872
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Diversification of crop rotations and soil carbon balance: impact assessment based on national-scale monitoring data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2298373 | Received 16 May 2023, Accepted 17 Dec 2023, Published online: 07 Jan 2024

References

  • Köchy M, Hiederer R, Freibauer A. Global distribution of soil organic carbon – part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. SOIL. 2015;1(1):351–365. doi:10.5194/soil-1-351-2015.
  • Crowther TW, van den Hoogen J, Wan J, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365(6455):eaav0550. doi:10.1126/science.aav0550.
  • Paustian K, Andrén O, Janzen HH, et al. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 1997;13(s4):230–244. doi:10.1111/j.1475-2743.1997.tb00594.x.
  • Lal R, Bruce JP. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ Sci Policy. 1999;2(2):177–185. doi:10.1016/S1462-9011(99)00012-X.
  • Chabbi A, Lehmann J, Ciais P, et al. Aligning agriculture and climate policy. Nat Clim Change. 2017;7(5):307–309. doi:10.1038/nclimate3286.
  • Minasny B, Malone BP, McBratney AB, et al. Soil carbon 4 per mille. Geoderma. 2017;292:59–86. doi:10.1016/j.geoderma.2017.01.002.
  • de Vries W. Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations: comment on Minasny et al. (2017) Geoderma 292: 59–86. Geoderma. 2018;309:111–112. doi:10.1016/j.geoderma.2017.05.023.
  • Poulton P, Johnston J, Macdonald A, et al. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob Chang Biol. 2018;24(6):2563–2584. doi:10.1111/gcb.14066.
  • Wiesmeier M, Mayer S, Burmeister J, et al. Feasibility of the 4 per 1000 initiative in Bavaria: a reality check of agricultural soil management and carbon sequestration scenarios. Geoderma. 2020;369:114333. doi:10.1016/j.geoderma.2020.114333.
  • Rumpel C, Amiraslani F, Chenu C, et al. The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio. 2020;49(1):350–360. doi:10.1007/s13280-019-01165-2.
  • Lal R. Soil organic matter and water retention. Agron J. 2020;112(5):3265–3277. doi:10.1002/agj2.20282.
  • Baveye PC, Schnee LS, Boivin P, et al. Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Front Environ Sci. 2020;8:579904. doi:10.3389/fenvs.2020.579904.
  • Bellamy PH, Loveland PJ, Bradley RI, et al. Carbon losses from all soils across England and Wales 1978–2003. Nature. 2005;437(7056):245–248. doi:10.1038/nature04038.
  • Saby NPA, Arrouays D, Antoni V, et al. Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manag. 2008;24(3):254–262. doi:10.1111/j.1475-2743.2008.00159.x.
  • Meersmans J, van Wesemael B, de Ridder F, et al. Changes in organic carbon distribution with depth in agricultural soils in Northern Belgium, 1960–2006. Global Change Biol. 2009;15(11):2739–2750. doi:10.1111/j.1365-2486.2009.01855.x.
  • Heikkinen J, Ketoja E, Nuutinen V, et al. Declining trend of carbon in Finnish cropland soils in 1974-2009. Glob Chang Biol. 2013;19(5):1456–1469. doi:10.1111/gcb.12137.
  • Taghizadeh-Toosi A, Olesen JE, Kristensen K, et al. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009. Eur J Soil Sci. 2014;65(5):730–740. doi:10.1111/ejss.12169.
  • Heikkinen J, Keskinen R, Kostensalo J, et al. Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob Chang Biol. 2022;28(12):3960–3973. doi:10.1111/gcb.16164.
  • Merante P, Dibari C, Ferrise R, et al. Adopting soil organic carbon management practices in soils of varying quality: implications and perspectives in Europe. Soil Tillage Res. 2017;165:95–106. doi:10.1016/j.still.2016.08.001.
  • Lugato E, Bampa F, Panagos P, et al. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob Chang Biol. 2014;20(11):3557–3567. doi:10.1111/gcb.12551.
  • Launay C, Constantin J, Chlebowski F, et al. Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-Resolution modeling. Global Change Biol. 2021;27(8):1645–1661. doi:10.1111/gcb.15512.
  • Vertes F, Hatch D, Velthof G, et al. Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations In Proceedings of the 14th Symposium of the European Grassland Federation, Ghent, Belgium; 2007. p. 227–246.
  • Linsler D, Taube F, Geisseler D, et al. Temporal variations of the distribution of water-stable aggregates, microbial biomass and ergosterol in temperate grassland soils with different cultivation histories. Geoderma. 2015;241-242:221–229. doi:10.1016/j.geoderma.2014.11.013.
