750
Views
21
CrossRef citations to date
0
Altmetric
Brief Report

Gross Motor Development of Children with Congenital Heart Disease Receiving Early Systematic Surveillance and Individualized Intervention: Brief Report

, , , , , , , , , , , , & show all
Pages 56-62 | Received 13 Dec 2018, Accepted 31 Dec 2019, Published online: 12 Jan 2020

References

  • Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, Mussatto KA, Uzark K, Goldberg CS, Johnson WH, et al. Neurodevelopmental outcomes in children with congenital heart disease : evaluation and management: a scientific statement from the American heart association. Circulation. 2012;126:1143–72. doi:10.1161/CIR.0b013e318265ee8a.
  • Limperopoulos C, Majnemer A, Shevell MI, Rohlicek C, Rosenblatt B, Tchervenkov C, Darwish HZ. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr. 2002;141:51–58. doi:10.1067/mpd.2002.125227.
  • Hallioglu O, Gurer G, Bozlu G, Karpuz D, Makharoblidze K, Okuyaz C. Evaluation of neurodevelopment using Bayley-III in children with cyanotic or hemodynamically impaired congenital heart disease. Congenit Heart Dis. 2015;10(6):537–41. doi:10.1111/chd.2015.10.issue-6.
  • Mussatto KA, Hoffmann RG, Hoffman GM, Tweddell JS, Bear L, Cao Y, Brosig C. Risk and prevalence of developmental delay in young children with congenital heart disease. Pediatrics. 2014;133(3):1–8. doi:10.1542/peds.2013-2309.
  • Sananes R, Manlhiot C, Kelly E, Hornberger LK, Williams WG, Macgregor D, Buncic R, Mccrindle BW. Neurodevelopmental outcomes after open heart operations before 3 months of age. Ann Thorac Surg. 2012;93(5):1577–83. doi:10.1016/j.athoracsur.2012.02.011.
  • Long SH, Galea MP, Eldridge BJ, Harris SR. Performance of 2-year-old children after early surgery for congenital heart disease on the Bayley scales of infant and toddler development, third edition. Early Hum Dev. 2012;88:603–07. doi:10.1016/j.earlhumdev.2012.01.007.
  • Majnemer A, Limperopoulos C, Shevell MI, Rohlicek C, Rosenblatt B. A new look at outcomes of infants with congenital heart disease. Pediatr Neurol. 2009;40(3):197–204. doi:10.1016/j.pediatrneurol.2008.09.014.
  • Bellinger DC, Wypij D, Kuban KC, Rappaport LA, Hickey PR, Wernovsky G, Jonas RA, Newburger JW. Developmental and neurologic status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1999;332(9):549–55. doi:10.1056/NEJM199503023320901.
  • Cheatham SL, Carey H, Chisolm JL, Heathcock JC. Early results of neurodevelopment following hybrid stage I for hypoplastic left heart syndrome. Pediatr Cardiol. 2015;36:685–91. doi:10.1007/s00246-014-1065-5.
  • Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP. Congenital heart disease and neurodevelopment: clinical manifestations, genetics, mechanisms, and implications. Can J Cardiol. 2017;33:1543–55. doi:10.1016/j.cjca.2017.09.020.
  • Fourdain S, St-Denis A, Harvey J, Carmant L, †Gallagher A, †Trudeau N. Language development in children with congenital heart disease aged 12 to 24 months. Eur J Ped Neurol. 2019; 23(3): 491-99. https://doi.org/10.1016/j.ejpn.2019.03.002
  • Long SH, Harris SR, Eldridge BJ, Galea MP. Gross motor development is delayed following early cardiac surgery. Cardiol Young. 2012;22:574–82. doi:10.1017/S1047951112000121.
  • Majnemer A, Limperopoulos C, Shevell M, Rosenblatt B, Rohlicek C, Tchervenkov C. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr. 2006;148(1):72–77. doi:10.1016/j.jpeds.2005.08.036.
  • Holm I, Fredriksen PM, Fosdahl MA, Olstad M. Impaired motor competence in school-aged children with complex congenital heart disease. Arch Pediatr Adolesc Med. 2007;161(10):8–10. doi:10.1001/archpedi.161.10.945.
  • Gallagher A, Dagenais L, Doussau A, Décarie J-C, Materassi M, Gagnon K, Prud’homme J, Vobecky S, Poirier N, Carmant L. Significant motor improvement in an infant with congenital heart disease and a rolandic stroke: the impact of early intervention. Dev Neurorehabil. 2017;20(3):165–68. doi:10.3109/17518423.2015.1132280.
  • Clancy RR, Mcgaurn SA, Wernovsky G, Spray TL, Norwood WI, Jacobs ML, Murphy JD, Gaynor JW, Goin JE. Preoperative risk-of-death prediction model in heart surgery with deep hypothermic circulatory arrest in the neonate. J Thorac Cardiovasc Surg. 2000;119(2):347–57. doi:10.1016/S0022-5223(00)70191-7.
  • Jenkins KJ, Gauvreau K. Center-specific differences in mortality: preliminary analyses using the risk adjustment in congenital heart surgery (RACHS-1) method. J Thorac Cardiovasc Surg. 2002;124(1):97–104. doi:10.1067/mtc.2002.122311.
  • Piper MC, Darrah J. Motor assessment of the developing infant. Philadelphia (PA): Saunders; 1994.
  • Bayley N. Bayley scales of infant and toddler development. 3rd ed. San Antonio (TX): Pearson; 2006.
