225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous and sequential enzymatic cascades for asymmetric synthesis of chiral beta-hydroxyamide derivatives promoted by alcohol dehydrogenases and nitrile hydratases

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2343707 | Received 26 Jan 2024, Accepted 09 Apr 2024, Published online: 14 May 2024

References

  • González-Fernández, R.; Crochet, P.; Cadierno, V. Ruthenium-Catalyzed Synthesis of β-Hydroxyamides from β-Ketonitriles in Water. Org. Lett 2016, 18, 6164–6167. doi:10.1021/acs.orglett.6b03172.
  • González-Fernández, R.; González-Liste, P.J.; Borge, J.; Crochet, P.; Cadierno, V. Chlorophosphines as Auxiliary Ligands in Ruthenium-Catalyzed Nitrile Hydration Reactions: Application to the Preparation of β-Ketoamides. Catal. Sci. Technol 2016, 6, 4398–4409. doi:10.1039/C5CY02142A.
  • Sharley, D.D.S.; Williams, J.M.J. A Selective Hydration of Nitriles Catalysed by a Pd(OAc)2-Based System in Water. Tetrahedron Lett. 2017, 58, 4090–4093. doi:10.1016/j.tetlet.2017.09.034.
  • Kumar, D.; Masitas, C.A.; Nguyen, T.N.; Grapperhaus, C.A. Bioinspired Catalytic Nitrile Hydration by Dithiolato, Sulfinato/Thiolato, and Sulfenato/Sulfinato Ruthenium Complexes. Chem. Commun 2013, 49, 294–296. doi:10.1039/c2cc35256g.
  • Roy, S.; Roy, S.; Gribble, G.W. Metal-catalyzed Amidation. Tetrahedron 2012, 68, 9867–9923. doi:10.1016/j.tet.2012.08.065.
  • Gonzáles-Fernández, R.; Crochet, P.; Cadierno, V. Synthesis of β-Hydroxyamides Through Ruthenium-Catalyzed Hydration/Transfer Hydrogenation of β-Ketonitriles in Water: Scope and Limitations. J. Organomet. Chem. 2019, 896, 90–101. doi:10.1016/j.jorganchem.2019.05.016.
  • Crochet, P.; Cadierno, V. Acess to (- and (-Hydroxyamides and Ureas Through Metal-Catalyzed CN Bond Hydration and Transfer Hydration Reactions. Eur. J. Inorg. Chem. 2021, 26, 3225–3238. doi:10.1002/ejic.202100413.
  • Jensen, M.T.; Juhl, M.; Nielsen, D.U.; Jacobsen, M.F.; Lindhardt, A.T.; Skrydstrup, T. Palladium-Catalyzed Carbonylative α-Arylation of Tert-Butyl Cyanoacetate with (Hetero)Aryl Bromides. J. Org. Chem 2016, 81, 1358–1366. doi:10.1021/acs.joc.5b02897.
  • Kubac, D.; Kaplan, O.; Elisakova, V.; Patek, M.; Vejvoda, V.; Slamova, K.; Tothova, A.; Lemaire, M.; Gallienne, E.; Lutz-Wahl, S.; Fischer, L.; Kuzma, M.; Pelantova, H.; van Pelt, S.; Bolte, J.; Kren, V.; Martinkova, L. Biotransformation of Nitriles to Amides Using Soluble and Immobilized Nitrile Hydratase from Rhodococcus Erythropolis A4. J. Mol. Catal. B: Enzym 2008, 50, 107–113. doi:10.1016/j.molcatb.2007.09.007.
  • Gotor, V.; Liz, R.; Testera, A.M. Preparation of N-Unsubstituted (-Ketoamides by Rhocococcus Rhodochrous Catalyzed Hydration of b-Ketonitrles. Tetrahedron 2004, 60, 607–618. doi:10.1016/j.tet.2003.10.096.