  • Reinsch T, Loges R, Kluß C, et al. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agric Ecosyst Environ. 2018;265:374–383. doi:10.1016/j.agee.2018.06.020.
  • Guillaume T, Makowski D, Libohova Z, et al. Carbon storage in agricultural topsoils and subsoils is promoted by including temporary grasslands into the crop rotation. Geoderma. 2022;422:115937. doi:10.1016/j.geoderma.2022.115937.
  • Chenu C, Angers DA, Barré P, et al. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil Till Res. 2019;188:41–52. doi:10.1016/j.still.2018.04.011.
  • Johnston AE, Poulton PR, Coleman K, et al. Changes in soil organic matter over 70 years in continuous arable and ley–arable rotations on a sandy loam soil in England. Eur J Soil Sci. 2017;68(3):305–316. doi:10.1111/ejss.12415.
  • Poeplau C, Don A, Vesterdal L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Global Change Biol. 2011;17(7):2415–2427. doi:10.1111/j.1365-2486.2011.02408.x.
  • Or D, Keller T, Schlesinger WH. Natural and managed soil structure: on the fragile scaffolding for soil functioning. Soil Till Res. 2021;208:104912. doi:10.1016/j.still.2020.104912.
  • Bolinder MA, Kätterer T, Andrén O, et al. Long-Term soil organic carbon and nitrogen dynamics in forage-based crop rotations in Northern Sweden (63–64°N). Agric Ecosyst Environ. 2010;138(3-4):335–342. doi:10.1016/j.agee.2010.06.009.
  • Chan KY, Conyers MK, Li GD, et al. Soil carbon dynamics under different cropping and pasture management in temperate Australia: results of three long-term experiments. Soil Res. 2011;49(4):320–328. doi:10.1071/SR10185.
  • Laamrani A, Voroney PR, Berg AA, et al. Temporal change of soil carbon on a long-term experimental site with variable crop rotations and tillage systems. Agronomy. 2020;10(6):840. doi:10.3390/agronomy10060840.
  • Franzluebbers AJ, Sawchik J, Taboada MA. Agronomic and environmental impacts of pasture–crop rotations in temperate North and South America. Agric Ecosyst Environ. 2014;190:18–26. doi:10.1016/j.agee.2013.09.017.
  • Lilja H, Uusitalo R, Yli-Halla M, et al. Suomen maannostietokanta: Käyttöopas versio 1.1 (Finnish Soil Database: manual, version 1.1). Luonnonvara- ja biotalouden tutkimus; 6. Vol. 114. Helsinki, Finland: Natural Resources Institute Finland; 2017.
  • Cornes RC, van der Schrier G, van den Besselaar EJM, et al. An ensemble version of the E-OBS temperature and precipitation data sets. JGR Atmos. 2018;123(17):9391–9409. doi:10.1029/2017JD028200.
  • IPCC. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG, editors.Geneva (Switzerland): IPCC; 2014.
  • Elonen P. Particle-size analysis of soil. Acta Agric Fenn. 1971;122:1–122.
  • Peltonen-Sainio P, Jauhiainen L, Sorvali J. Diversity of high-Latitude agricultural landscapes and crop rotations: increased, decreased or back and forth? Agric Syst. 2017;154:25–33. doi:10.1016/j.agsy.2017.02.011.
  • Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 2013.
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023.
  • Gelman A, Carling JB, Stern HS, et al. Bayesian data analysis. 3rd ed. Boca Raton, FL: Chapman and Hall/CRC; 2013.
  • EASAC. Regenerative agriculture in Europe. A critical analysis of contributions to european union farm to fork and biodiversity strategies. EASAC Policy Report 44. 2022. p. 58. Available from: www.easac.eu
  • Peltonen-Sainio P, Jauhiainen L, Hannukkala A. Declining rapeseed yields in Finland: how, why and what next? J Agric Sci. 2007;145(6):587–598. doi:10.1017/S0021859607007381.
  • Peltonen-Sainio P, Jauhiainen L, Laitinen P, et al. Identifying difficulties in rapeseed root penetration in farmers’ fields in Northern European conditions. Soil Use Manag. 2011;27(2):229–237. doi:10.1111/j.1475-2743.2011.00331.x.
  • Peltonen-Sainio P, Jauhiainen L. Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland. Reg Environ Change. 2020;20(3):89. doi:10.1007/s10113-020-01682-x.
  • Peltonen-Sainio P, Jauhiainen L. Unexploited potential to diversify monotonous crop sequencing at high latitudes. Agric Syst. 2019;174:73–82. doi:10.1016/j.agsy.2019.04.011.