  • Darrah J, Piper M, Watt MJ. Assessment of gross motor skills of at-risk infants: predictive validity of the Alberta infant motor scale. Dev Med Child Neurol. 1998;40:485–91. doi:10.1111/j.1469-8749.1998.tb15399.x.
  • Albuquerque PL, Farias Guerra MQ, Carvalho Lima M, Eickmann SH. Concurrent validity of the Alberta infant motor scale to detect delayed gross motor development in preterm infants : a comparative study with the Bayley concurrent validity of the Alberta infant motor scale to detect delayed gross motor development in pre. Dev Neurorehabil. 2018;21(6):1–7. doi:10.1080/17518423.2016.1212947.
  • Birca A, Vakorin VA, Porayette P, Madathil S, Chau V, Seed M, Doesburg SM, Blaser S, Nita DA, Sharma R, et al. Interplay of brain structure and function in neonatal congenital heart disease. Ann Clin Transl Neurol. 2016;3(9):708–22. doi:10.1002/acn3.336.
  • Long SH, Physio B, Eldridge BJ, Physio B, Galea MP, Harris SR. Risk factors for gross motor dysfunction in infants with congenital heart disease. Infants Young Children. 2011;24(3):246–58. doi:10.1097/IYC.0b013e3182176274.
  • Brossard-Racine M, Du Plessis AJ, Vezina G, Robertson R, Bulas D, Evangelou IE, Donofrio M, Freeman D, Limperopoulos C. Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease. Am J Neuroradiol. 2014;35(8):1593–99. doi:10.3174/ajnr.A3903.
  • Khalil A, Suff N, Thilaganathan B, Hurrell A, Cooper D, Carvalho JS. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;43:14–24. doi:10.1002/uog.12526.
  • Barrett CS, Bratton SL, Salvin JW, Laussen PC, Rycus PT, Thiagarajan RR, MBBS M. Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med. 2009;10(4):445–51. doi:10.1097/PCC.0b013e318198bd85.
  • Boucek K, Smith C, Olsen M, Argueta-Morales R, DeCampli WM. Risk factors for early neurological injury in infants requiring deep hypothermic circulatory arrest and/or selective cerebral perfusion. Circulation. 2016;128.
  • Polito A, Barrett CS, Rycus PT, Favia I, Cogo PE, Thiagarajan RR. Neurologic injury in neonates with congenital heart disease during extracorporeal membrane oxygenation. ASAIO J. 2015;61:43–48. doi:10.1097/MAT.0000000000000151.
  • Dagenais L, Materassi M, Desnous B, Vinay M-C, Doussau A, Sabeh P, Prud’homme J, Gagnon K, Lenoir M, Charron M-A, et al. Superior performance in prone in infants with congenital heart disease predicts an earlier onset of walking. J Child Neurol. 2018;33:894-900.
  • Calderon J, Bonnet D, Pinabiaux C, Jambaqué I, Angeard N. Use of early remedial services in children with transposition of the great arteries. J Pediatr. 2013;163:1105–10. doi:10.1016/j.jpeds.2013.04.065.
  • Majnemer A, Mazer B, Lecker E, Carter AL, Limperopoulos C, Shevell M, Rohlicek C, Rosenblatt B, Tchervenkov C. Patterns of use of educational and rehabilitation services at school age for children with congenitally malformed hearts. Cardiol Young. 2008;18:288–96. doi:10.1017/S1047951108002114.
  • Fredriksen PM, Kahrs N, Blaasvaer S, Sigurdsen E, Gundersen O, Roeksund O, Norgaand G, Vik JT, Soerbye O, Ingjer F, et al. Effect of physical training in children and adolescents with congenital heart disease. Cardiol Young. 2000;10:107–14. doi:10.1017/S1047951100006557.
  • McCusker CG, Doherty NN, Molloy B, Rooney N, Mulholland C, Sands A, Craig B, Stewart M, Casey F. A controlled trial of early interventions to promote maternal adjustment and development in infants born with severe congenital heart disease. Child Care Health Dev. 2009;36(1):110–17. doi:10.1111/j.1365-2214.2009.01026.x.
  • McCusker CG, Doherty NN, Molloy B, Rooney N, Mulholland C, Sands A, Craig B, Stewart M, Casey F. A randomized controlled trial of interventions to promote adjustment in children with congenital heart disease entering school and their families. J Pediatr Psychol. 2012;37(10):1089–103. doi:10.1093/jpepsy/jss092.
  • Orton J, Spittle A, Doyle L, Anderson P, Boyd R. Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Dev Med Child Neurol. 2009;51:851–59. doi:10.1111/j.1469-8749.2009.03414.x.
  • Hughes AJ, Redsell SA, Glazebrook C. Motor development interventions for preterm infants : a systematic review and meta-analysis. Pediatrics. 2016;138:1–13. doi:10.1542/peds.2016-0147.
  • Spittle A, Treyvaud K. The role of early developmental intervention to influence neurobehavioral outcomes of children born preterm. Semin Perinatol. 2016;40:542–48. doi:10.1053/j.semperi.2016.09.006.
  • Wu Y, Leng C, Hsieh W, Hsu C, Chen WJ, Gau SS, Chiu N, Yang M, Fang L, Hsu H, et al. A randomized controlled trial of clinic-based and home-based interventions in comparison with usual care for preterm infants: effects and mediators. Res Dev Disabil. 2014;35:2384–93. doi:10.1016/j.ridd.2014.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.