  • Zhang, Z.-J.; Cai, R.-F.; Xu, J.-H. Characterization of a new Nitrilase from Hoeflea Phototrophica DFL-43 for a two-Step one pot Synthesis of (S)-(-Aminoacids. Appl. Microbiol. Biotechnol. 2018, 102, 6047–6056. doi:10.1007/s00253-018-9057-7.
  • Serra, I.; Guidi, B.; Burgaud, G.; Contente, M.L.; Ferraboschi, P.; Pinto, A.; Compagno, C.; Molinari, F.; Romano, D. Seawater-based Biocatalytic Strategy: Stereoselective Reductions of Ketones with Marine Yeasts. ChemCatChem. 2016, 8, 3254–3260. doi:10.1002/cctc.201600947.
  • Yang, X.H.; Xie, J.H.; Zhou, Q.L. Chiral Spiro Iridium Catalysts with SpiroPAP Ligands: Highly Efficient for Asymmetric Hydrogenation of Ketones and Ketoesters. Org. Chem. Front 2014, 1, 190–193. doi:10.1039/c3qo00056g.
  • Li, W.; c, Y.; Qu, E.; Bai, J.; Deng, Q. β-Keto Amides: A Jack-of-All-Trades Building Block in Organic Chemistry. Eur. J. Org. Chem 2021, 2021, 5151–5192. doi:10.1002/ejoc.202100692.
  • Wessjohann, L.A.; Wild, H.; Ferreira, L.A.; Schrekker, H.S. Synthesis of α-Alkenyl-β-Hydroxy Adducts by α-Addition of Unprotected 4-Bromocrotonic Acid and Amides with Aldehydes and Ketones by Chromium(II)-Mediated Reactions. Appl. Organometal. Chem 2016, 30, 674–679. doi:10.1002/aoc.3488.
  • Kitanosono, T.; Xu, P.; Kobayashi, S. Heterogeneous Versus Homogeneous Copper(II) Catalysis in Enantioselective Conjugate-Addition Reactions of Boron in Water. Chem. Asian J. 2014, 9, 179–188. doi:10.1002/asia.201300997.
  • Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev 2018, 118, 801–838. doi:10.1021/acs.chemrev.7b00203.
  • Wang, Z.; Sekar, B.S.; Li, Z. Recent Advances in Artificial Enzyme Cascades for the Production of Value-Added Chemicals. Bioresour. Technol 2021, 323, 124551. doi:10.1016/j.biortech.2020.124551.
  • Wohlgemuth, R. Biocatalysis – Key Enabling Tools from Biocatalytic one-Step and Multi-Step Reactions to Biocatalytic Total Synthesis. N. Biotechnol 2021, 60, 113–123. doi:10.1016/j.nbt.2020.08.006.
  • Woodley, J.M. New Frontiers in Biocatalysis for Sustainable Synthesis. Curr. Opin. Green Sustain. Chem 2020, 21, 22–26. doi:10.1016/j.cogsc.2019.08.006.
  • Buller, R.; Lutz, S.; Kazlauskas, R.J.; Snajdrova, R.; Moore, J.C.; Bornscheuer, U.T. From Nature to Industry: Harnessing Enzymes for Biocatalysis. Science 2023, 382, eadh8615. doi:10.1126/science.adh8615.
  • Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci. 2021, 7, 55–71. doi:10.1021/acscentsci.0c01496.
  • Martin-Matute, B.; Edin, M.; Bogar, K.; Betul, F.; Kaynak, B.; Backvall, J.-E. Combined Ruthenium(II) and Lipase Catalysis for Efficient Dynamic Kinetic Resolution of Secondary Alcohols. Insight Into the Racemization Mechanism. J. Am. Chem. Soc 2005, 127, 8817–8825. doi:10.1021/ja051576x.
  • Nazor, J.; Liu, J.; Huisman, G. Enzyme Evolution for Industrial Biocatalytic Cascades. Curr. Opin. Biotechnol 2021, 69, 182–190. doi:10.1016/j.copbio.2020.12.013.
