1,023
Views
0
CrossRef citations to date
0
Altmetric
Literature Review

Consequences of Virtual Reality Experience on Biomechanical Gait Parameters in Children with Cerebral Palsy: A Scoping Review

, , , &
Pages 377-388 | Received 12 Jan 2023, Accepted 26 Jul 2023, Published online: 03 Aug 2023

References

  • Michael-Asalu A, Taylor G, Campbell H, Lelea L-L, Kirby RS. Cerebral palsy. Adv Pediatr. 2019;66:189–208. doi:10.1016/j.yapd.2019.04.002.
  • O’Shea TM. Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol. 2008;51(4):816–28. doi: 10.1097/GRF.0b013e3181870ba7.
  • Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49:8–14. doi:10.1111/j.1469-8749.2007.tb12610.x.
  • Schiariti V, Selb M, Cieza A, O’Donnell M. International classification of functioning, disability and health core sets for children and youth with cerebral palsy: a consensus meeting. Dev Med Child Neurol. 2015;57(2):149–58. doi:10.1111/dmcn.12551.
  • Sienko SE. An exploratory study investigating the multidimensional factors impacting the health and well-being of young adults with cerebral palsy. Disabil Rehabil. 2018;40(6):660–66. doi: 10.1080/09638288.2016.1274340.
  • Chagas PSC, Magalhães EDD, Sousa Junior RR, Romeros ACSF, Palisano RJ, Leite HR, Rosenbaum P. Development of children, adolescents, and young adults with cerebral palsy according to the ICF: a scoping review. Dev Med Child Neurol. 2023;65(6):745–53. doi: 10.1111/dmcn.15484.
  • Woollacott MH, Shumway-Cook A. Postural dysfunction during standing and walking in children with cerebral palsy: what are the underlying problems and what new therapies might improve balance? Neural Plast. 2005;12(2–3):211–19. discussion 263-272. doi:10.1155/NP.2005.211.
  • States RA, Krzak JJ, Salem Y, Godwin EM, Bodkin AW, McMulkin ML. Instrumented gait analysis for management of gait disorders in children with cerebral palsy: a scoping review. Gait Posture. 2021;90:1–8. doi:10.1016/j.gaitpost.2021.07.009.
  • Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39(4):1062–68. doi:10.1016/j.gaitpost.2014.01.008.
  • Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. 2nd. Waterloo: Waterloo Biomechanics; 1991.
  • Canning CG, Allen NE, Nackaerts E, Paul SS, Nieuwboer A, Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol. 2020;16(8):409–25. doi:10.1038/s41582-020-0370-2.
  • You SH, Jang SH, Kim Y-H, Kwon Y-H, Barrow I, Hallett M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol. 2005;47(9):628–35. doi: 10.1111/j.1469-8749.2005.tb01216.x.
  • Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychology Behav Impact Internet Multimed Virtual Real Behav Soc. 2006;9(2):123–28. doi: 10.1089/cpb.2006.9.123.
  • Bartlett DJ, Palisano RJ. Physical therapists’ perceptions of factors influencing the acquisition of motor abilities of children with cerebral palsy: implications for clinical reasoning. Phys Ther. 2002;82(3):237–48. doi:10.1093/ptj/82.3.237.
  • Arnoni JLB, Kleiner AFR, Lima CRG, de Campos AC, Rocha NACF. Nonimmersive virtual reality as complementary rehabilitation on functional mobility and gait in cerebral palsy: a randomized controlled clinical trial. Games Health J. 2021;10(4):254–63. doi:10.1089/g4h.2021.0009.
  • Biffi E, Beretta E, Cesareo A, Maghini C, Turconi AC, Reni G, Strazzer S. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf Med. 2017;56(2):119–26. doi:10.3414/ME16-02-0020.
  • Gagliardi C, Turconi AC, Biffi E, Maghini C, Marelli A, Cesareo A, Diella E, Panzeri D. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann Biomed Eng. 2018;46(9):1376–84. doi:10.1007/s10439-018-2039-1.
