, H.J.; Jia, J.L. Carbonization Characteristics of co-Pyrolysis of Sewage Sludge and Corn Stalks and its Agricultural Benefits. J. Soil. Sediment. 2023, 23, 1674–1686.
  • Xia, Y.D.; Klinger, J.; Bhattacharjee, T.; Thompson, V. The Elastoplastic Flexural Behaviour of Corn Stalks. Biosyst. Eng. 2022, 216, 218–228.
  • Guo, Y.Z.; Nakajima, T.; Mredha, M.T.I.; Guo, H.L.; Cui, K.; Zheng, Y.; Cui, W.; Kurokawa, T.; Gong, J.P. Facile Preparation of Cellulose Hydrogel with Achilles Tendon-Like Super Strength Through Aligning Hierarchical Fibrous Structure. Chem. Eng. J. 2022, 428, 132040–132050.
  • Ayucitra, A.; Angkawijaya, A.E.; Ju, Y.; Gunarto, C.; Ismadji, S. Graphene OxideヽArboxymethyl Cellulose Hydrogel Beads for Uptake and Release Study of Doxorubicin. Asia-pac. J. Chem. Eng. 2021, 16, 26461–264610.
  • Li, H.L.; Zhang, H.R.; Xiong, L.; Chen, X.F.; Wang, C.; Huang, C.; Chen, X.D. Isolation of Cellulose from Wheat Straw and Its Utilization for the Preparation of Carboxymethyl Cellulose. Fiber. Polym. 2019, 20, 975–981.
  • Casaburi, A.; Rojo, ÚM; Cerrutti, P.; Vázquez, A.; Foresti, M.L. Carboxymethyl Cellulose with Tailored Degree of Substitution Obtained from Bacterial Cellulose. Food. Hydrocolloids. 2018, 75, 147–156.
  • Ghaedi, H.; Zhao, M. Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy Fuels. 2022, 36, 2424–2446.
  • Mazzotta, E.; Santo, M.D.; Lombardo, D.; Leggio, A.; Pasqua, L. Mesoporous Silicas in Materials Engineering: Nanodevices for Bionanotechnologies. Materials Today Bio. 2022, 17, 100472–100489.
  • Larki, A.; Saghanezhad, S.J.; Ghomi, M. Recent Advances of Functionalized SBA-15 in the Separation/Preconcentration of Various Analytes: A Review. Microchem. J. 2021, 169, 106601–106618.
  • Marcucci, S.M.P.; Zanin, G.M.; Arroyo, P.A. Synthesis of SBA-15 and Pore-Expanded SBA-15 and Surface Modification with tin for Covalent Lipase Immobilization. Micropor Mesopor. Mat. 2022, 337, 111951–111968.
  • Bhange, P.; Sridevi, N.; Bhange, D.S.; Prabhune, A.; Ramaswamy, V. Immobilization of Bile Salt Hydrolase Enzyme on Mesoporous SBA-15 for co-Precipitation of Cholesterol. Int. J. Biol. Macromol. 2014, 63, 218–224.
  • Zhang, H.; Zhang, X.; Wang, B.; Zeng, X.; Guo, H.Z.; Ren, B.; Yang, X.D. Immobilization of Laccase Onto Functionalized Ionic Liquid-Modified Mesoporous Silica SBA-15. Biocatal. Biotransfo. 2021, 3, 1–11.
  • Santis, P.D.; Meyer, L.k.; Kara, S. The Rise of Continuous Flow Biocatalysis –Fundamentals, Very Recent Developments and Future Perspectives. React. Chem. Eng. 2020, 5, 2155–2184.
  • Meyer, J.; Meyer, L.E.; Kara, S. Enzyme Immobilization in Hydrogels: A Perfect Liaison for Efficient and Sustainable Biocatalysis. Eng. Life. Sci. 2021, 22, 165–177.
  • Meyer, L.E.; Horváth, D.; Vaupel, S.; Meyer, J.; Alcalde, M.; Kara, S. A 3D Printable Synthetic Hydrogel as an Immobilization Matrix for Continuous Synthesis with Fungal Peroxygenases. React. Chem. Eng. 2023, 8, 984–988.
  • Bat-Ozmatara, M.; Ünlü, A.; Gevrek, T.N. Preparation of Isocyanate-Containing Hydrogel Films as Antibacterial Enzyme Immobilization Matrices. React. Funct. Polym. 2023, 192, 105695–105710.
  • Dai, H.J.; Ou, S.Y.; Liu, Z.J.; Huang, H.H. Pineapple Peel Carboxymethyl Cellulose/Polyvinyl Alcohol/Mesoporous Silica SBA-15 Hydrogel Composites for Papain Immobilization. Carbohyd. Polym. 2017, 169, 504–514.
  • Solra, M.; Das, S.; Srivastava, A.; Sen, B.; Rana, S. Temporally Controlled Multienzyme Catalysis Using a Dissipative Supramolecular Nanozyme. ACS Appl. Mater. Interfaces. 2022, 14, 45096–45109.
  • Srivastava, A.; Kaur, H.; Pahuja, H.; Rangarajan, T.M.; Varma, R.S.; Pasricha, S. Optimal Exploitation of Supported Heterogenized Pd Nanoparticles for C-C Cross-Coupling Reactions. Coord. Chem. Rev. 2024, 507, 215763–215802.
  • Zhao H.W.; Han H. Synthesis and Characterization of Functionalized SBA-15 Silica Through Template Removal. 2020, 282, 121074–121089.
  • Zandieh, M.; Liu, J.W. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater. 2023, 36, 2211041–2211048.
  • Fu, T.K.; Li, J.H.; Wang, Q.H.; Huang, H.; Wei, X.Y.; Cui, L.H.; Wang, Y.H.; Wang, F. Structure and Properties of Natural Cellulose Extracted from Pineapple Leaf. A. M. R. 2013, 815, 379–385.
  • Petermeier, P.; Bittner, J.P.; Müller, S.; Byström, E.; Kara, S. Design of a Green Chemoenzymatic Cascade for Scalable Synthesis of bio-Based Styrene Alternatives. Green. Chem. 2022, 24, 6889–6899.
  • De Santis, P.; Petrovai, N.; Meyer, L.E.; Hobisch, M.; Kara, S. A Holistic Carrier-Boundimmobilization Approach Forunspecific Peroxygenase. Front. Chem. 2022, 10, 985997–986107.
  • Yu, D.H.; Wang, Z.; Zhao, L.; Cheng, Y.M.; Cao, S.G. Resolution of 2-Octanol by SBA-15 Immobilized Pseudomon as s.p. Lipase. J. Mol. Catal. B Enzym. 2007, 48, 64–69.
  • Canaparo, R.; Muntoni, E.; Zara, G.P.; Pepa, C.D.; Berno, E.; Costa, M.; Eandi, M. Determination of Ibuprofen in Human Plasma by High-Performance Liquid Chromatography: Validation and Application in Pharmacokinetic Study. Biomed. Chromatogr. 2000, 14, 219–226.
  • Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative Analyses of Biochemical Kinetic Resolutions of Enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299.