  • Schrittwieser, J.H.; Velikogne, S.; Hall, M.; Kroutil, W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem. Rev 2018, 118, 270–348. doi:10.1021/acs.chemrev.7b00033.
  • García-Junceda, E.; Lavandera, I.; Rother, D.; Schrittwieser, J.H. (Chemo)Enzymatic Cascades – Nature’s Synthetic Strategy Transferred to the Laboratory. J. Mol. Catal B: Enzym. 2015, 114, 1–6. doi:10.1016/j.molcatb.2014.12.007.
  • Sperl, J.M.; Sieber, V. Multienzyme Cascade Reactions – Status and Recent Advances. ACS Catal. 2018, 8, 2385–2396. doi:10.1021/acscatal.7b03440.
  • Kracher, D.; Kourist, R. Recent Developments in Compartmentalization of Chemoenzymatic Cascade Reactions. Curr. Opin. Green Sustain. Chem 2021, 32, 100538. doi:10.1016/j.cogsc.2021.100538.
  • Benítez-Mateos, A.I.; Padrosa, D.R.; Paradisi, F. Multistep Enzyme Cascades as a Route Towards Green and Sustainable Pharmaceutical Syntheses. Nature Chem 2022, 14, 489. doi:10.1038/s41557-022-00931-2.
  • Siedentop, R.; Claaßen, C.; Rother, D.; Lutz, S.; Rosenthal, K. Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021, 11, 1183.
  • Liu, Y.; Liu, P.; Gao, S.; Wang, Z.; Luan, P.; Gonzalez-Sabin, J.; Jiang, Y. Construction of Chemoenzymatic Cascade Reactions for Bridging Chemocatalysis and Biocatalysis: Principles, Strategies and Prospective. Chem. Eng. J. 2021, 420, 127659. doi:10.1016/j.cej.2020.127659.
  • Gandomkar, S.; Zadlo-Dobrowolska, A.; Kroutil, W. Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem. 2019, 11, 225–243. doi:10.1002/cctc.201801063.
  • Jiang, C.; Cheng, G.; Wu, Q. One Pot Enzyme-Catalyzed Cascade Benefit Systems. Mini-rev. Org. Chem 2021, 18, 282–295. doi:10.2174/1570193X17999200727203215.
  • Mascharak, P.K. The Active Site of Nitrile Hydratase: An Assembly of Unusual Coordination Features by Nature. Struct. Bond. 2014, 160, 89–113. doi:10.1007430_2012_85.
  • de Gonzalo, G.; Paul, C.E. Recent Trends in Synthetic Enzymatic Cascades Promoted by Alcohol Dehydrogenases. Curr. Opin. Green Sustain. Chem 2021, 32, 100548. doi:10.1016/j.cogsc.2021.100548.
  • Koesoema, A.A.; Standley, D.M.; Seneda, T.; Matsuda, T. Impact and Relevance of Alcohol Dehydrogenase Enantioselectivities on Biotechnological Applications. App. Microbiol. Biotechnol 2020, 104, 2897–2909. doi:10.1007/s00253-020-10440-2.
  • Matsuda, T.; Yamanaka, R.; Nakamaura, K. Recent Progress in Biocatalysis for Asymmetric Oxidation and Reduction. Tetrahedron: Asymmetry 2009, 20, 513–557. doi:10.1016/j.tetasy.2008.12.035.
  • Miranda, A.S.; Milagre, C.D.F.; Hollmann, F. Alcohol Dehydrogenases as Catalysts in Organic Synthesis. Front. Catal. 2022, 2, 900554. doi:10.3389/fctls.2022.900554.