  • Beani E, Filogna S, Martini G, Barzacchi V, Ferrari A, Guidi E, Menici V, Cioni G, Sgandurra G. Application of virtual reality rehabilitation system for the assessment of postural control while standing in typical children and peers with neurodevelopmental disorders. Gait Posture. 2022;92:364–70. doi:10.1016/j.gaitpost.2021.12.008.
  • Moon S, Huang C-K, Sadeghi M, Akinwuntan AE, Devos H. Proof-of-concept of the virtual reality comprehensive balance assessment and training for sensory organization of dynamic postural control. Front Bioeng Biotechnol. 2021;9:678006. doi:10.3389/fbioe.2021.678006.
  • Pandita S, Stevenson Won A. Chapter 7 - clinical applications of virtual reality in patient-centered care. In: Kim J Song Heditors Technol health [Internet]. [place unknown]: Academic Press; 2020. pp. 129–48. 10.1016/B978-0-12-816958-2.00007-1
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
  • Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and Explanation. Ann Intern Med. 2018;169(7):467–73. doi:10.7326/M18-0850.
  • Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121(Pt 1):1027–31. doi: 10.1016/j.envint.2018.07.015.
  • Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res. 2020;7(1):7. doi: 10.1186/s40779-020-00238-8.
  • Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open. 2016;6(12):e011458. doi:10.1136/bmjopen-2016-011458.
  • Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K, et al. 2020. JBI manual for evidence synthesis [Internet]. [accessed 2023 Jan 12]. https://jbi-global-wiki.refined.site/space/MANUAL
  • van der Krogt MM, Sloot LH, Harlaar J. Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy. Gait Posture. 2014;40(4):587–93. doi:10.1016/j.gaitpost.2014.07.003.
  • Sloot LH, Harlaar J, van der Krogt MM. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Gait Posture. 2015;42(4):498–504. doi: 10.1016/j.gaitpost.2015.08.003.
  • Booth AT, Buizer AI, Harlaar J, Steenbrink F, van der Krogt MM. Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Arch Phys Med Rehabil. 2019;100(4):598–605. doi: 10.1016/j.apmr.2018.10.013.
  • Booth ATC, van der Krogt MM, Harlaar J, Dominici N, Buizer AI. Muscle synergies in response to biofeedback-driven gait adaptations in children with cerebral palsy. Front Physiol. 2019;10:1208. doi:10.3389/fphys.2019.01208.
  • van Gelder L, Booth ATC, van de Port I, Buizer AI, Harlaar J, van der Krogt MM. Real-time feedback to improve gait in children with cerebral palsy. Gait Posture. 2017;52:76–82. doi:10.1016/j.gaitpost.2016.11.021.
  • Ma Y, Liang Y, Kang X, Shao M, Siemelink L, Zhang Y. Gait characteristics of children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Appl Bionics Biomech. 2019;2019:8049156. doi:10.1155/2019/8049156.
  • Lim H. Effect of the modulation of optic flow speed on gait parameters in children with hemiplegic cerebral palsy. J Phys Ther Sci. 2014;26(1):145–48. doi:10.1589/jpts.26.145.
  • Sloot LH, van der Krogt MM, Harlaar J. Effects of adding a virtual reality environment to different modes of treadmill walking. Gait Posture. 2014;39(3):939–45. doi:10.1016/j.gaitpost.2013.12.005.
  • Romkes J, Freslier M, Rutz E, Bracht-Schweizer K. Walking on uneven ground: how do patients with unilateral cerebral palsy adapt? Clin Biomech. 2020;74:8–13. doi:10.1016/j.clinbiomech.2020.02.001.
  • Theunissen K, Van Hooren B, Plasqui G, Meijer K. Self-paced and fixed speed treadmill walking yield similar energetics and biomechanics across different speeds. Gait Posture. 2022;92:2–7. doi:10.1016/j.gaitpost.2021.11.005.
  • Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710–14. doi: 10.1016/j.gaitpost.2007.07.007.
  • Semaan MB, Wallard L, Ruiz V, Gillet C, Leteneur S, Simoneau-Buessinger E. Is treadmill walking biomechanically comparable to overground walking? a systematic review. Gait Posture. 2022;92:249–57. doi:10.1016/j.gaitpost.2021.11.009.