  • Peltonen-Sainio, P.; Jauhiainen, L. Risk of low productivity is dependent on farm characteristics: how to turn poor performance into an advantage. Sustainability. 2019;11(19):5504. doi:10.3390/su11195504.
  • McLauchlan KK, Hobbie SE, Post WM. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol Appl. 2006;16(1):143–153. doi:10.1890/04-1650.
  • Persson T, Bergkvist G, Kätterer T. Long-Term effects of crop rotations with and without perennial leys on soil carbon stocks and grain yields of winter wheat. Nutr Cycl Agroecosyst. 2008;81(2):193–202. doi:10.1007/s10705-007-9144-0.
  • Soussana J-F, Loiseau P, Vuichard N, et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004;20(2):219–230. doi:10.1111/j.1475-2743.2004.tb00362.x.
  • Anderson-Teixeira KJ, Masters MD, Black CK, et al. Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems. 2013;16(3):508–520. doi:10.1007/s10021-012-9628-x.
  • Kong AYY, Six J. Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J. 2010;74(4):1201–1210. doi:10.2136/sssaj2009.0346.
  • Rasse DP, Rumpel C, Dignac M-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil. 2005;269(1-2):341–356. doi:10.1007/s11104-004-0907-y.
  • Deiss L, Sall A, Demyan MS, et al. Does crop rotation affect soil organic matter stratification in tillage systems? Soil Till Res. 2021;209:104932. doi:10.1016/j.still.2021.104932.
  • Post WM, Kwon KC. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. 2000;6(3):317–327. doi:10.1046/j.1365-2486.2000.00308.x.
  • Conant RT, Cerri CEP, Osborne BB, et al. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl. 2017;27(2):662–668. doi:10.1002/eap.1473.
  • Conant RT, Paustian K, Elliott ET. Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl. 2001;11(2):343–355. doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2.
  • Peltonen-Sainio P, Jauhiainen L, Laurila H, et al. Land use optimization tool for sustainable intensification of high-Latitude agricultural systems. Land Use Policy. 2019;88:104104. doi:10.1016/j.landusepol.2019.104104.
  • King AE, Blesh J. Crop rotations for increased soil carbon. Ecol Appl. 2018;28(1):249–261. doi:10.1002/eap.1648.
  • Cotrufo MF, Wallenstein MD, Boot CM, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol. 2013;19(4):988–995. doi:10.1111/gcb.12113.
  • Kallenbach CM, Grandy AS, Frey SD, et al. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem. 2015;91:279–290. doi:10.1016/j.soilbio.2015.09.005.
  • Peltonen-Sainio P, Jauhiainen L, Honkavaara E, et al. Pre-crop values from satellite images for various previous and subsequent crop combinations. Front Plant Sci. 2019;10:462. doi:10.3389/fpls.2019.00462.
  • Arrouays D, Deslais W, Badeau V. The carbon content of topsoil and its geographical distribution in France. Soil Use Manag. 2001;17(1):7–11. doi:10.1111/j.1475-2743.2001.tb00002.x.
  • Bianchi A, Larmola T, Kekkonen H, et al. Review of greenhouse gas emissions from rewetted agricultural soils. Wetlands. 2021;41(8):1–7. doi:10.1007/s13157-021-01507-5.
  • Beillouin D, Ben-Ari T, Malézieux E, et al. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol. 2021;27(19):4697–4710. doi:10.1111/gcb.15747.
  • McDaniel MD, Grandy AS, Tiemann LK, et al. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol Biochem. 2014;78:243–254. doi:10.1016/j.soilbio.2014.07.027.
  • Meyer M, Ott D, Götze P, et al. Crop identity and memory effects on aboveground arthropods in a long-term crop rotation experiment. Ecol Evol. 2019;9(12):7307–7323. doi:10.1002/ece3.5302.
  • Hunt ND, Hill JD, Liebman M. Cropping system diversity effects on nutrient discharge, soil erosion, and agronomic performance. Environ Sci Technol. 2019;53(3):1344–1352. doi:10.1021/acs.est.8b02193.
  • Beillouin D, Pelzer E, Baranger E, et al. Diversifying cropping sequence reduces nitrogen leaching risks. Field Crops Res. 2021;272:108268. doi:10.1016/j.fcr.2021.108268.
  • Soinne H, Hyväluoma J, Ketoja E, et al. Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post-glacial clay soils. Soil till Res. 2016;158:1–9. doi:10.1016/j.still.2015.10.014.