  • Guo, J.; Berdychowska, J.; Lai, Q.; Meng, Y.; Cheng, Z.; Peplowski, L.; Zhou, Z. ‘Toolbox’ Construction of an Extremophilic Nitrile Hydratase from Streptomyces Thermoautotrophicus for the Promising Industrial Production of Various Amides. Int. J. Biol. Macromol 2022, 221, 1103–1111. doi:10.1016/j.ijbiomac.2022.09.071.
  • Ma, D.; Cheng, Z.; Peplowski, L.; Han, L.; Xia, Y.; Hou, X.; Guo, J.; Yin, D.; Rao, Y.; Zhou, Z. Insight Into the Broadened Substrate Scope of Nitrile Hydratase by Static and Dynamic Structure Analysis. Chem. Sci 2022, 13, 8417–8428. https://ez87.periodicos.capes.gov.br/10.1039/D2SC02319A.
  • Wilgus, C.P.; Downing, S.; Molitor, E.; Bains, S.; Pagni, R.M.; Kabalka, G.W. The Acid-Catalyzed and Uncatalyzed Hydrolysis of Nitriles on Unactivated Alumina. Tetrahedron Lett. 1995, 36, 3469–3472. doi:10.1016/0040-4039(95)00528-K.
  • Montalbeltti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005, 61, 10827–10852. doi:10.1016/j.tet.2005.08.031.
  • Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, R.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process 2016, 4, 7. doi:10.1186/s40508-016-0051-z.
  • van Pelt, S.; Zhang, M.; Otten, L.G.; Holt, J.; Sorokin, D.Y.; van Rantwijk, F.; Black, G.W.; Perry, J.J.; Sheldon, R.A. Probing the Enantioselectivity of a Diverse Group of Purified Cobalt-Centred Nitrile Hydratases. Org. Biomol. Chem 2011, 9, 3011–3019. doi:10.1039/c0ob01067g.
  • Gooding, O.W.; Voladri, R.; Bautista, A.; Hopkins, T.; Huisman, G.; Jenne, S.; Ma, S.; Mundorff, E.C.; Savile, M.M. Development of a Practical Biocatalytic Process for (R)-2-Methylpentanol. Org. Process Res. Dev 2010, 14, 119–126. doi:10.1021/op9002246.
  • Rowan, A.S.; Moody, T.S.; Howard, R.M.; Underwood, T.J.; Miskelly, I.R.; He, Y.; Wang, B. Preparative Access to Medicinal Chemistry Related Chiral Alcohols Using Carbonyl Reductase Technology. Tetrahedron: Asymmetry 2013, 24, 1369–1381. doi:10.1016/j.tetasy.2013.09.015.
  • Calvin, S.J.; Mangan, D.; Miskelly, I.; Moody, T.S.; Stevenson, P.J. Overcoming Equilibrium Issues with Carbonyl Reductase Enzymes. Org. Process Res. Dev 2012, 16, 82–86. doi:10.1021/op200241u.
  • Pawar, S.V.; Yadav, G.D. Enantioselective Enzymatic Hydrolysis of rac-Mandelonitrile to R-Mandelamide by Nitrile Hydratase Immobilized on Poly(Vinyl Alcohol)/Chitosan–Glutaraldehyde Support. Ind. Eng. Chem. Res 2014, 53, 7986–7991. doi:10.1021/ie500564b.
  • Bisogno, F.R.; Lavandera, I.; Kroutil, W.; Gotor, V. Tandem Concurrent Processes: One-Pot Single-Catalyst Biohydrogen Transfer for the Simultaneous Preparation of Enantiopure Secondary Alcohols. J. Org. Chem 2009, 74, 1730–1732. doi:10.1021/jo802350f.
  • Ankati, H.; Zhu, D.; Yang, Y.; Biehl, E.R.; Hua, L. Asymmetric Synthesis of Both Antipodes of β-Hydroxy Nitriles and β-Hydroxy Carboxylic Acids via Enzymatic Reduction or Sequential Reduction/Hydrolysis. J. Org. Chem 2009, 74, 1658–1662. doi:10.1021/jo802495f.